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FPGA Implementation of a Hardware Optimized
Automatic Target Detection and Classification
Algorithm for Hyperspectral Image Analysis
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Abstract— In hyperspectral image (HSI) analysis, one of
the most important tasks is target detection, requiring the
execution of algorithms with high computational complexity.
Recently, research efforts have focused on on-board real-time
target detection to provide timely responses for swift decisions.
Therefore, it is necessary to use a technology that provides
the performance needed for real-time target detection, and at
the same time meets the satellite payload requirements. Field-
programmable gate arrays (FPGAs) have very interesting prop-
erties in terms of performance, size, and power consumption,
which have become the standard option for on-board processing.
In this letter, we present a hardware optimized implementation
for FPGAs of the automatic target detection and classification
algorithm (ATDCA) using the Gram–Schmidt (GS) method for
orthogonalization purposes. The ATDCA-GS algorithm is directly
coded using VHDL and verified on a Virtex-7 XC7VX690T FPGA
using real hyperspectral data [collected by Hyperspectral Digital
Imagery Collection Experiment (HYDICE) sensor and by NASA’s
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)] and a
synthetic image. Experimental results demonstrate that our hard-
ware version of the ATDCA-GS algorithm outperforms previous
implementations (multicore processors, GPUs, and accelerators)
in both computation time (obtaining real-time performance) and
power consumption, demonstrating the suitability of FPGAs for
this purpose.

Index Terms— Automatic target detection and classification
algorithm (ATDCA), field-programmable gate arrays (FPGAs),
Gram–Schmidt (GS) orthogonalization, hyperspectral imaging,
reconfigurable hardware.

I. INTRODUCTION

HYPERSPECTRAL imaging improves upon traditional
imaging by capturing hundreds of wavelengths per image

pixel. This gives hyperspectral data a high information density
per unit of area, which has expanded the domains of many
analysis techniques in the remote sensing field. Algorithms
for target detection (static, moving, or even changing over time
like fires) require fast response times for decision-making at
ground stations.

Target detection from satellites with real-time perfor-
mance has always been a challenging task. On one hand,
to achieve high detection accuracy, most state-of-the-art detec-
tion algorithms are computationally complex with excessive
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processing times, which makes them not suitable for appli-
cation on resource-constrained satellites. On the other hand,
on-ground high-performance computing platforms such as
multicore processors and GPUs are generally not suitable
for satellite applications. In contrast, field-programmable gate
arrays (FPGAs) offer excellent ionizing radiation tolerance and
a high degree of flexibility. It is undoubtedly a good alternative
to adopt in the rough environment of outer space, although
computational power is limited.

In the past, several implementations of targets detection
algorithms in FPGA architectures have been developed [1].
In [2], we can also find a discussion on the implementation
of algorithms for target detection and classification in real-
time. Through software optimizations, other implementations
for target detection algorithms have also been proposed in [3].
One of the target detection algorithms most widely studied
and used in hyperspectral imaging is the automatic target
detection and classification algorithm (ATDCA) [4]; however,
a full FPGA implementation of this algorithm with real-time
performance is not yet available (to the best of our knowledge)
to the community [5].

In this letter, an optimized FPGA-based hardware version of
ATDCA is developed using the Gram–Schmidt (GS) method
to obtain an orthogonal projector [7], which allows us to
detect the necessary number of targets in a hyperspectral image
(HSI). Using a Xilinx Virtex-7 XC7VX690T FPGA device, the
experimental results demonstrate that the proposed architecture
obtains real-time performance, outperforming (in terms of
computation time and power consumption) previous imple-
mentations existing in the literature in multiple processing
devices (accelerators, multicore processor, and GPUs). In more
detail, the main contributions of this letter are summarized as
follows.

1) A hardware optimized version of ATDCA, one of the
most popular algorithms for target detection, using the
GS method for orthogonalization purposes.

2) An effective and novel pipelined architecture is pre-
sented to accelerate our algorithm on FPGA using
VHDL. It can be easily synthesized for different num-
bers of spectral bands, being suitable for onboard real-
time processing.

3) The first (to the best of our knowledge) full FPGA
implementation of ATDCA with real-time performance.

