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POMDP Planning Under Object Composition
Uncertainty: Application to
Robotic Manipulation

Joni Pajarinen”, Jens Lundell

Abstract—Manipulating unknown objects in a cluttered envi-
ronment is difficult because segmentation of the scene into objects,
that is, object composition, is uncertain. Due to the uncertainty,
prior work has either identified the “best” object composition and
decided on manipulation actions accordingly or tried to greedily
gather information about the “best” object composition. We in-
stead, first, use different possible object compositions in planning,
second, utilize object composition information provided by robot
actions, third, consider the effect of competing object hypotheses
on the desired task. We cast the manipulation planning problem
as a partially observable Markov decision process (POMDP) that
plans over possible object composition hypotheses. The POMDP
chooses the action that maximizes long-term expected task-specific
utility, and while doing so, considers informative actions and the
effect of different object hypotheses on succeeding in the task.
In simulation and physical robotic experiments, a probabilistic
approach outperforms using the most likely object composition,
and long term planning outperforms greedy decision making.

Index Terms—Grasping, image
observable Markov decision process
manipulation, task planning.
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1. INTRODUCTION

ERVICE robots in domestic environments need the ability
S to manipulate objects without good prior models in order
to cope with the variability of such environments. This need
is usually approached by modeling the objects online using
sensors based on stereopsis or structured light. When multiple
measurements can be acquired around an isolated object, this
approach works quite satisfactorily as the generated 3-D models
can often be used for successful manipulation. On the other
hand, in cluttered scenes with multiple unknown objects, the
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Fig. 1. Inthe automated waste recycling example, the robot is tasked with find-
ing and putting objects that do not contain toxic green material into the rightmost
bin. (a) Due to uncertain segmentation, three different object hypotheses exist.
(b) Best option is to pick a block with green color and move it to the leftmost
bin. (c) By removing the block with green, the robot resolves the segmentation
uncertainty and finds recyclable material.

segmentation of objects, also known as object discovery in
perception research, becomes a significant problem.

In clutter, the challenge is to decide which segments in an over-
segmented scene belong to the same object, as shown in Fig. 1.
This challenge is notoriously difficult as objects can partially
occlude each other. A promising approach toward solving object
discovery in clutter is interactive perception [ 1], where the object
configuration is examined actively, typically by manipulating
the objects and observing the results. Another line of work is
to use learned priors to find the most likely object composition.
Despite the recent advances, manipulation of unknown objects
in cluttered environments is still an open problem.

This article proposes another solution to manipulation plan-
ning in clutter, where the idea is to plan over hypotheses of
possible object compositions (segmentations) instead of deter-
mining a single best hypothesis. For estimating the distribution
of object compositions, we propose a Markov chain Monte Carlo
(MCMC) procedure that produces approximately exact, inde-
pendent samples from the distribution. The approach combines
earlier ideas of interactive perception and learned composition
priors in a planning under uncertainty framework. The manipu-
lation planning problem is cast as a partially observable Markov
decision process (POMDP), which integrates active exploration
and planning. In particular, a POMDP model enables the use of
information-gathering actions which may not yield immediate
benefit but allows collecting crucial information, for example,
about object compositions, that is required to solve the actual
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task in the end. That is, the POMDP formulation allows us to
utilize the information provided by robot actions and plan actions
under object composition uncertainty into the future, which is
beneficial for manipulating objects in challenging environments
such as the one presented in Fig. 1.

In contrast to earlier work, our approach:

1) utilizes different possible object compositions in decision

making;

2) considers the effect of competing hypotheses on the goal

task;

3) actively explores the hypothesis space if that benefits the

task.

This journal article extends our earlier conference papers [3]
and [4] by

1) combining the MCMC procedure for belief estimation

in [3] with the POMDP planning in [4];

2) by including entirely hidden objects into the POMDP

model by taking advantage of hidden volume information;

3) by ahigh volume of simulations for statistically significant

evaluations;

4) new experiments using a Franka Panda robotic arm veri-

fying the general applicability of the approach.

This article begins by surveying work related to ob-
ject discovery, interactive perception, and planning under
uncertainty in Section II. Our framework of manipulation
planning over object compositions is then introduced in
Section III. Section IV proposes our approach for estimating
the distribution over object hypotheses. The state space of hy-
potheses is then used for manipulation planning as described in
Section V. Experiments with two different physical robot arms
and an RGB-D sensor presented in Section VI demonstrate that
the proposed approach can integrate perception to the manip-
ulation task and that the use of multiple hypotheses improves
the system performance when compared to considering only
the most likely hypotheses. Finally, Section VII concludes this
article.

II. RELATED WORK

Our work focuses on manipulation under object composition
uncertainty. In the following, we discuss related work w.r.t.
image segmentation, object discovery, active and interactive
perception, grasping unknown objects, and manipulation under
uncertainty.

Image segmentation: Image segmentation is a widely and
actively studied research field [2], [S]-[8]. Most of the earlier
work concentrates on segmenting grey and color 2-D images [5],
[6]. However, with the introduction of new cheap 3D-sensors,
such as Microsoft’s Kinect or Intel’s RealSense, research on
segmenting 3-D images has gained in popularity [2], [9]-[13].
The 3-D information from these sensors are especially useful for
robotics tasks including grasping and manipulation [13]-[17].
The main limitation with the aforementioned methods is that
they only consider point estimates of the segmentation, which, in
the case of poor segments, can lead to unsuccessful grasps [13].

To mitigate the effect of wrong segmentations, related
works have focused on utilizing a probability distribution
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oversegmentations [18], [19] or considered many segmentation
hypotheses [20]. By treating the problem as such it is possible to
use robots to gather information about the most likely segmen-
tation through exploratory actions, such as poking [19], [20]. In
this work, we also treat the problem probabilistically but instead
of considering only distributions oversegmentations, we model
the complete probability distribution over object compositions
and use this information for downstream decision making tasks.

A common technique for finding the best object compo-
sition is through graph cuts [2], [7], [21]. This article, in-
stead, estimates the probability distribution over object com-
positions using an MCMC procedure. Prior works have also
applied MCMC for segmentation, but focused on finding a
single best segmentation [22] or a fixed amount of distinct
2-D segmentations [23].

Object discovery: Scene segmentation is a classic problem in
computer vision tightly coupled to object recognition [24], [25]
so that it can be argued that the segmentation problem does not
have unique solutions if the objects are not known. Nevertheless,
there is a need to discover objects from scenes even when the
objects are a priori unknown. Recent works in the area are
based on supervised learning for detecting objects from synthetic
training data [12], deep-learning for unsupervised object discov-
ery [26]-[29], learning general models for recognizing object
classes from segments (e.g., segment labeling [30]), detecting
segments based on their “objectness” [31], or choosing which
segments belong to a single object [2], [11]. Our work follows
the line of work of [2] and [11], but instead of trying to find
a single optimal composition, it considers a distribution of
possible compositions.

Active and interactive perception: Instead of passively dis-
covering objects, other approaches have addressed the object
discovery problem from the point of view of active or interactive
perception [32]. Some examples of active perception are Gaze
control and foveation [33]. Interactive perception [1] has been
proposed for object discovery with the goal of singulating [34],
clearing [20], or segmenting [19] a pile of objects. These ap-
proaches use poking or pushing actions to estimate the ob-
ject composition. This article follows the interactive perception
paradigm but, in contrast to the works above, integrates the
perception with goal-directed planning so that perceptual actions
are only used when they are expected to support the task goal.

