IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

5506605

Performance Improvement on k*-Raster Compact
Data Structure for Hyperspectral Scenes

Kevin Chow

Ian Blanes

Abstract— This letter proposes methods to improve data size
and access time for k?-raster, a losslessly compressed data
structure that provides efficient storage and real-time process-
ing. Hyperspectral scenes from real missions are used as our
testing data. In previous studies, with k?-raster, the size of the
hyperspectral data was reduced by up to 52% compared with
the uncompressed data. In this letter, we continue to explore
novel ways of further reducing the data size and access time.
First, we examine the possibility of using the raster matrix of
hyperspectral data without any padding (unpadded matrix) while
still being able to compress the structure and access the data.
Second, we examine some integer encoders, more specifically
the Simple family. We discuss their ability to provide random
element access and compare them with directly addressable codes
(DACs), the integer encoder used in the original description for
k*-raster. Experiments show that the use of unpadded matrices
has improved the storage size up to 6% while the use of a different
integer encoder reduces the storage size up to 6% and element
access time up to 20%.

Index Terms— Directly addressable codes (DACs), image com-
pression, lossless hyperspectral imaging, PForDelta, remote sens-
ing, Simple-9, Simple-16.

I. INTRODUCTION

YPERSPECTRAL scenes are data taken from the air
by sensors, such as airborne visible/infrared imaging
spectrometer (AVIRIS), or from space by satellite instru-
ments such as Hyperion and infrared atmospheric sounding
interferometer (IASI). These scenes are made up of multiple
bands from across the electromagnetic spectrum, and data
extracted from certain bands have many practical applications,
such as oil field exploration and mineral exploration. Due to
their relatively large sizes, hyperspectral scenes are usually
compressed to increase transmission throughput and reduce
data volumes.
Compact data structures can store data efficiently and
provide real-time data compression and access to the

Manuscript received January 15, 2021; revised April 29, 2021; accepted
May 17, 2021. Date of publication June 9, 2021; date of current version
December 28, 2021. This work was supported in part by the Spanish
Ministry of Economy and Competitiveness and the European Regional Devel-
opment Fund (Programa Formacién de Personal Investigador) under Grant
RTI2018-095287-B-100 and Grant BES-2016-078369, in part by the Catalan
Government under Grant 2017SGR-463, in part by the Postdoctoral Fel-
lowship Program Beatriu de Pinds funded by the Secretary of Universities
and Research (Government of Catalonia) under Grant 2018-BP-00008, and
in part by the Horizon 2020 Program of Research and Innovation of the
European Union under the Marie Sktodowska-Curie Grant Agreement 801370.
(Corresponding author: Kevin Chow.)

The authors are with the Department of Information and Communications
Engineering, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
(e-mail: kevin.chow @uab.cat).

Digital Object Identifier 10.1109/LGRS.2021.3084065

, Dion Eustathios Olivier Tzarmarias, Miguel Herndndez-Cabronero ™,
, Senior Member, IEEE, and Joan Serra-Sagrista™, Senior Member, IEEE

original data [1]. They can be loaded into main memory, and
operations to access data are often carried out by means of
the rank and select functions [2]. Compact data structures
provide reduced space usage and query time. There is no need
to decompress a large portion of the structure to access and
query individual data as it is the case with data compressed by
classical compression algorithms such as gzip and specialized
algorithms such as CCSDS 123.0-B-2 [3].

In this work, we reduce the hyperspectral data size using
k2-raster, a compact data structure, to produce lossless com-
pression. In our previous letter [4], we presented a predictive
method and a differential method that made use of spatial
and spectral correlations in hyperspectral data with favorable
results. Nevertheless, due to the nature of these methods, only
random access to individual cells can be done, whereas other
operations such as query on a region cannot be performed.
In this letter, we focus on investigating whether unpadded
matrices and variable-length integer encoders other than
directly addressable codes (DACs) [5] can provide competitive
compression ratios as well while improving random and query
access time. In our case, we need to store non-negative
small integers in the k2-raster tree structure, which is built
in such a way that the nodes are not connected by pointers
but can still be reached with the use of a compact data
structure’s linear rank function. Fig. 1 depicts a global picture
of the interrelations between the elements discussed above.
The compact data structures that we have been working on
are still at the research stage when applied to hyperspectral
scenes, but with the encouraging results that we have obtained
so far, we can extrapolate their practical use in applications of
remote sensing and geographic information systems [6]-[10].