The organization of the rest of this letter is as follows.
Section II briefly presents the description of our hardware
optimized version of the ATDCA-GS algorithm. Section III
describes the entire system and the core ATDCA-GS for
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Algorithm 1 Pseudocode Proposed for Hardware Implemen-
tation of ATDCA-GS
1: INPUTS: F ∈ Rn and t;
2: U =[x0 | 0 |, · · · , | 0];
3: B =[0 | 0 |, · · · , | 0];
4: w = [1, . . . , 1];
5: P⊥

U = [1, . . . , 1];
6: for i = 1 to t − 1 do
7: B[:, i ] = U[:, i ];
8: for j = 2 to i do
9: proj B[:, j−1](U[:, i ]) = U[:,i]T B[:, j−1]

den[ j−1] B[:, j − 1];
10: B[:, i ] = B[:, i ] − proj B[:, j−1](U[:, i ]);
11: end for j
12: proj B[:,i](w) = wT B[:,i]

B[:,i]T B[:,i] B[:, i ];
13: den[i ] = B[:, i ]T B[:, i ]
14: P⊥

U = P⊥
U − proj B[:,i](w);

15: v = P⊥
U F;

16: i = argmax{1,...,r}v[:, i ];
17: xi ≡ U[:, i + 1] = F[:, i ];
18: end for
19: OUTPUT: U = [x0, x1, · · · , xt−1];

Virtex-7 FPGA as the target platform. Section IV provides an
experimental assessment of both processing performance and
target detection accuracy using representative and well-known
HSIs of different sizes. Finally, in Section V we can find
concluding remarks.

II. HARDWARE OPTIMIZED ATDCA-GS

Our algorithm is a novel version of the ATDCA-GS algo-
rithm [7], which has been optimized for FPGAs. For a number
t of targets to be detected, an array of t elements U is created,
the first being set to the pixel vector of maximum length x0

in the input image F. Subsequent targets will be detected by
generating a projector P⊥

U orthogonal to the already found
targets. It is then used to project the full image F, and the
pixel with maximum projection is added to the target set. The
process is repeated until t targets are found.

Orthogonality of P⊥
U is ensured with an orthogonal base

B which is updated on each iteration with the new target in
U using the GS method. Traditionally, a random vector w is
generated on each iteration to update P⊥

U . Our implementation
fixes it to [1, . . . , 1]T, avoiding the generation of random
vectors and reducing the computational cost of step 12, while
making the algorithm deterministic.

More advantages over [7] include the reuse of P⊥
U over

different iterations of the main loop, approximately halving
the complexity by eliminating the need of recalculating it on
each iteration. The calculation of B[:, i ]T B[:, i ] is also stored
between iterations saving time when updating B.

Looking at hardware implementation specifics, the denomi-
nator from step 12 is saved in step 13, and then reused in step 9
in further iterations. Hardware resources from steps 9 to 10 are
reused in steps 12–14 since they share the operation structure,
saving additional resources. Finally, both the internal loop and
the projection P⊥

U F are performed in a pipelined fashion to
increase clock speed.

Fig. 1. Diagram of cores and connections of the complete system.

Fig. 2. Modules and communications of the ATDCA-GS core.

III. FPGA IMPLEMENTATION OF THE ATDCA-GS

In this section, we present the proposed FPGA imple-
mentation in detail. Fig. 1 shows the diagram of cores and
connections of a generic system used to create an execution
platform for any algorithm we place within the reconfigurable
unit and also allows us to perform hardware/software codesign.
In our case, within the reconfigurable unit we place our
hardware optimized version of the ATDCA-GS algorithm. The
HSI is located in the DDR3 memory, so we use the MicroBlaze
and DMA, along with a prefetch policy, for data input. Finally,
the positions within the HSI of the targets detected will be send
through an RS232 port using a controller.

Fig. 2 shows the division into modules of the ATCDA-GS
core and the I/O communications through the AXI bus. Thus,
our algorithm can be integrated into any other system that
implements the AXI bus. Bellow, we explain in detail the
hardware architecture of each of the modules, and at the end
of this section, a step-by-step description of how the complete
system carries out target detection from an HSI is provided.

The module used to perform the dot product of two vectors
is shown in Fig. 3. Its implementation is based on first use
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Fig. 3. Hardware architecture used to implement dot product, row multipli-
cation, and tree adder.

an array of multipliers and then a tree of adders. Given
two vectors A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn],
we first calculate element-wise products obtaining a new
vector [a1 × b1, . . . , an × bn]. Then, each of these multi-
plications is added together in a binary adder tree. As an
example, [a1 × b1 + a2 × b2, . . . , an−1 × bn−1 + an × bn] is
obtained at the first level. The binary reduction is repeated
until we obtain the dot product. This module is also used
to implement the element-wise multiplication of two given
vectors [a1 × b1, . . . , an × bn] or the sum of the elements of
a vector [a1 + a2 + · · · + an] by bypassing either the binary
adder or element-wise product units. A pipelined architecture
enables continuous operation at a rate of one output per clock
cycle.

