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Hybridizing Euclidean and Hyperbolic Similarities
for Attentively Refining Representations

in Semantic Segmentation of
Remote Sensing Images

Xin Li , Feng Xu , Fan Liu, Runliang Xia , Yao Tong , Linyang Li, Zhennan Xu , and Xin Lyu

Abstract— Attention mechanisms (AMs) have revolutionized
the semantic segmentation network in interpreting remote sensing
images (RSIs) due to their amazing ability in establishing
contextual dependencies. Nevertheless, due to the complex scenes
and diverse objects in RSIs, a variety of details and correlations
are not available in Euclidean space. Therefore, a similarity-
hybrid attention module (SHAM) is devised to attentively learn
the hyperbolic and Euclidean attention maps between any two
positions, followed by a weighted elementwise summation. The
hybrid attention maps posses latent geometric properties of both
Euclidean and hyperboloid. Taking commonly used fully convo-
lutional network (FCN) as baseline, hybrid attention-enhanced
neural network (HAENet) that embeds SHAM is presented.
Experiments on International Society for Photogrammetry and
Remote Sensing (ISPRS) Potsdam and DeepGlobe benchmarks
reveal its superiority to comparative methods. In addition, the
ablation study validates the effectiveness of SHAM compared
with other attention modules.

Index Terms— Attention mechanism (AM), hyperbolic geome-
try, semantic segmentation, similarity-hybrid attention.

I. INTRODUCTION

SEMANTIC segmentation (SS) is essential for accurately
interpreting remote sensing images (RSIs). Given an input

RSI, SS generates the corresponding pixel-level labels [1].
Therefore, SS plays a vital role in many applications, including
water resources management, land cover mapping, and hazard
assessment.
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Fundamentally, fully convolutional networks (FCNs) exhibit
impressive performance in extracting rich features and extend
to SS for RSI. However, FCN-based approaches are inherently
affected by limited perceptual fields and local context [1].

To capture contextual information from a broader range,
the atrous spatial pyramid pooling (ASPP) with multiscale
dilation rates was proposed [2]. However, the global context
is uncovered due to the inherence of stacking convolutional
layers.

Alternatively, the attention mechanism (AM) provides an
efficient way of capturing and incorporating global context [3].
An inchoate work, SENet [4], recalibrates channelwise weights
to highlight informative feature channels of feature maps. Fur-
thermore, as a mailstone, nonlocal neural network (NLNNet)
utilizes a self-AM (SAM), modeling positionwise correla-
tions to refine input features [5]. Afterward, the SAM has
been the primary choice in capturing long-range contextual
information for SS and the formed Transformer also reached
a desired success [6]. Specifically, several RSI-targeted net-
works, HCANet [7], LANet [8], and HMANet [9], have
remarkably promoted segmentation accuracy by designing
novel SAM variants with typical deployment. Nonetheless, the
existing methods are defined in Euclidean space, in which
the features are flattened to fulfill the Euclidean geometry
axiom [10].

However, Bronstein et al. [11] have proved that the images
also exhibit a highly non-Euclidean latent anatomy. Besides,
it appears in several applications that the dissimilarity mea-
sures constructed by experts tend to have non-Euclidean
behavior. Therefore, the Euclidean space cannot provide the
most powerful or meaningful geometrical representations. It is
necessary to exploit hyperbolic representations and take advan-
tage of this property.

Since Ganea et al. [12] derived hyperbolic neural network,
projecting feature vectors in Euclidean to hyperboloid endows
the representations to capture fundamental data properties,
including non-Euclidean visual phenomena and clustering
behavior [13]. Especially in RSI, the imaging altitude is always
high, bringing the distortions represented in Euclidean space.
Therefore, the Euclidean vectorwise similarity is suboptimal
in describing the two elements. The latent non-Euclidean
similarity is equally essential to measure the elementwise
similarity. Apart from designing loss function to fine-tune
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Fig. 1. Framework of HAENet.

the training of a network [14], it is suggested to incorporate
hyperbolic representations into network directly.

Motivated by the SAM, a similarity hybrid attention mod-
ule (SHAM) is proposed to generate and fuse Euclidean
and hyperbolic similarities, which are measured with Euclid-
ean and hyperbolic representations. Specifically, we devise a
hyperbolic projection and tokenization flow to adapt to the
normal attention workflow based on a pseudo-hyperboloid.
Therefore, the calculated hyperbolic distance (HD) generates
a hyperbolic attention map (HAM). Two contributions are
summarized as follows.