The letter is organized as follows. Section II provides back-
ground information on k>-raster built from a padded matrix
and the various integer encoders. Section III describes the
proposed method of using an unpadded matrix to build the
structure and introduces the different variable-length integer
encoders. Section IV presents some experimental results. Sec-
tion V sums up the key points of our discussion.

II. BACKGROUND

Ladra et al. [11] proposed k*-raster, a tree structure specif-
ically designed for raster data including images. It is built
from a matrix of width w and height A, and an integer k > 2.
If the matrix can be partitioned into k? square quadrants of
equal size, it can be used directly. Otherwise, it is necessary to
enlarge the matrix to size s x s, where s = kMogemax(w, M1 apnq
the number of subdivisions is log, (s). The padding elements
are equal to zero. This extended (padded) matrix is then
recursively partitioned into k? square submatrices of identical
size, hereafter referred to as quadrants. This process is repeated

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-9693-9677
https://orcid.org/0000-0001-9301-4337
https://orcid.org/0000-0001-8939-1666
https://orcid.org/0000-0003-4729-9292

5506605
‘
Raster matrix
Simple-9
b‘ k2-raster
ﬂ'
Fig. 1. Construction of k’-raster. A k’-ary tree is first built from a raster

matrix. Compression and random access are achieved when tree node data
are encoded by an integer encoder, such as DACs, Simple-9, Simple-16,
or PForDelta, resulting in a k2-raster structure.

until all cells in a quadrant have the same value, or until the
submatrix has size 1 x 1 and cannot be further subdivided.
This partitioning produces the nodes for a k>-ary tree topology
where the data in the nodes are stored in the following data
structures.

1) At each tree level ¢, the maximum and minimum values
of each quadrant are computed. These are then compared
with the corresponding maximum and minimum values
in the parent node, and the differences are stored in
the Vmax, and Vmin, arrays of each level. Saving the
differences instead of the original values results in
smaller values for each node, which in turn allows a
better compression with an integer encoder. Next, with
the exception of the root node at the top level, the Viyay,
and Vi, arrays at all the levels are concatenated to
form L, and Ly, respectively. Both arrays are then
compressed by an integer encoder.

2) The root’s maximum (rMax) and minimum (rMin)
values are stored as uncompressed integers.

3) A bitmap array 7 is generated from all the nodes except
the ones at the root and at the last level, each node
indicating whether it has child nodes or not. This bitmap
serves to locate the tree nodes when cell queries are
performed by means of a rank function [2].

In Fig. 2, an example of a 5 x 5 matrix is shown to illustrate
this process. The elements which fully describe the resulting
k>-raster structure are shown at the bottom of Fig. 2. Please
refer to [12] for a more comprehensive description of k>-raster.

DACs were proposed by Brisaboa ef al. [5]. Consider a
sequence of integers x. Each integer x;, which is represented
by |log, x; ] + 1 bits, is broken into chunks of bits of size Cs.
Each chunk is stored in a block of size Cg + 1 with the
additional (highest) bit used as a control bit (0 for most
significant bits, 1 otherwise). More information on DACs
and software implementation can be found in the paper by
Brisaboa et al. [5].

Simple-9 word-aligned encoding [13] is another approach to
compression. Each 32-bit word is split into two parts: a 28-bit
part where a variable number of integers are encoded and a
4-bit part which is a selector with a value ranging from 0 to
8. For example, selector O signals that the first 28 integers in
the data have a value of O or 1. Selector 1 signals that it can
pack 14 integers into the segment with a maximum bit length
of 2 bits for each. Beginning with selector 0, each selector is
tested until the most efficient one is found. Simple-16 [14] is
a variant of Simple-9 and uses all the 16 combinations in the
selector bits. Their values range from O to 15. PForDelta [15]
is also similar to both Simple-9 and Simple-16 but encodes a
fixed group of 32, 64, 128, or 256 integers in a varying number
of bytes. A predetermined percentage of those numbers that
are larger than the others are encoded separately after the
smaller numbers or in another location.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

