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Abstract— Widely used to calculate illumination geometry for
estimates of solar and emitted longwave radiation, and for
correcting remotely sensed data for topographic effects, digital
elevation models (DEMs) are now extensive globally at 10-30-m
spatial resolution and locally at spatial resolutions down to a
few centimeters. Globally, regionally, or locally, elevation datasets
have many grid points. Many software packages calculate gradi-
ents over every grid cell or point, but in the mountains, shading
by nearby terrain must also be assessed. Terrain may obscure a
slope that would otherwise face the Sun. Four decades ago, a fast
method to calculate topographic horizons at every point in an
elevation grid required computations related only linearly to the
size of the grid, but grids now have so many points that parallel
computing still provides an advantage. Exploiting parallelism
over terrain grids can use alternative strategies: among columns
of a rotated grid, or simultaneously at multiple rotation angles,
or on different tiles of a grid. On a multi-processor machine, the
improvement in computing time approaches 2/3 the number of
processors deployed.

Index Terms—Big data applications, digital elevation models
(DEMs), parallel processing, surface topography.

I. INTRODUCTION

IMULATION of the incoming or reflected solar radia-

tion or incoming or emitted longwave radiation in the
mountains requires knowledge of the angles to the horizon
around the circle of azimuths. The topographic gradients at
each grid cell in a digital elevation model (DEM) affect the
magnitude of the incoming radiation, but terrain might shade a
slope that otherwise would be directly illuminated by the Sun.
The earliest efforts to incorporate the horizon in modeling
radiation in mountainous terrain [1], [2] used an inefficient
method: for each cell, the slope to every other cell was
calculated, and the maximum in each direction was chosen.
That method’s computational complexity is of order N2:
the number of calculations and the computing time increase
with the square of the number of cells in the terrain model.
A method subsequently developed for calculating horizons
in order N time [3] made computation over larger terrain
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Fig. 1. Example of a DEM from Himachal Pradesh in the Indian Himalaya.
Left image shows a 1°x 1° quadrangle from SRTM [13] at 1 arcsec resolution
(~30 m). Right image shows the same grid as a shaded relief. Images are
portrayed on an equal-area Albers conic projection centered at 36 °N, 85 °E,
with standard parallels at 25 °N and 47 °N.

models feasible. Many, if not most, radiation calculations over
mountains now use that method [4]—[7]; it has been extended
to include trees as terrain elements [8] and applied to snow
transport by wind [9] and the availability of solar energy to
rovers on other planetary bodies [10]. An existing parallel
model for solar radiation calculations over terrain [11], [12]
could be even more efficient by incorporating the horizon
strategies.

Many reasons for knowledge about surface elevations have
led to data acquisition over continental-scale areas. Widely
used and freely available global DEMs (see Fig. 1), derived
either from interferometric radar or stereo-photogrammetry,
include those from the Shuttle Radar Topography Mission
[SRTM: 13] and the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer on NASA’s Terra satellite
[ASTER: 14]. Root-mean-square errors in these and four other
available DEMs at 30-90-m spatial resolution are 8—10 m in
the global products [15]. The global products are distributed
as latitude—longitude grids, typically at 1° x 1° tiles. Airbus
provides commercially available products that are available
through Environmental Systems Research Institute (ESRI).

At regional scales, stereo-photogrammetry from aircraft or
commercial fine-resolution satellite sensors yields DEMs with
spatial resolutions of a few meters [16], and the same tech-
nique applied to declassified spy satellite imagery produces
DEMs going back 50 years [17], [18]. Even finer scale DEMs

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-8542-431X

8024605

can be acquired at local scales by lidar [19] or structure
from motion [20] on aircraft, drone, or terrestrial scanners.
These products covering smaller area are typically distributed
in projected coordinates.

II. ALGORITHM

The horizon calculation has order N computational com-
plexity. Even so, identifying the horizons around the range
of azimuths for large DEMs involves significant computation,
hence the desire to exploit parallel computing. Three potential
strategies for parallelization of the horizon problem include:
across columns of a rotated grid, or simultaneously at multiple
rotation angles, or on overlapping tiles of a large grid.

