
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022 4507305

The Eigenvector-Eigenvalue Identity Applied to Fast
Calculation of polSAR Scattering Characterization

Allan Aasbjerg Nielsen

Abstract— Unlike the original Cloude–van Zyl decomposi-
tion of reflection symmetric polarimetric synthetic aperture
radar (polSAR) data, a recently suggested version of the decom-
position for full/quad pol data relies on the Cloude–Pottier mean
alpha angle (ᾱ) to characterize the scattering mechanism. ᾱ can
be calculated from the eigenvectors of the coherency matrix.
By means of the eigenvector-eigenvalue identity (EEI), we can
avoid the calculation of the eigenvectors. The EEI finds ᾱ by
means of eigenvalues of the 3 × 3 coherency matrix and its 2 ×
2 minor(s) only and is well suited for fast array-based computer
implementation. In this letter with focus on computational
aspects, we demonstrate fast EEI-based determination of ᾱ on X-
band Flugzeug synthetic aperture radar (F-SAR) image data over
Vejers, Denmark, including a detailed example of calculations
and computer code.

Index Terms— Anisotropy, coherency matrix, complex covari-
ance matrix, entropy, Flugzeug synthetic aperture radar (F-SAR),
Hermitian matrix, mean alpha angle (ᾱ), polarimetric synthetic
aperture radar (polSAR), X-band.

I. INTRODUCTION

IN THE covariance matrix formulation of multilook polari-
metric synthetic aperture radar (polSAR) image data each

pixel is described by a complex 3 × 3 matrix
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This matrix is Hermitian also known as self-adjoint, i.e., the
matrix is equal to its own conjugate transpose, C = C H , the
superscript H denotes transpose and complex conjugate (which
is denoted by ∗), �� denotes ensemble averaging. The trace, the
determinant, and all eigenvalues are real and nonnegative.

The Hermitian coherency matrix is T = NC NT [1] where

N = 1∘
2

⎡
⎣ 1 0 1

1 0 −1
0

∘
2 0

⎤
⎦.

The full/quad pol covariance matrix C and the coherency
matrix T have the same eigenvalues.

The Cloude–Pottier decomposition [1], [2] of the coherency
matrix T gives us entropy, H , anisotropy, A, and the mean
alpha angle, ᾱ. The sorted eigenvalues of T are λ1 ≥ λ2 ≥ λ3.
As a measure of target disorder, entropy H is defined as

H = −
3�

i=1

pi log3 pi with pi = λi	3
i=1 λi

0 ≤ H ≤ 1. Low entropy is associated with a single dominant
scattering mechanism, high entropy with random scattering.
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Anisotropy A can be considered a measure of departure
from azimuthal symmetry and is defined as

A = λ2 − λ3

λ2 + λ3

0 ≤ A ≤ 1. Low anisotropy is associated with azimuthal
symmetry.

Fast array-based calculation of eigenvalues for 3 × 3 (and
2 × 2) Hermitian matrices is described in [3].

The eigenvectors ei , i = 1, 2, 3, of T are of the form

ei = exp( jφi)

�
cos αi

sin αi cos βi exp( jδi)
sin αi sin βi exp( jγi)

�

where αi , βi , δi , and γi are angles which characterize the
scattering. Note that the angle φi is arbitrary: ei may be rotated
by any angle φi , i.e., ei may be replaced by ei exp( jφi) and
still be a solution to the eigenproblem.

Here, we are interested in the αi only. For the squared norm
|ei1|2 of the first component ei1 of ei we have

|ei1|2 = exp( jφi) cos αi exp(− jφi) cos αi

= cos2 αi

(the squared norm is independent of the arbitrary rotation angle
φi ). For ᾱ, we have

ᾱ =
3�

i=1

piαi with αi = arccos|ei1|.

ᾱ = 0◦ is associated with single bounce (surface) scattering,
ᾱ = 45◦ with scattering from differently oriented dipoles
(typically vegetation), and ᾱ = 90◦ with (conductive) double
bounce scattering.