8|6|5[4[4]|0]|0]0 8|6(5]|44[0[0]O 8|6]5|44(0J0|0 8f6)50414j0J0(0
7]6]5]|4|3[0[0]0 7]6]5]|4])3[0[0]0 716451413[0J0]0 74645§41310J0]0
7]5]4]4]|3[0f0]0 7]5]4]4)3[0]0]0 715§4|4]13[0]0]0 74544]41310J0]0
6|5(4[3[2]|0]|0|0 6|5|4(3§2[0/0]0 6(504(3]2]/0fjo]0 6150413])210}0]0
4[14]3]2]2(0f0]0 4[14]13]2]2(0f0]0 41443]|2]2(0J0]0 41413§21210J0]0
0]0jo0f0[0[O]O]O 0]0{0[0JO[O0]O]O 0(0J0[(0J0[0]JO]0O 0J0J0Jo0jojojojo
0jojofof[o[0]O|O 0]o{o[0JO[O0]O]O 0fojofo|O0[0]O]O 0fojofo|0[0]O]O
0[0]0/0]0[0[0]0O 0[0j0J0jJof0[O0]O 0jojojojofofo]O 0jojojojofofo]O
Level 0 (Root) Level 1 Level 2 Level 3
%Xﬁ\ Lo
= /4'0\ M‘H)\ A o
8-6 5-4 7-5 4-3 40 00 3-0 00 40 3-0 0000 2-0 0-0000-0 ¢~L2
8§86765454756544434030 3020 44003200 2000 ~L3
/ﬂ\ <Lo
0-3 4-0 4-0 6-0 “— Ll
03 31 12 40 00 40 10 40 00 10 4040 00 2:02020 L2
02120101021200010414 0313 00440133 0222 ~L3
Element Bin/Dec | Tree Level | Node Data
Level 1 0446
Lmas Decimal | 1 ovel o 0314 0414 0144 0222
Level 3 0212 0101 0212 0001 0414 0313 0044 0133 0222
Lonin Decimal Level 1 3000
Level 2 3120 00 00 0
rMax Decimal 8
rMin Decimal 0
T Bitmap | Binary 1111 1111 1010 1100 1000

Fig. 2. Top: A 5 x 5 matrix example showing recursive partitioning.
Middle: The upper tree is a k*-raster (k = 2) tree constructed from the
matrix and the lower tree takes into account the differences between the parent
and child nodes. Bottom: A table showing the elements of the k>-raster with
padding.

III. PROPOSAL
A. Proposed Building k*-Raster Without Padding

As mentioned in Section II, given a k value, a matrix with a
size that is not a power of k> needs to be extended according
to the equation for computing s in that section. The values
of the new cells are set to zero. This is necessary because the
search from the root down to its leaves requires the knowledge
of its child node location using the rank function, which is a
function of the number of child nodes each parent node has.
Adding new cells, however, also means that the nodes that are
outside the matrix have to be saved, and this leads to a larger
structure.

To illustrate the above point, we construct a tree based
on the elements within the bounds of the original matrix
where k = 2. This matrix together with its corresponding
k>-raster tree are shown in Fig. 3. This is done without padding
and is therefore not a full quaternary tree (a full quaternary tree
is one where each node has either O or 4 child nodes). In this
case, the parent does not know how many children it has, so it
is not possible to use the rank function to get to the correct
child nodes without including them in the 7' bitmap. On the
other hand, with padding, as explained earlier in Section II,
it is a full quaternary tree. Fig. 2 shows the padded matrix and
the tree that is built from it. Comparing it with Fig. 3, we can
see that the k*-raster tree from the unpadded matrix can save
fewer elements.

To build a non-full quaternary tree, we modify the original
function for building the tree and prune the values that are
located outside the bounds of the original matrix. This reduces
the number of L.« and L, values that need to be saved.
However, when forming the 7' bitmap, the full-quaternary tree
is still used to ensure that the parent nodes can reach their
child nodes, with the corresponding bit value of the node that



CHOW et al.: PERFORMANCE IMPROVEMENT ON k?-RASTER COMPACT DATA STRUCTURE FOR HYPERSPECTRAL SCENES

83 42 4 22 — L1

856 54 75 £3 0 43 3244 32 — L2
A ! \
I\\ 1! \ \‘\
8676545475654443433‘3'2‘ 32 «— L3
/S-ZY\ o
4.0 e 60 — LI

02120101021200010-1% 0-1" 01 «— L3
STeTsTal7 Element | Bin/Dec LT::':] Node Data
7]6]5[4]3 - -
715141213 T Bitmap | Binary 1110 1111 1010 0100
6(5(4(3]2 Level 1 0446
44[3[2]2 Limax Decimal | [evel 2 | 0314 01 01
Level 3 | 0212 0101 0212 0001 01 01 01
Lonin Decimal Level 1 100
Matrix 5 x 5 Level 2 312010 0
rMax Decimal 8
rMin Decimal 2

Fig. 3. Top: A non-full quaternary tree constructed from a 5 x 5 matrix
without padding. The second and third parent nodes at Level 1 have only
two child nodes each. All nodes that are outside the bounds are connected by
dashed lines and will not be saved, and the corresponding value in 7' bitmap
is set to zero. Bottom: The 5 x 5 matrix and a table showing the elements
of the k?-raster without padding.

is outside the bounds being set to zero. This facilitates the
search path through the full quaternary tree when cell queries
are performed using the rank function. Note that the 7' bitmap
does not have to store the location information of the nodes
of the last level because we can compute the location of the
values from the original matrix size and the s value in the
expanded matrix.