Grasping unknown objects: In recent decades, grasping un-
known objects has gotten significant attention in the research
community, especially after Saxena’s seminal work [35] on
using machine learning for detecting good grasps. Since then, the
deep-learning-based grasping methods have revolutionized the
area of unknown object grasping [14]-[16], [36]-[39]. However,
to reach high grasp success rates, many of these methods [14],
[16], [36], [37], [39] have constrained grasps to top-down and
4 degrees of freedom. In this work, we also consider top-down
grasps but, instead of using a data-driven methodology, we align
the robot hand according to the principal axes of the point-cloud.
In addition, we consider grasping as a component for both
informative and goal-directed actions; hence, even failed grasps
give valuable information about object composition that is used
for planning future grasps.
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Manipulation planning under uncertainty: In planning ma-
nipulation actions under uncertainty, classical deterministic
planning can be used to reduce uncertainty. For example, Dogar
et al. [40] plan pregrasp pushing actions that collapse pose
uncertainty of a target before executing a grasping action. This
type of approach is usually only available for completely known
objects.

When faced with limited knowledge, POMDP-like ap-
proaches can be used to plan over a distribution of states.
Hsiao et al. [41] proposed the partitioning of a one-dimensional
configuration space to yield a discrete POMDP, which can
be solved for an optimal policy. For planning grasp locations
under uncertainty, prior state-of-the-art probabilistic approaches
[42]-[44] have focused on positioning the robot as accurately
as possible [42] or maximizing the probability of a successful
grasp [43]. The planning can also be extended to include infor-
mation gathering actions [44].

In POMDP-based approaches for multiobject manipulation,
Monso et al. [45] use a POMDP definition designed specifically
for clothes separation, which assumed that each object is uniform
in color. In contrast to [45], this article does not make that
assumption as it addresses object discovery of multicolored
and textured objects. Moreover, the state-space model of [45]
is clothes separation specific, which, for instance, focuses on
modeling the number of clothes in different areas. Our approach
reasons about objects directly.

Other example of multiobject manipulation tasks that have
been formulated as POMDPs include emptying a refrigera-
tor [46] and object search [47]. Similarly to our work, Xiao
et al. [47] also consider fully occluded objects. The main
difference between the approach in [46] and ours is that [46]
do not explicitly model a probability distribution over object
hypotheses but assume a priori six different objects. For the
approach in [47], the main differences to ours is that it assume
perfect object composition segmentation with some uncertainty
in object locations and that the number and models of ob-
jects are known in advance. Our approach, on the other hand,
does not assume any information on object models or number
of objects.

III. MANIPULATING OBJECT COMPOSITIONS

We consider the scenario of a robot manipulating unknown
objects based on RGB-D data. The manipulation goal is defined
in terms of simple features that can be observed incompletely
from the point clouds. For example, the goal could be to move all
objects with a certain color to a particular location. Manipulating
unknown objects is difficult because even if RGB-D data is
available, the robot does not know in advance the shape or
color of the objects. Thus, the robot has to guess, which parts
of the point cloud belong to the same object. Occlusion and
noisy sensor readings make this task challenging. Attempting to
segment individual objects from the point cloud typically results
in oversegmentation, which leads to the problem of deciding
which segment belongs to which object (object composition),
forming object hypotheses.

In previous works such as [48], the choice of an action is
based on the most probable hypothesis of object composition.
The shortcoming of this approach is that it does not account for
the long term effects of uncertainty or the value of information
gathering actions. Instead, we propose to choose the action
that maximizes long term reward over the current and future
distribution of possible object compositions. By considering a
temporally evolving system, the robot can infer from past grasp
attempts the likelihood of object hypotheses.

Fig. 2 shows an overview of the proposed approach. At each
time step, we capture an RGB-D image by a vision sensor,
such as a Microsoft Kinect and oversegment the RGB-D image.
Furthermore, using MCMC and information about previous
manipulation outcomes, we generate a probability distribution
over possible object compositions where each composition con-
sists of segment patches. We perform long-term planning over
possible future object composition distributions using a POMDP
model. Finally, the best POMDP action is executed on the robot.
Before going into belief estimation and manipulation planning
details, we first describe how to model robotic manipulation as
a POMDP.

A. Robotic Manipulation as a POMDP

A POMDP defines optimal behavior for an agent in an
uncertain world with noisy, partial measurements, when the
stochastic world model is accurate and when the agent’s goal
has been defined precisely. Previously, POMDPs have yielded
good results in robotic applications, such as navigation [49],
autonomous driving [50], human-robot interaction [51], and
manipulation [41], [45]-[47], [52]. We utilize a POMDP because
it accounts for uncertainty in action effects and observations.
Moreover, a POMDP assigns the correct long-term value to
informative actions, which are needed when exploring object
hypotheses.

The temporal model of a POMDP is defined by the transition
probability P(s'|s,a) from state s to the next time step state
s', when action « is executed, and the probability P(o|s’,a) of
observing o, when action a was executed and the world moved to
the state s'. A real-valued reward R(s, a) for executing action a
in state s encodes the objective. An optimal policy m maximizes
the expected reward E[Y/_ ) R(s(t),a(t))|m,bo] over T time
steps, where by denotes the initial belief, which represents a
probability distribution over world states. At each time step, the
agent decides on an action a based on its current belief b(s).

In principle, the belief can be kept up-to-date given an ac-
curate temporal model. However, because an accurate model
is, in practice, unavailable, we instead estimate the belief at
each time step from current visual sensor data and past history,
and use an online POMDP method to compute a new policy
at each time step. That is, we take a receding-horizon online
approximate planning approach to action selection. We use the
particle policy graph improvement (PPGI) algorithm introduced
in [52] (the technical report [53] provides further details) to
compute a new policy. To cope with the large state space, PPGI
uses a state particle representation for the belief b(s) and to cope
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Fig. 2.

Overview of the proposed approach. At each time instant the robot obtains and oversegments RGB-D scene data. From pair-wise segment probabilities

of belonging to the same object, we generate a probability distribution over possible object compositions. We condition the probability distribution on past
grasp successes and failures (see Section IV). The robot uses a POMDP to select the best long-term manipulation action for the current object distribution (see
Sections III-A and V) and executes the action. For segmenting RGB-D data and estimating probabilities for segment pairs, we use [2].

with a large action space a graph-based policy representation.
Other sample-based POMDP methods, such as POMCP [54] or
DESPQOT [55], would also be applicable.

The POMDP model used in this article is based on the POMDP
model in our previous work on multiobject manipulation under
partial observability [52]. In [52], perfect segmentation was
assumed, meaning that we knew exactly which parts of the
scene belong to which object. Here, our POMDP model uses
a probability distribution over possible object hypotheses and
grasping actions occur in the space of object hypotheses. Shortly,
the scene is oversegmented into a set of segments (point clouds).
Possible objects, also known as object hypotheses, are formed
from a combination of segments, which is further described
in Section I'V. Following [52], the probability of successfully
grasping a hypothetical object, and observing its attributes (such
as color), depend on how occluded the object is. Moreover, we
assume that a previously failed grasp cannot succeed unless the
occlusion on the grasped object changes.