Calculating eigenvectors is more cumbersome than cal-
culating eigenvalues, and it seems we need the first com-
ponent of the eigenvectors to calculate the αi and ᾱ.
Sections II–V show that we can obtain these angles without the
eigenvectors by means of the so-called eigenvector-eigenvalue
identity (EEI) and give computationally oriented examples.

II. EIGENVECTOR–EIGENVALUE IDENTITY

Let H be an n × n Hermitian matrix with eigenvalues
λ1(H) ≥ · · · ≥ λn(H) and eigenvectors ei (we reuse the
symbols ei ). We write ei j for the j th component of ei . H has
(n − 1) × (n − 1) minors M j , j = 1, . . . , n, made from H
by deleting the j th row and the j th column from H . These
minors are also Hermitian with eigenvalues λ1(M j) ≥ · · · ≥
λn−1(M j). For these eigenvalues we have the so-called Cauchy
interlacing inequalities

λi (H) ≥ λi
�
M j

	 ≥ λi+1(H)

for i = 1, . . . , n − 1.
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Fig. 1. Part of Vejers, Denmark, approximately the area covered by the F-SAR data, from Google Earth. We see (summer) houses, caravan sites with a
swimming pool and service buildings (a grocery store and a petrol station), the main road called Vejers Havvej (where the text “Vejers” appears) going mostly
east-west, dirt roads, vegetation, etc.

According to [4]–[6] we have the following so-called
eigenvector-eigenvalue identity (EEI) for the squared norm
|ei j |2 of the components of the eigenvectors ei



ei j



2
n�

k=1,k 	=i

(λi (H)−λk(H)) =
n−1�
k=1

�
λi (H)−λk

�
M j

		
.

A related expression due to Jacobi appeared already in 1834.
As stated above the phase of any individual ei is arbitrary,

therefore the relative phase between eik and e jk , i 	= j , is arbi-
trary. However, the relative phases between the components of
any ei , say between ei j and eik for j 	= k, is not arbitrary.

Despite the simple nature of the EEI and the mature state
of development of linear algebra, this identity was not widely
known until recently [6].

For the Cloude–Pottier decomposition of full/quad polSAR
data, H = T , the 3 × 3 coherency matrix and the minor
M1 comes from T by removing the first row and the first
column, so M1 is 2 × 2. In this case, we get for the squared
norm of the first component of each of the three eigenvectors

|e11|2 = (λ1(T) − λ1(M1))(λ1(T) − λ2(M1))

(λ1(T) − λ2(T))(λ1(T) − λ3(T))

|e21|2 = (λ2(T) − λ1(M1))(λ2(T) − λ2(M1))

(λ2(T) − λ1(T))(λ2(T) − λ3(T))

|e31|2 = (λ3(T) − λ1(M1))(λ3(T) − λ2(M1))

(λ3(T) − λ1(T))(λ3(T) − λ2(T))
.

These expressions are well suited for fast array-based com-
puter implementation. We obtain the αi and ᾱ from |ei1| as
above in Section I, here without calculating the eigenvectors.

III. IMAGE DATA EXAMPLE

In a project headed by the Danish Ministry of Defense
Acquisition and Logistics Organization (DALO) the Flugzeug
synthetic aperture radar (F-SAR) system of the German
Aerospace Center (DLR) has been used to acquire data at
several locations in Denmark and Greenland. The F-SAR
offers the possibility of exploring the performance of a high
resolution, fully polarimetric SAR system with five frequency
bands in the range from ∼300 to ∼10 GHz [7].

The Cloude–Pottier decomposition is illustrated with air-
borne F-SAR X-band data (frequency 9.60 GHz corresponding
to a wavelength of ∼3 cm). The data were acquired on 20 June
2017 covering a central part of the village Vejers on the Danish
west coast, Fig. 1. The scene covers the east–west main road
(called Vejers Havvej where the text “Vejers” appears in Fig. 1)
going to and from the sea, campsites with caravans to the
south of the road, a swimming pool, parking lots, and several
service buildings (grocery store, petrol station, etc.) as well as
many small and big houses north and south of the road. These
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Fig. 2. Full/quad pol version of Cloude–van Zyl decomposition. Red objects are mainly buildings which are characterized by double bounce reflection.
Green objects are mainly characterized by volume scattering (typically vegetation), or dihedral targets which are rotated with respect to the flight line which
is east–west, here right-left, looking from north. Blue areas are mainly objects which are characterized by single bounce reflection. The yellow caravans, for
example, are characterized both by double bounce and rotated dihedrals. Range increases from top to bottom of the image.