This module is used in step 9 of Algorithm 1 for the dot
product calculation of U[:, i ]T B[:, j − 1], and subsequently
for the multiplication of the divisions results by the elements
of B[:, j − 1]. Since we cannot perform the first of the
multiplications before the calculation of the last dot product
has started, we use an FIFO to temporarily save the results
of the divisions. The module is then used in step 12 to
calculate first the dot product B[:, i ]T B[:, i ], then the sum
of the elements of B[:, i ] (since the vector w is fixed to
[1, . . . , 1]T), and finally for the multiplication of the division
result by the elements of B[:, i ]. Steps 2 and 15 also benefit
from this module to calculate, respectively, the dot product
of a pixel with itself (to get the vector lengths and then the
maximum) and the dot product of a pixel with the projection.

Fig. 4 shows the architecture used to perform accumulative
vector subtractions element by element on a preloaded initial
vector. This module is used in steps 10 and 14 to calculate,
respectively, the values of the current orthogonal vector B[:, i ]
and the current projection P⊥

U .
Fig. 5 shows the maximum length module, used to find

the maximum of a sequence of values provided. Initially,
this module is used to find the pixel with maximum length
in the original HSI (the initial target signature) and then
(in each iteration) it is used to find the pixel vector with
maximum length after applying the orthogonal projection
operator. The values with which the pixels are compared are
obtained using the dot product module on

∑N
k=1 fi(k) × fi(k)

Fig. 4. Hardware architecture for accumulative vector subtractions.

Fig. 5. Hardware architecture for find the maximum length.

(step 2) and
∑N

k=1 P⊥
U (k) × fi (k) (step 15). Each new value

is then compared with the previous maximum and, if greater,
replaces it along with its index (position) within the HSI. These
operations are performed in steps 2 and 16.

Finally, we make a step-by-step description of how the target
detection from an HSI is carried out.

1) All pixel data from the write FIFO are read, and the
pixel with maximum length in the HSI is calculated and
selected.

2) The index of the pixel with maximum length is written
in the read FIFO.

3) Outside of the ATDCA-GS core, Microblaze reads this
index and writes the pixel data corresponding to it in
the write FIFO. The ATDCA-GS core then reads and
stores the pixel data in both the U and B memories.
Henceforth, Microblaze uses a prefetching approach to
store all the pixel data in the write FIFO to be used
in 6).

4) Orthogonal vector calculation (inner loop). In a
pipelined way, we first calculate the dot products of
the target found in the previous iteration with all the
preexisting orthogonal vectors. Second, we divide the
results by the denominators calculated in the previous
iterations of the second inner loop, and then, the results
are multiplied by the corresponding orthogonal vector.
Finally, by means of accumulative subtractions, the
current orthogonal vector is updated.
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TABLE I

HSI DATASET DIMENSIONS AND SIZE CHARACTERISTICS

5) Projection calculation. In a pipelined way, we first calcu-
late the dot product of the orthogonal vector computed
in the previous step by itself. Second, we calculate
the sum of the elements of the orthogonal vector and
divide the result of the dot product by the sum of
the elements, which is then multiplied by the current
orthogonal vector. Finally, the accumulated projection
is updated by subtracting the previous result.

6) All the pixels are read from the write FIFO, and their
projections and projection lengths are calculated using
the dot product module. The new target is the pixel with
maximum projection length. If there are still targets to
be detected, we return to 2).

IV. EXPERIMENTAL RESULTS

A. HSI Datasets

The HSI dataset used in these experiments is composed
of one HSI obtained by Hyperspectral Digital Imagery Col-
lection Experiment (HYDICE) sensor, two HSIs obtained by
the NASA’s Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS)m and one synthetic HSI. Table I summarizes
their dimensions and size characteristics, and these HSIs are
described below.

1) HYDICE: A subset of the well-known forest radiance
dataset, with 15 panels of five types of targets distributed
on each row with three different sizes (the scene is
extensively described in [8]).

2) AVIRIS Cuprite: Obtained in Nevada over the Cuprite
mining district, the site is well understood miner-
alogically and has several exposed minerals of inter-
est including alunite, buddingtonite, calcite, kaolinite,
and muscovite. It corresponds to the sector labeled as
f970619t01p02_r02_sc03.a.rfl in the online data.

3) AVIRIS WTC: Obtained over the World Trade Center
(WTC), New York, just five days after the terrorist
attacks of September 11, 2001. In the area where the
towers collapsed, thermal hot points are labeled from
“A” to “H” in [5].

4) Synthetic: We have also considered a bigger synthetic
dataset to evaluate the scalability of our implementation.
The data have been constructed using a set of 30 signa-
tures from the United States Geological Survey (USGS)
library, and the procedure is described in [6] to simulate
natural spatial patterns.