Formally, the POMDP state s= (S1,82,...,SN)
is a combination of (hypothetical) object states s; =
(sloc, gatrghomtelond " ghist) \where sl¢ is the semantic location
of the object, such as “on top of the table” or “in a box,”
s34 i the attribute of the object, s"™“** is the point cloud
associated with this object (empty for hidden objects), and
shist is the historical information for object i. The historical
information in sM' contain all necessary information for
decision making, including the grasp success probability (see
Section V-A3), which depends on prior grasp failures and
successes, and the historical observation information used
for computing observation probabilities (see Section V-B).
sPomtelond i composed of a set of point clouds that correspond
to the image segments of the object hypothesis, which is further
discussed in Section IV. Attributes of the object, such as color,
shape, and pose, can be derived from sg?"““ cloud "1 practice,
sbomtelond i¢ stored as a set of pointers to point clouds (segments)
to limit storage space. Since each state in a belief consist of
object hypotheses with different sets of segments, the belief
corresponds to a distribution over different object compositions.

The number of objects, N, and object states, s;, differ between
different POMDP states since we model a variety of object
hypotheses. This procedure is further detailed in the following
section.

Rewards, actions, observations, transition, and observation
probabilities. In order to perform POMDP planning, in addi-
tion to the state space, we need to define rewards, actions,
observations, transition, and observation probabilities. Rewards,
R(s, a), are application specific. For example, in this work, the
agent is rewarded for moving objects into the correct basket.
Consequently, we define an action, a, as an attempt to grasp and
move an object hypothesis. The action specifies a discrete object
hypothesis id and a discrete semantic location to move the object
hypothesis to, such as a the target basket. For more details on
actions and grasping see Section V.

Observations, o, consist of a discrete combination of at-
tributes, such as color, for a limited set of object hypotheses
and a boolean indicating whether a grasp succeeded or not
(see Section V-B2 for more details). Observations yield limited
information about the current state due to (i) occlusions and
sensor noise preventing observing objects and object composi-
tions fully, and (ii) for efficient POMDP planning the number of
different observations needs to be limited.

State transition probabilities, P(s'|s, a), are based on whether
an object hypothesis is grasped and moved successfully or not,
which influences the probability of both the grasped and other
object hypotheses (see Section V-B1 for more details). Similarly
to [52], observation probabilities P(o|s,’ a) depend on how
object (hypotheses) occlude each other: heavy occlusion, for
instance, makes observations noisier (see Section V-B3 for more
details).

IV. BELIEF ESTIMATION

The belief consists of state particles and their probabilities.
Here, instead of objects, each state, which we refer to as an object
composition, consists of a set of object hypotheses. An object
hypothesis consists of a set of segments where each segment
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Not connected
»

Directly
connected

Indirectly
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Fig. 3. Illustration of the segment connection types. The left image displays
two object hypotheses that are constructed from the oversegmented image on
the right. The topmost (black) arrow indicates that if two segments in the
oversegmented image do not belong together, they are not connected. On the
other hand, the rightmost (pink) arrow indicates that if two segments share a
border and belong to the same hypothesis, they are directly connected. Finally,
the bottom-most (green) arrow indicates that if the segments belong to the same
hypothesis but do not share a border, they are indirectly connected.

consists of a set of points that together form a point cloud. Each
point, in turn, is represented by an z, y, z coordinate and a color.

For performing inference on object hypotheses, we need to
define how segments relate to each other. We defined three
such relationships (all shown in Fig. 3): “directly connected,”
“in-directly connected,” and “not connected”. If two segments
belong to the same hypothesis they are either “directly con-
nected” or “in-directly connected.” A direct connection exist if
the segments occlude each other or if another segment occludes
both, which would allow for a direct connection behind the oc-
cluding object. Segments not part of the same object hypothesis
are referred to as “not connected.”

The probability of a sampled state is proportional to the
probability of the related object composition existing which, in
turn, depends on the history of successful and failed grasps. The
key insight is that if previously performed grasps on an object
hypothesis did not move the object the grasps must have failed.
Similarly, a grasp can only succeed for an incorrect hypothesis
when that hypothesis is part of a hypothesis for which the grasp
succeeds. Due to these insights, we assume that failed grasps do
not displace objects. This assumption proved to hold very well
in the experiments, even though objects were close to each other.

We always estimate the current belief from the current image
observation conditioned on the action/observation history. We
use a computer vision algorithm to segment the observed point
cloud and compute the connectedness probability for each point
cloud segment pair. Based on these probabilities, and whether
segments can be directly connected, we define a Markov chain
which converges to a distribution over object compositions.
We sample object compositions from this Markov chain after
a burn-in period. A belief state corresponds to a sampled object
composition with sampled object attributes. Our framework also
supports sampling object locations for a belief state. However,
in the experiments, object locations are deterministic.

The probability of the belief state is set proportional to the
probability of the sampled object composition, which is com-
puted (for uniform priors) as the probability of the observa-
tion/action history conditional on the object composition. This
means that the belief over object compositions is shaped by
past events. For example, if the robot fails to grasp an object
hypothesis, which should be easy to grasp when the object
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Fig.4. Illustration of conditioning on grasp outcome using a top-down view on

rectangular objects. Here the probability distribution over object compositions
consists of four possible compositions with six possible objects. (Top) The robot
executes blue grasp that grasps object 2. (Middle) The grasp succeeds and object
2 is removed. Compositions 2 and 4 which did not contain object 2 conflict with
reality and are eliminated. (Bottom) The grasp fails either due to object 2 not
existing or abad grasp. Therefore, probability of object compositions that contain
object 2 decreases.

hypothesis is correct, then the hypothesis is likely incorrect,
and the belief will reflect this. Fig. 4 illustrates how grasp
successes and failures influence the probability distribution over
object compositions. Next, we will discuss how to sample object
compositions and then show how to estimate the conditional
probability of an object composition given past events.

A. Markov Chain Sampling of Object Compositions

To generate object compositions computationally efficiently,
we first segment the image into pixel patches or segments, as
shown in Fig. 2 and then combine the segments into object
compositions consisting of object hypotheses. Other approaches
for segmenting an image and then combining the segments
into a single object composition immediately [2], or through
interaction [18], [19], exist. We instead maintain a probability
distribution over object compositions and make decisions based
on the probability distribution.

More formally, denote with d; ; whether segments ¢ and j are
directly connected. J; ; = 1 and §; ; = O represent, respectively,
direct or no direct connection. Direct connection means seg-
ments are assumed physically connected. Denote with § all pos-
sible direct connections. Denote with h = (hy,..., hyx) € I
an object composition, where hy, is an object hypothesis and 7
the space of object compositions. An object hypothesis hy, is a
set of segment indices where all index pairs ¢ € hg, j € hy are
connected either directly or indirectly through other segments,
denoted with ¢; j(hy) = 1 for all index pairs ¢ € hy, j € hy and
¢ ;(hi) = 0 otherwise. We estimate the probability distribution
P(h) over object compositions by (Gibbs) sampling individual
segment pair connections d; ;. Note that our sampling procedure



46

in Algorithm 1 in Section IV-B uses direct and indirect connec-
tions to estimate the probability of a segment pair connection.