Fig. 3. Cloude–Pottier mean alpha angle, ᾱ in degrees. In accordance with remarks in Section I and with Fig. 2, roads have low values for ᾱ, vegetation
has ᾱ around 45◦ , and parts of most of the buildings and caravans have very low or very high values (single or double bounce).
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Fig. 4. RGB representation of the Cloude–Pottier decomposition of the coherency matrix. Red is anisotropy (A), green is entropy (H ), blue is mean alpha
angle (ᾱ). Man-made structures, mostly houses and caravans, appear red-magenta-purple-blue (i.e., high or intermediate values of A and/or ᾱ with low values
of H ), vegetation green (i.e., high values of H with lower values of A and ᾱ), and roads black-dark gray (i.e., low values of all three parameters).

data are dealt with also in [8] which introduces a full/quad
pol version of the (original, reflection symmetry-based)
Cloude–van Zyl decomposition [9], [10].

Fig. 2 shows this full/quad pol version of the Cloude–van
Zyl decomposition for a 3000 rows by 4800 columns scene.
Red objects are mainly buildings which are characterized by
double bounce reflection. Green objects are mainly charac-
terized by volume scattering (typically vegetation), or dihe-
dral targets which are rotated with respect to the flight
line. Blue areas are mainly objects that are characterized
by single bounce reflection. The yellow caravans, for exam-
ple, are characterized both by double bounce and rotated
dihedrals.

Fig. 3 shows the Cloude–Pottier mean alpha angle (ᾱ).
In accordance with remarks in Section I and with Fig. 2,
roads have low values for ᾱ, vegetation has ᾱ around
45◦, and parts of most of the buildings and caravans
have very low or very high values (single or double
bounce).

Fig. 4 shows anisotropy (A), entropy (H ), and mean alpha
angle (ᾱ) as red-green-blue (RGB). Man-made structures,
mostly houses and caravans, appear red-magenta-purple-blue
(i.e., high or intermediate values of A and/or ᾱ with low values
of H ), vegetation green (i.e., high values of H with lower
values of A and ᾱ), and roads black-dark gray (i.e., low values
of all three parameters).

Array-based calculations take around 0.37 μs per pixel
for determination of H , ᾱ and A carried out in eight-byte
precision with MATLAB R2022a on a MacBook Pro from
2019, 2.3 GHz 8-Core Intel i9 processor, 64 GB 2667 MHz
DDR4 memory. This is a speed-up of a factor of ∼55 over
an implementation with calls to MATLAB function svd in
for-loops over all pixels.

IV. WORKED EEI EXAMPLE

For a detailed illustration of the EEI calculations, we select a
pixel on a roof with double bounce (H = 0.0573, ᾱ = 87.2◦
and A = 0.6946). For this pixel, we have covariance and
coherency matrices as shown at the top of the next page. From
MATLAB function eig, we get eigenvalues λi (T) for T (first
row above the horizontal line) and corresponding (column)
eigenvectors ei

25.7837 0.2325 0.0419
0.0206 − j0.0306 −0.9477 − j0.2958 −0.1084 − j0.0347
0.4709 − j0.8811 0.0347 + j0.0097 0.0151 − j0.0197

−0.0234 −0.1141 0.9932

.

The eigenvectors from eig are rotated such that the third
components are real. Based on these eigenvectors we get

|e11|2 = (+0.0206 − j0.0306)(+0.0206 + j0.0306)

= 0.0014
|e21|2 = (−0.9477 − j0.2958)(−0.9477 + j0.2958)

= 0.9857
|e31|2 = (−0.1084 − j0.0347)(−0.1084 + j0.0347)

= 0.0130.