B. Target Detection Accuracy Evaluation

In this section, we evaluate the similarity of the targets
detected by our implementation and the well-known targets
for the AVIRIS WTC and AVIRIS Cuprite scenes. In the first

Fig. 6. Positions of the targets detected in the AVIRIS WTC scene.

Fig. 7. Positions of the targets detected in the AVIRIS Cuprite scene.

TABLE II

SPECTRAL SIMILARITY BETWEEN KNOWN GROUND TARGETS AND

TARGET PIXELS DETECTED BY OUR ATDCA-GS IMPLEMENTATION

scene, the targets correspond to the pixels labeled from “A”
to “H”. In the second scene, with the known positions of the
minerals. To do that, we use a widely used metric for this
purpose, the spectral angular distance (SAD) [8].

According to the literature [7], the number of targets to be
detected in the AVIRIS WTC scene was set to 30 and for the
AVIRIS Cuprite scene was set to 19. Figs. 6 and 7 show the
positions where the targets have been detected in the scenes.
Table II reports the SAD values (in degrees) between the most
similar target pixels detected and the known targets. For the
AVIRIS WTC scene, we perfectly detect the targets labeled as
“A” and “C,” and there are more difficulties in detecting very
small targets. For the AVIRIS Cuprite scene, SAD values are
low, so again the extracted targets were spectrally similar to the
known ground-truth targets. Finally, we emphasize that these
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TABLE III

FPGA RESOURCE UTILIZATION OF THE ATDCA-GS ALGORITHM TO PROCESS 169, 188, OR 224 BANDS, AND UP TO 32 TARGETS

TABLE IV

PROCESSING TIMES FOR DIFFERENT IMPLEMENTATIONS OF THE ATDCA-GS ALGORITHM EXISTING IN THE LITERATURE IN MULTIPLE

PROCESSING DEVICES (MULTICORE PROCESSOR, GPUS, AND ACCELERATORS) AND OUR FPGA IMPLEMENTATION

similarity results are consistent with those in the literature with
an equivalent software implementation [7].

C. Performance Evaluation

Table III shows FPGA resource utilization for our proposed
hardware implementation of the ATDCA-GS algorithm for
different numbers of bands and up to 32 targets. We use
the VC709 board containing a Xilinx Virtex-7 XC7VX690T
FPGA [with a total of 866 400 slice registers, 433 200 slice
look-up tables (LUTs), 134 381 LUT-FF pairs, and hetereo-
geneous resources such as 3600 DSPs and 1470 distributed
BRAMs], an RS232 port, two DDR3 SDRAM DIMM slots,
and some additional components not used.

Table IV reports the processing times for different imple-
mentations of the ATDCA-GS algorithm existing in the lit-
erature in multiple processing devices (multicore processor,
GPUs, and accelerators) and for our hardware implementa-
tion of the ATDCA-GS algorithm on the considered FPGA
architecture. Our FPGA implementation obtains better results
in all the scenes (speedups from 1.05 to 100) and offer
similar performance than the GTX 1080 GPU but consuming
4.17 W (in average for the considered scenes) instead of the
148.09 W [9] (also in average) for the mentioned GPU.

It is important to mention that our ATDCA-GS core scales
well when varying the number of targets, bands, or pixels, but
the complete system does not. The VC709 board has limited
bandwidth between the memory and the FPGA. Therefore,
as the image size increases, greater I/O penalty is produced.
If I/O speed was not a bottleneck, we would have the same
performance as in the HYDICE image which was placed
entirely inside the FPGA.

Finally, we emphasize that our reported FPGA processing
meets real-time processing performance. For instance, the
cross-track line scan time in HYDICE and AVIRIS, push-
broom instruments, is quite fast (8.3 ms to collect 512 full
pixel vectors). This introduces the need to process the scenes
in less than 0.066 s (HYDICE), 5.09 s (AVIRIS WTC), 1.986 s
(AVIRIS Cuprite), and 7.903 s (Synthetic).

V. CONCLUSION

In this letter, we have developed an optimized hardware
version for FPGA implementation of the ATDCA-GS, a widely
used algorithm to detect targets in remotely sensed HSIs.
The ATDCA-GS algorithm is directly coded using VHDL and
verified on a Virtex-7 XC7VX690T FPGA using real HSIs and
a large synthetic image. Our experimental results demonstrate
that the proposed hardware implementation can successfully
meet strict real-time target detection requirements, outperform-
ing (in terms of computation time and power consumption)
previous implementations existing in the literature in multiple
processing devices (accelerators, multicore processors, and
GPUs).
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