A. One-Dimension

For a given azimuth, the 1-D problem consists of a set of
profiles through the elevation grid. For a profile, define an
elevation function Z on a set of points j = 1,2,..., N each
at monotonically increasing or decreasing distance D from an
arbitrary origin. The points need not be equally spaced. In the
forward direction, the objective is to identify the point k that
forms the horizon for the point j, i.e., H(j) = k.

Define a slope function, which converts negatives to zero

Z(k) = Z())
" ID(k) = D(HI

If Z(j) > Z(k) for all k < N, then j is its own horizon,
i.e., H¢(j) = j and the slope to the horizon is zero. The naive
approach [2] would be to calculate the slopes for all k > j
and select the maximum, but that computational complexity is
of order N? because every point is compared with every other
point.

The better algorithm (see Fig. 2) obtains its efficiency by
noting that if slope(j,k) > slope(j, Hf(k)), then all the
points forward of k need not be checked and H,(j) = k.
Alternatively, if slope(j, k) < slope(j, Hy(k)), then the next
candidate to check is Hy(k), ignoring points between k and
Hy (k). The code for this order N algorithm for a whole
profile, originally published in Pascal [3], has been translated
to C [21], R [22], Python [23], [24], and MATLAB [25], [26].
Some MATLAB code [26] accounts for earth’s (or another
planet’s) curvature, but seldom does that calculation change
the identification of H.

Identifying the horizons H, in the backward direction is
accomplished by flipping the Z and D vectors. Once the points
defining Hy and H, are identified, the horizon angles y are
the arctangents of the slopes. Note that some authors express
the horizon angles as downward from zenith [6], [21] instead
of upward from horizontal.

slope(j, k) = max |0 (1)

B. Applied to a Topographic Grid

By rotating the grid—elevations and their coordinates—the
forward and backward horizon angles and distances for the
resulting azimuths can be calculated by running the 1-D algo-
rithm along the columns. The horizons in both the forward and
backward directions are computed for any rotation, so rotations
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Fig. 2. Example of a horizon profile in the forward direction, extending
from the southwest to northeast corners of the 1°x 1° quadrangle in Fig. 1.
Of the 5000 points in the profile, the algorithm identifies 675 as horizons,
of which 20 are shown. For two horizon locations, the light gray lines identify
the associated profile points. The inset illustrates the algorithm’s behavior:
slope(j1, k1) < slope(ky, k2) so kp is the next candidate for Hy(j;), but
slope(jo, k1) > slope(ki, k2) so Hy(j2) = ki. In neither case does the
algorithm check the points between ki and k.

need to cover only a range of 180° (e.g., £90°) to cover the
full circle.

The analysis must account for three artifacts as follows.

1) Except for the rotation of a multiple of 90°, preserving
the full grid when rotating creates a larger grid with
unused locations outside the original and missing loca-
tions inside. Nearest-neighbor interpolation in the rota-
tion avoids problems encountered with bilinear or cubic
interpolation, which can introduce spurious values near
the edges of the original in the rotated grid. With nearest
neighbors, the intrinsic coordinates (row, column) are
also rotated, so the resulting calculations can be directly
translated to the coordinates of the original un-rotated
grid.

2) Nearest-neighbor rotation leaves out some cells, up to
18% of them for a 45° rotation. Gaps are inpainted [27]
from the surrounding cells.

3) The rotation angle needed for a specific azimuth
is not easily analytically predictable; the great-circle
direction from the southwest to northeast corner of
a latitude—longitude grid varies with latitude. If the
grid is in projected rather than geographic coordinates,
sometimes map projections are rotated from their con-
ventional orientation, requiring an affine transformation
from northing—easting coordinates to latitude—longitude.
One can numerically solve for the rotation needed for
a particular azimuth, or for horizon angles around the
full circle, one can rotate through a regular increment
of angles, calculate the resulting azimuth(s) along the
columns, and interpolate from the results in calculating
topographic views.