In the worst case, the dimensionality of |.7] is 2N/ w.r.t. the
number of segments N In practice, however, | 7] is much lower
since segments with only “air” between them cannot be directly
connected. Often, in real-world scenes, || is a product of the
dimensionality of disconnected groups of segments [, 2V7/2,
where N, is the number of segments in a segment group. For
exact computation this is still intractable, and therefore, we
use an approximate particle representation for the probability
distribution over object compositions: P(h) = >, w;h;, where
>, w; =1land w; > 0Vi.

B. Markov Chain Monte Carlo

In order to generate the particle-based probability distribution
over object compositions, which can be used as a basis for deci-
sion making, we utilize Gibbs sampling (also known as Glauber
dynamics) [56]-[58]. We randomly sample direct connections
one at a time. Next, we will first discuss how a new Markov
chain state is sampled, and then show that the proposed Markov
chain is ergodic and converges to a unique distribution for non-
deterministic connection probabilities. Finally, we will present
a sampling procedure that aims to generate exact, independent
samples.

Our sampling technique for generating a new Markov chain
state exploits the fact that evaluating the probability for a single
segment connection is fast as it only needs to consider local
segment connections. The sampling technique consists of the
following two steps: 1) randomly select two segments ¢ and
J, which may be directly connected, and 2) sample the di-
rect connection from the probability distribution, by assuming
the direct connection is disabled and by keeping other direct
connections fixed to their current values. When ¢ and j are
indirectly connected, that is, part of the same object through
some other connections, the probability for the direct connec-
tion between ¢ and j depends only on the prior probability
of them being part of the same object. The reason for this
is due to the fact that connecting ¢ and j would not change,
which object hypothesis other segments would belong to. When
¢ and j are not already part of the same object, the proba-
bility for the direct connection depends on the probabilities
between the segment sets U and V', which connecting 7 and j
would connect into the same object hypothesis. Fig. 5 illustrates
this.

Algorithm 1 formally defines how to sample a new object
composition h*, when given the current object composition h, a
uniformly random selected possible direct connection index w,
and finally the sampled value ¢ ~ Uniform(0, 1). The algorithm
first chooses the direct connection candidate using w, then on
lines 4 and 5 determines the segment sets U and V', which the
direct connection would connect. On lines 6 and 7, the algorithm
computes the probability for the segment sets U and V' to belong
to the same object hypothesis when 7 and j are connected and
when not. Assuming a uniform direct connection prior, line 8
computes the direct connection probability, and line 9 finally
sets the direct connection on or off using g.
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(b)

Fig. 5. Effect of indirect connections on the connection probability between
segments 7 and j. A circle denotes a segment and a solid line denotes a connection
between segments. Dotted lines denote which connection probabilities are used
for sampling the connection between 7 and 5. U and V' denote the sets of segments
directly or indirectly connected to ¢ and 7, respectively. (a) Because 7 and j are not
indirectly connected we have to consider the connection probabilities between
segments that will become part of the same object, that is, we have to take into
account the connection probabilities between all segments in the sets U and
V. (b) Because 7 and j are already indirectly connected we consider only the
probability of the direct connection between 4 and j.

Algorithm 1: Sample New Object Composition.
I: h* = sample (h,w,q)
Input: Composition h, random values w and ¢
Output: New composition h*
2: 6,~7 j < The wth direct connection;
3: h* < hsothatd; ; = 0;

4 U Feag(h) =1,
iU {ulc;(h*) =1} if e ;(A*) =0
' ]U {’U|Cj1v(h*) = 1} lfCZ’](h*) = 0,

6: P(h*|0;,;,=1)

W HuEU H’UEV P(Cu,’v(h*) = 1)’
7. P(h*|6}; =0) «

2 Huew Hoev Plewn(h?) = 0);

) £ 1| P(h']8; ;=1) :
8 P(0;; =1|h") « P[5, =)+ P(R'[5,,=0)°

- 0 if P(67, =1|n*) < q.
Co 1 if P(6;; = 1n") > ¢

a) Ergodicity of the Markov chain: When the connection
probability P(c; ;) for any two segment patches is nondeter-
ministic, i.e., 0 < P(c; ;) < 1, the Markov chain generated by
Algorithm 1 is ergodic and converges to a unique distribution.
Because P(c; ;) is nondeterministic the probabilities on lines
6-8 are nondeterministic, and since we randomly select the
direct connection to consider, Algorithm 1 enables or disables
any direct connection with nonzero probability. Therefore, the
Markov chain is ergodic and converges to a unique distribution
in the limit. Note that due to the inherent uncertainty in seg-
mentation, the condition 0 < P(c; ;) < 1usually applies, which
is also the case for the experiments in Section VI. Note also
that since our sampling process is similar to Gibbs sampling,
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Algorithm 2: Sample a Set of Object Compositions.

Algorithm 3: Coupling from the Past (CFTP).

1: H = Compositions (Ngss, IVSTART, |H|)
Input: ESS target Ngss
Output: Compositions H
2: {hy,T} < CFTP (Nstarr);
3: t+ 1,H<«+ hy;
4:  while ((ESSmin(H) < NESS) AND
5: (T < Tuax)) do
6: while t < T do
7 h¢41 < Sample (h, w,w);
8: H « {H7 ht+1}';
9: t+—t+1;
10: end
11: T+ 2T
12: end
13:  H < Prune H evenly to size |H|

convergence of the algorithm could be derived based on the
sufficient conditions for convergence of Gibbs sampling [59].

b) MCMC procedure: We want our MCMC approach to
produce independent samples from the correct distribution.
Therefore, our MCMC approach first aims to get an exact
sample, that is, a sample from the correct probability distribu-
tion, then continue sampling until having enough independent
samples (H in Algorithm 2). Algorithm 2 shows the proposed
MCMC approach. Since the Markov chain state is a discrete
combination of binary variables, each variable denoting whether
two segments are directly connected, we base our approach on
the coupling from the past (CFTP) [60] technique, which aims
at providing exact samples. The basic idea of CFTP is to run
Markov chains from each possible state with the same random
numbers, starting further back in time until the chains collapse.
Here, collapsed means that all the chains arrive at the same state
even though they start from different states, which removes the
initial state bias (see [60] for more details).

For monotone [60] and antimonotone [61] Markov chains,
only two starting states are needed. However, our chains are
neither monotone nor antimonotone. Due to the large number
of states, we start CFTP from a limited dispersed set of states:
the all connected, all disconnected, and from a fixed number
of randomly selected states. We can make the collapsed sample
more likely to be exact by increasing the number of starting
states: when the starting states cover the whole state space
the collapsed sample will be exact [60]. Algorithm 3 shows
the CFTP procedure we use. In the experiments, we used 100
starting states (/Nstarr in Algorithms 2 and 3).

After CFTP, we start the actual sampling from the collapsed
sample produced by CFTP, and doubling the sampling horizon
until having enough independent samples. We use the minimum
of the effective sample size (ESS) [62] over all possible direct
connections (/Ngss in Algorithm 2) as a lower bound estimate
for the number of independent samples. Sampling stops when
the estimate for independent samples is large enough. We also
use a hard limit on the number of generated samples (Tyjax in
Algorithm 2).