If we use MATLAB function svd instead, we get the same
eigenvalues λi (T) (first row above the horizontal line) and
differently rotated corresponding (column) eigenvectors ei

25.7837 0.2325 0.0419
−0.0369 0.9928 0.1138

−0.9938+ j0.1020 −0.0360+ j0.0011 −0.0084+ j0.0233
0.0131+ j0.0194 0.1089− j0.0340 −0.9459+ j0.3029

.
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C =
⎡
⎣ 13.937 −0.196 + j0.393 −12.735 − j0.097

−0.196 − j0.393 0.059 0.207 + j0.358
−12.735 + j0.097 0.207 − j0.358 12.062

⎤
⎦

=
⎡
⎣ 13.9 0.4 exp( j116.4◦) 12.7 exp(− j179.6◦)

0.4 exp(− j116.4◦) 0.1 0.1 exp( j60.0◦)
12.7 exp( j179.6◦) 0.4 exp(− j60.0◦) 12.1

⎤
⎦

T =
⎡
⎣ 0.2648 0.9373 + j0.0967 0.0082 + j0.0249

0.9373 − j0.0967 25.7347 −0.2847 + j0.5311
0.0082 − j0.0249 −0.2847 − j0.5311 0.0585

⎤
⎦

=
⎡
⎣ 0.26 0.94 exp( j5.9◦) 0.03 exp( j71.8◦)

0.94 exp(− j5.9◦) 25.74 0.60 exp( j118.2◦)
0.03 exp(− j71.8◦) 0.60 exp(− j118.2◦) 0.06

⎤
⎦.

The eigenvectors from svd are rotated such that the first
components are real. Based on these eigenvectors, we get

|e11|2 = (−0.0369)2 = 0.0014
|e21|2 = (+0.9928)2 = 0.9857
|e31|2 = (+0.1138)2 = 0.0130

i.e., the same solution as the one based on eig. Rotation angles
to obtain eigenvectors based on svd from eigenvectors based
on eig are

e1 e2 e3

−0.5589− j0.8292 −0.9546+ j0.2980 −0.9524+ j0.3050
= = =

exp(− j124.0◦) exp( j162.7◦) exp( j162.2◦)

.

For the αi = arccos |ei1| (or αi = cos−1 |ei1|), we get

α1
α2
α3

�
=



87.8850◦
6.8722◦
83.4644◦

�
with



p1
p2
p3

�
=



0.9895
0.0089
0.0016

�

resulting in ᾱ = 87.2◦.
T has first minor (delete first row and column from T )

M1 =
�

25.7347 −0.2847 + j0.5311
−0.2847 − j0.5311 0.0585




with eigenvalues λi (M1) = [25.7489 0.04438]. Note that the
Cauchy interlacing inequalities hold.

For the squared norm |ei1|2 of the first components ei1 of
ei the EEI gives

|e11|2 = (25.7837 − 25.7489)(25.7837 − 0.04438)

(25.7837 − 0.2325)(25.7837 − 0.0419)
= 0.0014

|e21|2 = (0.2325 − 25.7489)(0.2325 − 0.04438)

(0.2325 − 25.7837)(0.2325 − 0.0419)
= 0.9857

|e31|2 = (0.0419 − 25.7489)(0.0419 − 0.04438)

(0.0419 − 25.7837)(0.0419 − 0.2325)
= 0.0130

i.e., the same solution as obtained by means of the (differently
rotated) eigenvectors of the coherency matrix.

V. CONCLUSION

The Cloude–Pottier mean alpha angle, ᾱ, can be determined
by means of the first components of the eigenvectors ei of the
3 × 3 Hermitian coherency matrix. These eigenvectors may be
rotated by any angle φi , i.e., ei may be replaced by ei exp( jφi)
and still be a solution to the eigenproblem.

Alternatively, ᾱ may be calculated based on the eigenvalues
of the coherency matrix and its first 2 × 2 minor by means of
the so far little known EEI without calculating eigenvectors.
This facilitates fast array-based computer implementation of
the ᾱ angle calculation.

MATLAB code with this array-based implementation
will be made available from the author’s homepage
https://people.compute.dtu.dk/alan under “Publications”.
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