C. Horizon Angles and Topographic Views

At a given azimuth ¢, the topography shades a cell from
direct solar illumination at solar zenith angle 6, if the slope
itself faces steeply enough away from the Sun or by the
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Fig. 3. Example of areas in Fig. 1 that the Sun illuminates, those where the
slope shades itself from direct sunlight (24%), and those that would otherwise
be directly illuminated but are shaded by neighboring horizons (additional
24%). Solar illumination geometry is on the winter solstice at 09:00 Indian
Time Zone. Solar zenith angle in the center of the grid is 73°.

horizon if sin y > cosfy. In mountainous terrain, shading by
horizon can affect a significant fraction of an area, as shown
in Fig. 3.

The horizons also determine the view factor Vg, the frac-
tion of a location’s overlying hemisphere visible to the sky.
This quantity enables calculation of diffuse solar radiation or
atmospheric thermal radiation over a topographic grid. Define
wy as the horizon angle in radians in the azimuth direction
¢, along with the slope angle S and azimuth A of a cell
in a topographic grid. y and S are upward from horizontal.
The origin and direction of azimuths can be arbitrary (e.g.,
zero can reference any origin, directions can be clockwise
or counterclockwise) but ¢ and A must follow the same
convention. For slopes that face toward the horizon, the limits
of integration [¢;, ¢»] lie where cos(A — @) > 0 [21]

1 )
{cos S cos? Wy sin S cos(A — ¢)

Vo=—
* T )y

x (% — iy — sin iy cos y/¢)}d¢. )

For the azimuths where cos(A — ¢) < 0, the slope itself
might obscure the horizon. To account for those cases, the
limits of integration cover the azimuths outside the range
covered in (2) and the values of g are set to

1
1
1—
1 +cos? (A — ¢)tan® S

max | g, sin”
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Fig. 4. Sky view factor Vg for the topographic grid in Fig. 1. 95% of the
values lie between 0.7 and 1.0. Values below this range are in white, especially
near the southwest corner.

For flat grid cells, S = 0, so the integrand in (2) reduces
to cos® s and the limits of integration cover the full cir-
cle [—x, z]. Investigators find that 32—-64 directions provide
enough information to integrate over the full 360° range to
calculate the view factors [6], [21]. Fig. 4 shows the view
factors for the topographic grid in Fig. 1, computed from 64
horizon azimuths.

III. STRATEGIES FOR PARALLELISM

Parallel computing divides a problem into segments that
are processed independently and therefore simultaneously in
nondeterministic order, either on multi-core computers that
can access the same memory or on a cluster of separate
computers that share nothing except access to storage. Where
separate computers in a cluster also have multiple cores, nested
parallelism is possible. On a multi-core computer, parallelism
is most conveniently achieved if the language implements
a parallel loop, like the parfor loop in MATLAB’s Parallel
Computing Toolbox or its copy in Python [28].

A. Parallel Processing of Columns

For a rotated or non-rotated topographic grid, the forward
and backward horizons for each column are independent of the
other columns, so they can be calculated in parallel. Moreover,
most topographic grids have more columns than processors in
a multi-core computer, so processors deploy efficiently as they
access different columns in turn.

Languages like MATLAB or Fortran store matrices in
column-major order, so processing by column targets eleva-
tions contiguous in memory. In languages that store matrices
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Fig. 5. Increase in performance (“speedup”) for parallel processing of horizon
angles, by parallelizing either the rotation angles or the calculations of the
horizon angles along each column. The large grid size is 3601 x 3601; the
smaller size is 901 x 901, i.e., 1/16th the larger size.

in row-major order, like C/C++ or Python, one might modify
the code to process the rows in parallel or transpose the grid
matrix first.

B. Parallel Processing of Rotations

The rotations to provide forward and backward horizons,
i.e., for pairs of azimuths, are independent of one another,
so they can be computed in parallel. Because the rotation
involves other computation than just the horizons along a
profile, this choice provides a greater speed improvement than
parallel processing of the columns. However, the maximum
number of processors that can deploy is just half the number
of horizon azimuths, because calculation of horizon angles in
the forward and backward directions happens in one rotation.