1) To comprehensively and effectively exploit Euclidean
and hyperbolic geometric representations, we propose
an SHAM, which post-fuses the contextual affinities of
the two spaces. In addition to performing self-attention
in Euclidean space, two parallel branches form a
pseudo-hyperboloid to project feature vectors and mea-
sure their correlations in hyperbolic space. In this way,
the post-fused attention map involves the similarities of
Euclidean and hyperbolic representations, making the
refined features discriminative. Based on SHAM, the
hybrid attention-enhanced neural network (HAENet) is
devised to segment RSIs. Experiments on the Potsdam
and DeepGlobe benchmarks exhibit competitive perfor-
mance. Moreover, the ablation study demonstrates the
effects of SHAM.

II. METHOD

A. Overview

As illustrated in Fig. 1, HAENet inherits the encoder–
decoder architecture. With an input image, the feature encoder

Fig. 2. Space transformation.

outputs the corresponding representation. Then, the representa-
tion is fed into the SHAM. Afterward, the encoded features are
refined with global context by a high-fidelity similarity, which
derives from hetero-curvature spaces that carry different visual
properties. At last, the upsampled SHAM-refined feature is
used to classify.

B. Hyperbolic Projection and Tokenization

Ascribing to Riemannian manifold and metric, the hyper-
bolic projection and tokenization module, termed HP&T,
enables project feature vector (Euclidean) onto hyperboloid
(Poincaré model in this study) with exponential map
(see Fig. 2). Formally

expc
v (x) = v⊕c

(
tanh

(√
cλc

v�x�
2

)
x√

c�x�
)

(1)

where x is the feature vector in Euclidean space, v is the
anchor, c is a hyperparameter governing curvature and radius
of the Poincaré model, λc

v = 2(1 − c�x�2)
−1

is a conformal
factor, and ⊕c denotes Möbius addition. The anchor is set to
the origin in practice; therefore, (1) turns to

exp0 (x) = tanh
(√

c�x�) x√
c�x� . (2)

After projection, every Euclidean vector has its hyperbolic
counterpart. We endow them with sequential positions to
achieve tokenization. Thus, HP&T produces position-assisted
hyperbolic representations for subsequent operation.

C. Hyperbolic Distance

Analogous to Euclidean space, HD is used to measure
the similarity between two arbitrary gyrovectors (see Fig. 3).
Inherently, the HD concerns the hyperbolic properties of a
specific position in RSI, compensating for the information loss
of the Euclidean vector. In this study, the induced distance is
given as follows:

d(x, y) = cosh−1

(
1 + 2

�x − y�2(
1 − �x�2

)(
1 − �y�2

)
)

(3)

where x and y are two gyrovectors and belong to one Poincaré
model. Therefore, HD is capable of being normalized to
provide hyperbolic similarity in accordance with each pair of
positions.
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Fig. 3. Illustration of HD with the Poincaré model.

D. Similarity-Hybrid Attention Module

SHAM unitedly models and aggregates self-attentive depen-
dencies in Euclidean and hyperboloid spaces in parallel.
As depicted in Fig. 1 (pink box), five sub-branches are
devised. Initially, the input feature is convolved with a kernel
size of 1 × 1, generating five representations for self-attention
paradigm. With the first and second branches (from the top),
the vanilla self-attention that captures long-range dependencies
in Euclidean space is implemented. Formally

Ae = Softmax

(
F11 × F21√

C

)
(4)

where Ae ∈ R
HW×HW is the attention map that implies Euclid-

ean similarity, F11 ∈ R
HW×C and F21 ∈ R

C×HW are feature
maps (Euclidean), and C is the channel number.

To compute hyperbolic similarity matrix, the convolved
F3 and F4 are fed into HP&T initially. Then, one of the
tokenized gyrovectors associated with the sequential positions
is reshaped with a size of HW × Ch , while the other one
is with Ch × HW, where Ch is the dimension of gyrovector.
Referring to (3), the pairwise distances are obtained followed
by a Softmax layer:

Ah = Softmax

(
F31 × F41√

Ch

)
(5)

where Ah ∈ R
HW×HW is the attention map that implies

hyperbolic similarity, F31 ∈ R
HW×Ch

and F41 ∈ R
Ch ×HW

are gyrovectors (hyperbolic), and Ch is the dimension of
gyrovectors.