1: {HT7 T} = CFTP (NSTART)
Input: # of start compositions Ngtarrt
Output: Composition Hr at time 7’

2: Hpr +— {{h1|6 = 1}, {h2|5 = 0},
3: {hs,..., hNgu |0 = random}};
4: T <+ 1,
5: repeat
6: T« 2T, HT — HINIT;
7 wr, ..., wr/o < Random;
8: ur, ..., ur/e < Random;
9: fort < Tto1do
10: HT—t+1 — @,
11: foreach ht_ € Hy_{ do
12: HT7t+1 — HT,t+1U
13: Sample hr ¢, wy, us;
14: end
15: end

16: until |Hy| =1,

C. Probability of an Object Composition Given Past Events

Object composition sampling requires assessing the probabil-
ity of an object composition conditioned on past grasp events. We
start with a more general definition and then proceed on to condi-
tioning on past grasp events. In general, the probability of an ob-
ject composition b = (hy, ..., hy), where h; is a single object
hypothesis, depends on the sequence of past actions and observa-
tions 0, = (a(0),0(1),a(1),0(2),...,a(t —1),0(t)), where ¢
denotes the current time step. Formally, the conditional probabil-
ity of the object composition defined above, assuming uniform
priors, independent object hypotheses, and independent history
events is:

N N t
P(n|6,) = T P(hil6y) =HH
i=1 i=1k=1

For object hypothesis manipulation, we maintain a history of
unique executed grasps. In our model, there is no need to remem-
ber multiple identical grasps as a previously failed grasp cannot
succeed again unless the occlusion of the object, for which
the grasp is optimized, changes. The composition probability,
conditional on past independent grasps (graspy, ..., graspy;).
is

so(k)lhi). (1)

N M
P(h|6;) HH (grasp|hi). 2)

D. Hallucinating Hidden Objects

Due to occlusions, the robot cannot see the complete scene
as objects can occlude each other which is illustrated in Figs. 6
and 17. To allow a robot to reason about hidden objects, we
enable it to hallucinate hidden objects into the object composi-
tion distribution. For hallucinating hidden objects, we utilize the
key insight that the probability of hidden objects depend on the
amount of hidden space, and the object occupancy density of that
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Fig. 6. Illustration of hidden objects. The transparent “glass” box denotes
the workspace inside which the robot currently operates. A white cup fully
occludes a red cup. To reason about hidden objects, we use the insight that only
a limited amount of objects can be hidden behind other objects. We assume that
the probability for an object to be hidden behind another object depends on the
volume hidden behind the occluding object, and, the object occupancy density.

space. Using these assumptions, we transform the probability
distribution over visible objects into a probability distribution
over both visible and hidden objects.

Let us denote the visible volume with Ve and the hid-
den volume with Vjjggen. These quantities represent how much
workspace the robot can and cannot see. To compute the hidden
volume Vjjgden, We project each visible voxel onto the workspace
boundary from the origin (camera location) and estimate the
volume between the rectangular visible voxel and the voxel
projected onto the workspace boundary. For each segment patch,
we get the hidden volume by summing over the segment vox-
els. Summing over all segment patches yields then the hidden
volume Viiqden- Let us denote the average height of the visible
segment patches with d, the cube floor area with Ao, and
the average number of objects with ngpjects. The minimum for
Nobjects 1 set to 1. We estimate the total volume of interest Vigii
for a cubical workspace as Vioa = 2dA¢. The visible volume,
Viisible, 18 then total volume minus hidden volume: Viigiple =
Vtotal - Viliddeno

The object occupancy density iS Pobjects = Tobjects / Viisible- For
each segment patch i, we compute the expected number of hid-

: i : i — i
den objects 1. behind the patch as ngyie..; = Pobjects Viiddens

where pobjecs represent the object occupancy density and Viiyge,
the patch’s hidden space volume. In the experiments, although
the model allows for multiple hidden objects behind an object,
we assume for simplicity that there is at most one object behind
an occluding object.

The sampling of hidden object hypotheses is performed af-
ter sampling nonhidden object hypotheses described in Algo-
rithm 2. For each nonhidden object hypothesis in each object
composition hy in H, we sample whether a hidden object
hypothesis is behind it. A hallucinated object is sampled accord-

ing to the probability 1 — ®((1 — Pépjecs)/ / Mipjects/4)> Which
corresponds to the Gaussian probability of having at least one
hidden object when the mean of the Gaussian is nébjects and the
ngbjects / 4.

Depending on the task, we can estimate probabilities for

hidden object properties based on visible objects and a priori
information. For example, in the object search experiments, we

standard deviation is
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Fig. 7. Example of a grasp on a red Lego block. The black line shows where
the robot finger tips are positioned when grasping (the black line goes through
finger tip positions). The robot tries to grasp a narrow part of the point cloud.
In detail, the grasp is based on the second PCA eigenvector of the point cloud
projected on the 2-D plane going through the wrist of the robot (not shown).

estimate the probability for hidden objects to be red based on
the average probability for redness. Now that we have discussed
how to estimate the belief over object compositions, we will next
discuss how to plan manipulation actions using the belief.

V. MANIPULATION PLANNING

After the robot has estimated the current belief, it uses that
belief to decides on its next action. As discussed earlier, we use a
POMDP for decision making. The POMDP chooses a high level
action such as the object to grasp and the location for placing it.
The POMDP enables the robot to take actions that support long
term behaviors, including information gathering actions, such as
removing obstacles for finding hidden objects. Next, we discuss
parts of our system that the POMDP requires for planning. We
will discuss the actions available to the robot, how to sample a
new state and observation, and how to compute the observation
probability.

A. Actions

In our problem setting, the robot may grasp an object and
move it. We employ top-down grasping. For selecting the finger
distance and rotation of the robot hand, we use a simple approach
based on computing a vector at a narrow part of the unknown
object with principal component analysis (PCA). An example
grasp is shown in Fig. 7. Next, we discuss details on how a
grasp is computed for an object hypothesis, how to limit the
total number of possible grasps for all object hypotheses, and
finally how to compute grasp success probabilities.

1) Details on Grasp Computation: The approach:

1) projects the point cloud PC; of the object hypothesis onto

a plane aligned with the wrist of the down-pointing robot
hand;

2) makes the point density of the projected point cloud uni-

form, resulting in point cloud PCs;

3) projects the centroid of PC, toward PC; along the wrist-

plane normal, by the distance between the centroids of
PC; and PC,, to get the grasp centroid.

Next, the approach computes the PCA decomposition of PCs.
For getting the final two grasp contact points, we project two
points along the second eigenvector in opposite directions from
the grasp centroid and select the two points from PC; closest
to the projected points. The reason for choosing the second
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eigenvector is because, in PCA, the second eigenvector aligns
with the second-largest variance in the data, which is the width
for a long and narrow object. Finally, to prevent collisions
with objects, we check whether some part of another object
hypothesis blocks the direct path up from the two grasp contact
points, and if so, set the grasp success probability to zero.

2) Restricted Action Set: In order to restrict the computa-
tional load, we bound the number of possible grasps, and thus
actions, by a predefined maximum number (in the experiments
20). Instead of restricting the number of possible object hypothe-
ses, we select a subset of all hypotheses to use for grasping.

Optimally, we want a set of grasps that yields the best policy
among all possible grasp sets. However, because the best pol-
icy is unknown, we settle for computing an action set A that
maximizes the expected grasp success probability

A = arg max > Purasp prob(SUCCESS| i, A)P(hs) — (3)
hi

where |A| is the number of actions, P(h;) is the probability
of hypothesis h;, and Pypap prob(SUCCESS|h;, A) is the grasp
success probability. The grasp success probability refers to
the probability of successfully grasping and moving an object
hypothesis h; when the robot chooses the best action from the
action set A.