C. Processing by Tiles and Recombining

With a cluster of computers, an option for horizons over a
larger area is to assign separate topographic tiles to different
machines, each parallelizing either the profiles or the rotations.
For example, the EarthExplorer data center [29] distributes
the SRTM and ASTER DEMs in 1° x 1° tiles. Near tile’s
edges, the algorithm will underestimate horizon angles in the
directions away from the grid because points in the adjacent
tile might form the true horizon. To calculate horizons more
correctly near the edges of a grid, the tiles should overlap. The
horizon function returns both the horizon angles and the dis-
tances to the horizons, providing information about the amount
of overlap needed. In the grid in Fig. 1, the 95th-percentile
distance to all horizons is 14.7 km; the 95th-percentile distance
to horizon angles exceeding 10° is 4.8 km, the maximum
distance being 20 km. Therefore, overlapping the tiles by
10-15 km would eliminate significant edge effects in the
topographic grid in Fig. 1.

D. Parallel Processing of View Factors

Equation (2) applies to every grid cell independently, so that
calculation can run in parallel. The 3-D array of the hori-
zon angles can be stored in band-sequential (BSQ) format,
where the third dimension contains each azimuth, or in band-
interleaved-by-pixel (BIP) format, where the first dimension
contains the azimuths. Permuting the data cube to the format
that places the horizons for each grid cell contiguous in
memory (BIP in MATLAB or Fortran, BSQ in C/C++4 or

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

Python) enhances computational efficiency in computing the
view factors.

E. Efficiencies Achieved With Parallel Computing

Fig. 5 shows “speedup,” the ratio of serial execution time
to parallel execution time [30] for the topographic grid in
Fig. 1 for horizons in 32 azimuth directions. Parallelizing
by rotation provides greater speedup, based on tests starting
with one processor and going to 24, using in turn parallelizing
by rotation and by columns. Processing of rotations peaks in
this case at 14-16 processors, half the number of azimuth
directions. Because each rotation calculates horizons for two
directions, additional processors beyond 16 remain unused.
Moreover, rotations of 0° or 90° are calculated much more
rapidly because post-processing the rotations back to the orig-
inal grid does not involve the steps described in Section II-B.
Therefore, two processors finish their tasks rapidly, hence
trivial difference between speeds for 14 versus 16 processors.
In processing by columns, the speedup becomes asymptotic
around 16 processors, where calculating horizons for a single
direction for the whole 3601 x 3601 grid takes only 2 s.
At that point, the overhead of adding more processors negates
further improvement.

F. Storage

Once the azimuths, horizons, and distances are computed,
formatting options for storage include HDF 5, NetCDF 4,
geotiff, and MATLAB. With HDF 5 or NetCDF 4, both
the horizons and the distances can be saved in the same
file. With geotiff, two files are needed if both the horizons
and distances are selected. In a MATLAB file, the output
can comprise useful interpolating functions (horizons or dis-
tances interpolated based on rows, columns, azimuths). These
interpolating functions support models of radiation at the
surface for situations where solar geometry varies spatially
and temporally.

IV. CODE AND DATA AVAILABILITY

The MATLAB code and data that reproduce versions of
Figs. 1-5 (with a dataset cropped to 901 x 901 size to reduce
download volume) are available from the MATLAB Central
File Exchange [26]. The SRTM and other digital elevation data
are available in EarthExplorer [29] among other sources.

V. CONCLUSION

As digital elevation data covering large areas or at fine
spatial resolution become widely available, computing topo-
graphic horizons and view factors efficiently using parallel
computing will enable incorporating these variables into analy-
ses more easily. On a multi-processor machine, the improve-
ment in computing time approaches two-thirds the number of
processors deployed, to a point where the computation is “fast
enough” that the overhead of adding more processors does not
improve performance.
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