Attempting to aggregate the similarity in hetero-curvature
spaces, a weighted summation is applied to Ae and Ah

Ash = α · Ae + β · Ah (6)

where Ash ∈ R
HW×HW is the similarity-hybrid attention map,

and α and β are two learnable coefficients (initially set
as 0.5 and 0.5).

Eventually, the refined feature maps Fre are given as follows:
Fre = Fin ⊕ (F51 × Ash) (7)

where F51 ∈ R
C×HW, and ⊕ is the elementwise summation.

In summary, vanilla self-attention still suffers from uncer-
tainty in segmenting RSIs, especially for easy-confused and
edge-surrounding pixels, because the similarity in Euclidean
space cannot provide sufficient discriminability. SHAM allows
the network learn the hybrid similarity in a single module
with acceptable computations. Consequently, the refined fea-
tures could supply more comprehensive contextual cues for
inference.

III. EXPERIMENTS

A. Datasets
Two benchmarks, namely, International Society for Pho-

togrammetry and Remote Sensing (ISPRS) Potsdam and Deep-
Globe, are examined. Thirty-eight aerial imagery tiles (20/4/14
tiles for training/validation/test) are collected and annotated for
the Potsdam benchmark with six categories (clutter is ignored
in evaluation). Every tile has a size of 6000 × 6000 with
a spatial resolution of 5 cm. The DeepGlobe benchmark is
acquired from a satellite platform with a spatial resolution
of 50 cm. Specifically, 1146 images of size 2448 × 2448 pixels
are available (803/171/172 images for training/validation/test).

B. Evaluation Metrics
To evaluate the performance, we calculate the pixelwise

intersection over union (IoU) with formula

IoU j =
∑n

i=1 T Pi j∑n
i=1 T Pi j + ∑n

i=1 F Pi j + ∑n
i=1 F Ni j

(8)

where TPs, FPs, and FNs are the number of true positives,
false positives, and false negatives in image i with class j ,
respectively. Moreover, the mIoU over k classes is given as
mIoU = (1/k)

∑k
j=1 IoU j . F1 score and OA are as follows:

F1 = 2 · precision · recall

precision + recall
(9)

O A = T P + T N

T P + F P + F N + T N
(10)

where precision = (TP/TP + FP), and recall = (FP/
TP + FN).

C. Implement Details

Three bands, R, G and B, are used as the input channels.
In practice, we split the raw image into subpatches with a
spatial size of 256 × 256 for training. With the Tesla V100-32
GB GPU, the comparative methods are reproduced. The batch
size is 16, and the learning policy is poly decay with an initial
learning rate of 0.0001 and the momentum of 0.9. Several data
augmentations are deployed, including 90◦, 180◦, and 270◦
rotation, horizontally and vertically flip. Commonly, the SGD
optimizer and the cross-entropy loss are used in this study.
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TABLE I

RESULTS OF THE ISPRS POTSDAM DATASET. CATEGORYWISE F1 SCORE, MEAN F1 (OVER ALL CLASSES),
AND MIOU ARE LISTED, WHERE BOLD INDICATES THE BEST

The ResNet50 with eight times downsampling is adopted as
the backbone. Besides, the max epoch is set to 500. We pro-
duce the hyperbolic embeddings referred to geoopt.1 The
feature embeddings are first transformed from Euclidean space
to hyperbolic space and then mapped onto the Poincaré model
for distance (similarity) calculation. The procedure is position-
related; thus, the pseudo-hyperbolic space and its related
parameters are unnecessary to be trained and optimized.

All comparative methods are trained from scratch without
bells and whistles. As the first group of experiments, we com-
pare proposed HAENet to state-of-the-art (SOTA) methods,
including LANet, HCANet, and HMANet. Specifically, several
fundamental networks are compared, such as FCN-8s, U-Net,
and DeepLab V3+. Second, we compared several attention
models based on FCN, including squeeze and excitation block
(SEB) in SENet [4] (termed FCN + SEB), convolution block
attention module (CBAM) [15] (termed FCN + CBAM), and
dual attention block (DAB) in DANet [16] (termed FCN +
DAB). Specifically, FCN + nonlocal block (NLB) in [5]) is
evaluated as the ablative models. This model is identical to
removing hyperbolic-related branches of SHAM.