One option to find the action set A is to solve an integer linear
program. Unfortunately, such a program is in the worst case
NP-hard. As an approximation, we use a greedy approach that
incrementally selects the object hypothesis, which increases the
expected grasp success probability the most. In the experiments,
the expected grasp success probability using a restricted action
set usually remained close to the probability with the complete
set of possible actions.

3) Grasp Success Probability: We parameterize A grasp by
the distance between the finger tips, rotation of the hand, and
the location of the robot wrist. The grasp success probability is
the product of a grasp quality and an occlusion specific grasp
probability. To calculate the occlusion-specific grasp probability,
we use the grasp probability model proposed in [52], and to
calculate the grasp quality, we use heuristics. Due to using
heuristics, the grasp success probability should perhaps be called
a pseudoprobability instead of an actual probability. Neverthe-
less, as the grasp quality is between 0 and 1, the grasp success
probability acts like a probability. Henceforth, for convenience,
we use the short hand “probability” when referring to the grasp
success probability.

When computing grasp probabilities, we take previously ex-
ecuted grasps into account. For instance, a failed grasp cannot
succeed again, unless the occlusion of the object changes for
which the grasp is optimized (when the occlusion changes the
grasp usually changes also). Grasp quality is intended to evaluate
the quality of a grasp on another hypothesis than that it was
optimized for. Grasp quality is equal to 1 when using a grasp,
which was computed for the same object hypothesis that the
robot tries to grasp. The grasp quality decreases when the grasp
centroid moves away from the optimized grasp centroid, and
becomes zero when it is outside the object.

Fig. 8. Visualization of grasp quality computation when the grasp optimized
for the red ellipsoid object grasps a blue ellipsoid object. Black lines denote
grasps (see Fig. 7 for an example grasp). Grasp quality is based on projecting
point clouds onto the robot’s 2-D wrist plane. We compute grasp quality as the
distance from the blue object’s projected grasp centroid ¢x to the blue object
edge 21 divided by the distance from the red object’s projected grasp centroid
Cy to Z1.

How we compute the grasp quality is illustrated in Fig. 8.
More formally, we compute a grasp quality for grasping object
hypothesis X with a grasp optimized for object hypothesis Y by
first checking whether the grasp of Y intersects the point cloud of
X. If not, grasp probability is zero. Otherwise, we first compute
the centroids cy and cx that represents the intersecting grasp on
Y and the centroid of the best grasp for X, respectively. Then,
we project the point cloud of X, the point cloud of Y, ¢, and
cy onto the 2-D robot wrist plane. We denote these projections
with X, Y, é,, and éy, respectively. The grasp quality is finally
computed as follows.

1) Find the point z; by projecting a point starting from ¢y

through ¢x until the edge of X.

2) Compute the grasp quality as %

In other words, the grasp quality decreases when the grasp
centroid cy moves further away from the grasp centroid cx.

B. Temporal Model of the World

In order to use the POMDP method in [52] for planning, we
need to model the evolution of the world state over time, which
requires state transition and observation probabilities. Because
our probability distributions use a state particle representation,
we need, in particular, an approach for sampling states and
observations and estimating the likelihood of a state particle
given an observation. Next, we discuss how to accomplish these
tasks.

1) State Sampling: As discussed earlier, a world state con-
sists of an object composition, h = (hq, ..., hx), where each h;
consists of a semantic object location, attributes, and a history.
To sample a new state for a grasp action a, first select the object
hypothesis h; that has the highest grasp probability for a. Then,
sample grasp success of a on h; according to the grasp success
probability defined in Section V-A3. Finally, execute the grasp,
and if it fails, add it to the grasp failure history of h;. If, instead,
the grasp successfully moves an object, change the semantic
location of the object to the destination location.

2) Observation Sampling: After executing the grasp action,
the robot observes which object moved. In the case of a suc-
cessful move, the robot observes the attributes (color in the
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experiments) of a limited number of objects behind the moved
object. Assuming independence between attribute observations,
the observation probability is [[, P(o;|h;), where o; is the
observation of h;. As in [52], P(0;|h;) is computed from the
occlusion of h; and the attribute instances of h,;.

3) Observation Probability: The probability of making an
observation o in state s is zero if the moved object hypothesis dif-
fers from the observed one, or if the move fails and the attribute
observations do not match with previous attribute observations.
Otherwise, the probability is defined by [ ], P(o;|h;) discussed
earlier.

VI. EXPERIMENTS

The experiments are designed to test whether taking object
composition uncertainty into account improves performance in
robotic manipulation. Our hypothesis is that modeling the uncer-
tainty explicitly is beneficial. Furthermore, we hypothesize that
planning actions to accomplish a task under object composition
uncertainty improves the performance. The two main questions
we want to answer are as follows:

1) Does taking segmentation uncertainty in decision making

into account increase performance?

2) Does multistep planning based on a distribution over
object compositions increase performance compared to
greedily choosing actions?

In order to provide justified answers to these questions, we
compare the baseline and proposed methods in two different
tasks with two different robot arms to show the generality of
the methods. In the first task, the robot needs to remove objects
from a table using a Kinova Jaco robotic arm. In the second
task, the robot needs to search for red objects from a pile
of objects in simulation and using a real Franka Panda robot
arm. In the first task, we focus purely on comparing decision
making with and without taking segmentation uncertainty into
account. In the second task, multistep planning is needed to
utilize both information gathering and task directed actions
under object composition uncertainty. Therefore, we evaluate
also our POMDP-based planning method in the second task.

A. Segmentation and Estimating Grasp Probabilities

In the experiments, segmentation and segment-pair proba-
bility computation is performed using the approach presented
in [2]. In short, the approach assigns probabilities to segment
pairs using support vector machines (SVMs) trained on RGB-D
data of household items, which are not in all ways similar to the
toys we use in the experiments.

At each time step, the sensor captures an RGB-D image of
the scene, and the system segments the image into patches and
computes a prior probability for each patch pair to belong to the
same object using the approach in [2]. In more detail, Richtsfeld
et al. [2] group neighboring pixels into clusters and fits planes
and B-splines onto the patches to get parametric models (see
Fig. 2, for examples, of segmented patches). The approach
in [2] computes, for each patch pair, a set of features based on
the texture, distance of the patches from each other, and other
properties. Finally, the approach feeds the computed features
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RGB-D
sensor

Fig. 9. In table clearing, we use an RGB-D sensor for visual input and a
6-DOF Kinova Jaco arm for grasping randomly placed toy bricks. (Left) Overall
experimental setup. (Right) Toy bricks used in the experiment.

into a trained SVM and scales the output into a probability
indicating whether the patches belong to the same object or not.
We use the approach in [2] to compute prior probabilities P(c; ;)
for all segment/patch pairs, where P(c; ; = 1) defines the prior
probability for 7 and j to be part of the same object. Note that,
our approach can also use other methods to oversegment and
estimate patch pair probabilities.

We use P(c; ;) in the MCMC procedure in Algorithm 2
to compute a probability distribution over object compositions
(see Fig. 2, for examples). The number of MCMC samples
should be chosen according to the computational budget. In
the experiments, we used |H| = 2000 samples. Because the
minimum lower bound estimate ESS underestimates the real
ESS it should be lower than the number of samples: we used
a target ESS of Ngss = 200, which is a tenth of the number
of samples. The number of CFTP starting states influences the
independence of the first sample w.r.t. the starting state. We used
Ngrarr = 100 CFTP starting states in the experiments. The hard
limit for the number of samples generated was Ty,x = 131, 072.

Grasp probabilities. For grasp probability, we used the pa-
rameters estimated for the coffee cups in [52] and set the first
color observation parameter to —0.5 and the second to —0.02
for both red and nonred observations (see [52] for details). We
emphasize that the models were not optimized for our particular
objects as a robot acting in the real world should be able to
generalize to new objects.

B. Experiments: Clearing a Table

Fig. 9 shows the experimental setup for table clearing. In the
setup, a Kinect RGB-D sensor captures images of the scene
and a 6-DOF robotic Kinova Jaco arm tries to move as many
toy bricks away from the table as possible. Since we do not
assume any prior information in advance, such as geometric
or colour information, and because the bricks are in a pile,
segmenting the bricks correctly is difficult. For clearly separated
known objects one could possibly use standard segmentation
methods. To generate random scenes of toy brick, we shook a
box containing toy bricks and emptied it into a specific area
on a table, as shown in Fig. 9. Fig. 10 presents the ten random
scenes for each method ordered so that the first scene produced
highest utility and the last scene the lowest utility. Fig. 11 shows
an example segmentation for one of the scenes. The goal was
to remove a toy brick from the table at each time step. In the
application, action a specifies the object hypothesis to grasp and
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(b)

Fig. 10.

Cropped kinect RGB images of the 20 randomly generated scenes in table clearing. (a) Random scenes in “best segmentation” evaluations, ordered

according to experimental success from best to worst. (b) Random scenes in “maximum utility” evaluations, ordered according to experimental success from best

to worst.

Fig. 11. Example segmentation of Lego bricks.

move away. The Kinova Jaco arm could only grasp an object
hypothesis if it fitted inside the maximum grasp width of the
gripper, which we set to 4 cm. The robot is rewarded 1 for a
successfully grasped and moved object and 0 otherwise.

In this experiment, we do not perform POMDP planning.
Instead, we only optimize the expected immediate reward to
evaluate whether utilizing a probability distribution over object
compositions increases performance compared to utilizing only
the best object composition found. We compare two methods.
The first method, called “best segmentation,” finds the most
likely object composition, h*, and then computes the action
a that maximizes the utility or immediate reward function
R(h*,a). In table clearing, “best segmentation” tries to grasp
the object which has the highest grasp success probability in
the most likely object composition. The second method, called
“maximum utility,” corresponds to maximizing the expected
immediate reward where the expectation is taken over possi-
ble object compositions. In table clearing, “maximum utility”

0 1 2 3 4
Average reward

Fig. 12.  Results in table clearing. The robot grasps and moves toy bricks away
from the table. The bar plot shows the average number of successful moves
(average reward) and the 95% confidence interval in ten experimental runs for
each method. The “maximum utility”” method performed significantly better than
“best segmentation” (p = 0.014 in the Mann—Whitney U one-sided test [63]).

tries to grasp the object, which has the highest grasp success
probability weighted by the probability of the object to exist in
an object composition.

a) Table Clearing: Results and Discussion: Fig. 12
presents, for each method, the number of successful moves (a
maximum of six moves per scene) in ten experimental runs.
The “maximum utility” method performed significantly better
than “best segmentation” (the p-value was 0.014 in the Mann—
Whitney U one-sided test [63]). To qualitatively compare the
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(@) (b)

Fig. 13.  “Maximum utility” is able to move an object when “best segmenta-
tion” fails. Time step 6 in the sixth scene in Fig. 10(b): (a) Segmented patches,
(b) the most likely object composition (probability 0.271). “Maximum utility”
successfully grasps the object hypothesis consisting of patches 0 and 1. However,
“best segmentation” stops because the hypothesis formed by patches 0, 1, and
2 in (b) exceeds the robot’s maximum grasp width which was set to 4 cm.

two methods, we recorded decisions by both, although only
one method operated the robot arm in each scene. That is,
we ran one method and at the same time output the decisions,
which the other method would have made for the same object
compositions. In the scenes in Fig. 10(a), even though graspable
object hypotheses were still available, “maximum utility” would
have finished execution early 3 times and “best segmentation”
finished early 10 times. Similarly, in the scenes in Fig. 10(b),
“maximum utility” finished execution early 3 times and “best
segmentation” would have finished early 23 times. A typical
failure case for the “best segmentation” method was that the
most likely composition it produced consisted of hypotheses
that all exceeded the robot’s maximum grasp width of 4 cm.
Fig. 13 shows an example of such a situation.

The time to complete one object movement, which includes
image processing, segmentation, generating the particle-based
probability distribution, and moving an object (hypothesis),
took, on average, 79.9 s. Of this time, our MCMC approach
took, on average, 8.8 s (11%). However, the time needed for
MCMC depends on the number of particles and CFTP starting
states and can be adjusted if necessary.

Regarding segmentation, Fig. 13(a) shows that underseg-
mentation happens sometimes. In general, it is better to over-
segment too heavily than undersegment but this applies to all
oversegmentation approaches including the oversegmentation
approach utilized by the two comparison methods. Interestingly,
grasps were sometimes successful even when the segmentation
of the grasped object did not correspond to a real object. This
happened, for example, when the robot grasped the segmented
top of an object and managed to successfully move the complete
object.

Overall, one of the main reasons the robot achieved such
a high grasping performance was because the utility function
did not include unnecessary constraints. However, for other
applications, such as moving fragile objects, the utility function
could, for instance, penalize grasping incorrectly segmented
objects if this would decrease the chance of dropping the object.

C. Experiments: Object Search

In the object search experiments shown in Fig. 14, a Franka
Emika Panda robot arm equipped with a custom parallel gripper
was tasked to find and move an unknown number of fully red
objects into a red box. For every red object, the robot places in
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Fig. 14.  Experimental setup for object search. Based on RGB-D data from a
Microsoft Kinect, a 7-DOF Franka Panda robotic arm tries to move red objects
into a red box. (Left) Robotic setup with all objects arranged on the table. (Right)
In actual experiments, objects are dumped into the workspace resulting in a
cluttered scene. The robot tries to move fully red objects into the red box and
may put objects into the green box to reduce clutter.

the red box, we increase the score (utility) by 1 and for every
nonred object placed in the red box, we decrease the score by 1.
To remove occlusions that hinder color detection and grasping,
the robot may also move objects into a green box without any
direct effect on the total score, i.e., we neither add nor subtract
points for such an action.

The complete setup along with the objects used are shown in
Fig. 14. We chose these objects as they differed in size, rigidness,
color, and texture. A Kinect RGB-D sensor was used to observe
the objects on the table. In order to get diverse and unbiased
scenes for each trial, we placed the objects inside a box, which
was shaken and emptied into the workspace of the robot. If an
object ended up outside the workspace the process was repeated.

Object search [47], [64] is a well known task in robotics but
existing approaches do not explicitly account for composition
uncertainty when planning actions. Of recent work, Danielczuk
et al. [64] performed object search for a prespecified target by
segmenting an image in each time step and combining the seg-
mented image with an “occupancy distribution” that describes
where the object could be hidden. We consider a more general
case without a specific target object and without knowing the
sizes of the objects we are searching for. Xiao et al. [47] used
a POMDP model for object search but assumes perfect object
composition segmentation with some uncertainty in object loca-
tions and utilizes a priori knowledge of number and models of
objects for finding hidden objects. We evaluated the following
four different methods.