D. Results of Potsdam Dataset
As presented in Table I, the categorywise F1 score, mean F1,

and mIoU are collected on test set. In general, our HAENet
outperforms to others on the Potsdam benchmark. The mean
F1 score and mIoU of HAENet are the best compared
with the recent-proposed SOTA methods, such as LANet,
HCANet, and HAMNet. An increase of 1%/2% of mean
F1 score/mIoU is obtained compared with HMANet. Some
typical baselines are susceptible to imbalanced distribution,
intraclass variations, and interclass similarities of RSIs, result-
ing in low accuracy, below 87%/72% of mean F1 score/mIoU.
Although RSI-targeted networks have made extensive efforts,
the high-dimensional non-Euclidean properties are ignored by
them. As for buildings suffering from occlusion, hyperbolic
representations can stretch this part and inject it into the
gyrovector for similarity measurement. HAENet reaches a
peak of over 97% for the classification F1 scores of build-
ings. At the same time, the hybrid similarity aggregation
allows for more distinguishable representations of cars, ris-
ing by about 3% compared with the second-order network.
Two random samples of Potsdam test set are predicted by

1https://github.com/geoopt/geoopt

Fig. 4. Visualization of random samples. (a) RGB image. (b) Ground truth.
(c) HAENet prediction.

HAENet in Fig. 4, where the vast majority of pixels are
correctly classified.

E. Results of DeepGlobe Dataset

The DeepGlobe benchmark has a lower spatial reso-
lution and covers a broader range than aerial images,
where fine-grained visual features are difficult to be learned.
As shown in Table II, all methods have experienced degra-
dation. However, the proposed HAENet reaches the high-
est accuracy, with 82.93%/67.78% of mean F1 score/mIoU.
Specifically, HAENet leads in all categories except for range-
land, of which a 0.02% F1 score is dropped than HMANet.
More than 95% of the F1 score for water areas is calculated.
Concerning imaging conditions, satellite RSIs are orthographic
and insensitive to light. Less than a 1% increase of mean
F1 score is observed with the suboptimal method. Two ran-
dom samples of DeepGlobe test set are predicted in Fig. 5.
In summary, satellite RSIs have an indistinctive hyperbolic
property, though a slight improvement is reached than other
SOTA methods.

F. Ablation Study

With the same setup and network baseline of FCN-8s,
we embedded SEB, CBAM, and DAB at the end of the
encoder. The results are listed in Tables I and II. Overall,
the proposed SHAM enables the best refinement of encoded
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TABLE II

RESULTS OF THE DEEPGLOBE DATASET. CATEGORYWISE F1 SCORE, MEAN F1 (OVER ALL CLASSES),
AND MIOU ARE LISTED, WHERE BOLD INDICATES THE BEST

Fig. 5. Visualization of random samples. (a) RGB image. (b) Ground truth.
(c) HAENet prediction.

representations. Compared with SEB, the mIoU on the Pots-
dam test set rises from 72.29% to 84.28%. When testing
DeepGlobe, the increase slightly drops to about 7% of mIoU.
CBAM and DAB have similar effects on two datasets with
the cascaded and parallel post-fusion manners of two attention
modules. As described in III-C, FCN + NLB is the ablative
model by removing hyperbolic-related branches. Numerically,
NLB refines the learned feature maps with respect to position.
However, the latent non-Euclidean similarity is not introduced.
With the fusion of hetero-spaces’ attention maps, massive
invisible cues are exploited to accurately measure the simi-
larity of different objects, producing more fidelity similarity
by incorporating hyperbolic geometry.

IV. CONCLUSION

This letter proposes a novel SHAM, which involves the
latent non-Euclidean visual properties by attentively fusing
position-associated attention maps in Euclidean and hyper-
boloid spaces, respectively. The experiments conducted on
the ISPRS Potsdam and DeepGlobe benchmarks validate its
efficacy and superiority to several methods. Moreover, the
ablation study examined the effects of SHAM. This study
opens a new direction for the interpretation of RSIs in a non-
Euclidean view.
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