1) Best grasp for objects observed red in the most likely

segmentation (“best segmentation’).

2) Grasp for the highest expected immediate reward (“‘max-

imum utility”).

3) POMDP multistep planning without hallucinating hidden

objects (“POMDP”).

4) POMDP multistep planning with hallucinating hidden

objects (“POMDP with hallucination”) .

The first two methods are similar to the ones used in the table
clearing experiment in Section VI-B. The “POMDP” method
plans actions based on a probability distribution over object
compositions using the POMDP model defined in Sections III
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Fig. 15.  Simulated object search. The bar plot shows the average reward and
the 95% confidence interval for each method. The differences between the
method performances is statistically significant. Please, see the main text for
further discussion.

and V. The “POMDP with hallucination” method extends the
third method with a probability model for hidden objects as
defined in Section IV-D. The probability for hidden objects to
be red was estimated as the average fraction of visible red objects
linearly scaled into [0.2, 0.8] to always allow for both nonred and
red hidden objects.

1) Object Search With Simulated Dynamics: In the ob-
ject search simulation experiments, we used the initial RGB-
D scenes captured in the robot experiments discussed in
Section VI-C2 but simulated dynamics and observation prob-
abilities. Fig. 15 shows the results. For statistical analysis we
ran a Kruskal-Wallis test and then Posthoc Conover tests re-
vealing that all methods’ average reward differed statistically
significantly: “POMDP with hallucination” from “POMDP”
(p = 0.002), “POMDP” from “maximum utility” (p = 0.003),
and “maximum utility” from “best segmentation” (p = 0.021).

2) Object Search on Real Hardware: Fig. 14 shows the
experimental setup and one of the scenes we used for object
search with a Franka Panda robot. As in previous experiments,
we randomly generated scenes by adding all objects into a
box, shook the box, and emptied the content into the robot’s
workspace.

Fig. 16 summarizes the results: POMDP methods signif-
icantly outperformed the greedy approaches. The main rea-
sons the POMDP methods outperform the greedy approaches
is that they utilize information gathering actions and remove
occluding nonred objects as shown in Fig. 17 and plan actions
over distributions of compositions. Planning over a distribution
of compositions discourages our approach from stopping pre-
maturely, contrary to approaches that may stop when no red
object is seen in the most probable distribution, which is the
main failure case for the greedy baselines. Fig. 18 shows the
running times for all comparison methods for the different com-
putational components at different phases of the manipulation
task.

Planning using a distribution of compositions also enables
complex reasoning, which the example in Fig. 19 illustrates. This
example shows that the robot can verify whether a nonred object

—
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Fig. 16.  Object search with a Franka Panda robot arm. The bar plot shows
the average reward and the 95% confidence interval for each method. The
performance difference between the POMDP methods and the greedy methods
is statistically significant. Please, see the main text for further discussion.

Fig. 17. “POMDP with hallucination” method removes objects occluding a
large space to reveal a fully red object. (Upper Left) Initial scene. (Upper Right)
Picking up nonred object occluding a large space. (Bottom Left) A fully red
hidden object is revealed. (Bottom Right) The robot now picks up the red object
and moves it into the red box.
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Fig. 18.  Average running time for each comparison method at different phases
of the manipulation task, that is, the time step. The running time is split into
preprocessing, segmentation, belief generation, and the POMDP solver compo-
nents. The four comparison methods are, from left to right, “best segmentation,”
“maximum utility,” “POMDP,” and “POMDP with hallucination.” Segmenta-
tion, belief generation, and the POMDP solver take roughly the same amount
of processing time. This is by design since the running time of belief generation
and the POMDP solver can be controlled while increasing or decreasing the
exactness of the computations.
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Fig. 19. (Left) The object composition on the top indicates that the red lego
block is either separated or part of the larger blue object. A reasonable approach
here is to grasp the larger blue part and move it to the green box. Then if the
composition is separable the red lego will be left in the scene while if the red
is part of the larger blue object the red-blue object will disappear which is also
fine. (Right) Robot picked up the larger blue object. In this case the red segment
was part of the blue object.

hypothesis forms an object together with a red object hypothesis
by grasping the blue object and removing it. If the hypotheses do
not belong together, the robot has removed a nonred object and
can collect the red object next. If, however, the red and nonred
hypotheses are part of the same object, the robot has still only
removed a nonred object and clarified the situation.

Regarding removing occluding objects in the scene, “POMDP
with hallucination” removed 21 occluding nonred objects to
reveal a fully red object and “POMDP” 18 occluding nonred
objects. Fig. 17 shows one successful example where “POMDP
with hallucination” removes an obstacle to reveal a fully red
object which is subsequently moved into the red box. We hy-
pothesize that with bigger and/or more occluding nonred objects
or fewer red objects in total the performance of “POMDP with
hallucination” may outperform the regular “POMDP” method
as it has an inherent advantage of removing occluding objects
in the scene.

D. Limiting Assumptions

In grasping, one limitation of using the second eigenvec-
tor of PCA for computing the grasp, which is discussed in
Section V-Al, is that the grasp may not work on nonconvex
object hypotheses. However, due to the large variety of object
hypotheses computed for an individual object, it is often possible
for the robot to find and grasp a convex part of a nonconvex
object, which was the case in the experiments, where the robot
successfully grasped various object shapes.

Another limitation is that the current model also assumes that
failed grasp attempts do not move objects. In future work, this
kind of dynamics could be incorporated into the model by adding
pose information to each object hypothesis and simulating move-
ment for failed grasps.
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A third limitation of the action definition is that actions do
not take object self-occlusion into account which may lead to
collisions when moving an object. In the experiments, we did not
observe this problem. Nevertheless, future work could account
for self-occlusion by using object shape-completion [65] or
estimating safety margins for object movement.

VII. CONCLUSION

Enabling robots to operate in cluttered unknown environments
is essential for many tasks, including waste segregation, agile
manufacturing, service robotics, and rescue robotics. However,
a lack of object models and noisy partial camera views make
manipulation in such environments difficult due to uncertain
object compositions. Therefore, for robots to successfully per-
form such tasks, they should consider multiple possible object
compositions and, in particular, plan actions that take all possible
object compositions now and in future time steps into account.
Based on this insight, instead of utilizing only the most likely
object composition, we proposed a POMDP planning frame-
work for planning manipulation actions in the space of object
compositions. In object search and table clearing experiments,
our approach outperforms an approach based on the most likely
object composition. Moreover, we empirically showed that long-
term planning outperforms greedy approaches when planning
over a distribution of object compositions.

Despite the promising results, we only considered settings
with static objects. Future work should, therefore, includes ma-
nipulation of dynamic moving objects under occlusion. Another
avenue of future work is to include prior knowledge from other
sensor modalities, such as tactile, into our probabilistic world
model.

Overall, we expect the main idea of planning based on a
distribution of object compositions to transfer well to other
application domains. One such example is autonomous driving,
where high uncertainties due to occlusions and weather con-
ditions cause difficulties determining which parts of the scene
are pedestrians, cars, or buildings? In this case, planning based
on the distribution of object compositions is a safer alternative
than relying on the most likely, but possibly incorrect, object
composition.
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