The algorithms for building k>-raster with and without
padding are listed in Algorithm 1. What this build function
does is it excludes elements that are outside the bounds of
the original matrix and save only the actual data. This helps
reduce the size of the structure. To compute the theoretical
storage reduction, we can count how many symbols 0 we are
sparing in the encoding with the unpadded matrix: spared0.
Since the actual reduction in storage depends on the entropy
encoding, we could estimate the saving to be spared) x
log, (Probability(spared0)). Another way to estimate space
saving is to calculate the size of the original raster matrix
originalDim compared with that of the expanded matrix
expandedDim. The maximum saving can be estimated to
be ((expandedDim — originalDim)/expandedDim) x 100% but
the saving is, in general, less, due to factors such as the k
value, tree height, and k2-raster saving such as nodes at a
higher level that become leaves. For example, in Figs. 2 and 3,
the estimated maximum saving is ((64 — 25)/64) x 100% =
61% and the L, nodes’ saving is actually ((56 — 34)/56) x
100% = 39%. Hence, there is a relationship between the
image dimensions and the storage saving.

B. Random Access for Integer Encoders

In saving the Lp.x and Lpi, arrays, the authors of
k*-raster made use of DACs as an integer encoder for random
access to its elements. In this research, we have investigated
other word-aligned integer encoders from the Simple family:
Simple-9 and Simple-16, and the PForDelta variant, which
also allow random access due to their structure.

5506605

Algorithm 1: Algorithm for Constructing
T, Vmax, Vmin for a Padded Matrix and an Unpadded
Matrix. With the “+” Lines Removed, the Pseudocode Is
for the Function Build(n, nx,ny,l,r, c,0;) for Building
From an Unpadded Matrix M. With the “—” Lines
Removed From the Code and the “+” Lines Re-Added,
It Becomes One for the Function Build(n, I, r, ¢) From a
Padded Matrix M

maxval < 0

minval < o0
- outcount < 0

fori < 0...k—1do
for j <~ 0...k—1do
if n = k then /* last level */
if (r +1i) <nx and (c + j) < ny then

| o[ pmax;] < 0
else

| o[ pmax;] < 1
outcount < outcount + oj[ pmax;]
maxval < max(maxval, M, ;)
minval < min(minval, M4 )
Vmax|[pmax;] <= M,y
pmax; < pmax; + 1
else /* in-between level */
if (r+i-(n/k)) <nxand (c+j-(n/k)) <ny
then

| o[ pmax;] <0
else

| o[ pmax;] <1
outcount < outcount + o; pmax;]
(childmax, childmin, childoutcount) <
Build(n/k,nx,ny,l + 1,r +i-(n/k),c+ j-
(n/k), 01)
+ (childmax, childmin) <

Build(n/k,l + 1,r +i-(n/k),c+ j-(n/k))
Vmax;[pmax;] < childmax
Vmin[ pmin;] < childmin
if

childoutcount = k* or childmax = childmin
then

+ if childmax = childmin then

| Tilpmax;] <=0

else

| Tilpmax;] <1

pmax; < pmax; + 1

pmin; <— pmin; + 1

maxval < max(maxval, childmax)

minval < min(minval, childmin)
+ if maxval = minval then

+ | pmax; < pmax; — k?

+ | pmin; < pmin; — k?

+ return (maxval, minval)

- return (maxval, minval, outcount)

The use of partial sums and sampling described in
[1, §3.3 and §4.2] can be used in the Simple family of
codes to expedite the search process in the compressed array.
We incorporate such strategies by sampling these arrays at



5506605

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

TABLE I

TESTING SCENE DATA USED AND A COMPARISON OF k2-RASTER STORAGE

S1ZE WITH PADDED MATRIX AND UNPADDED MATRIX. SIZE REDUCTIONS

(%) FROM PADDED MATRIX TO UNPADDED MATRIX ARE ENCLOSED IN PARENTHESES. IN THE DIMENSIONS COLUMN x IS THE IMAGE WIDTH,
y THE IMAGE HEIGHT, AND z THE NUMBER OF SPECTRAL BANDS. THE BEST RESULTS ARE HIGHLIGHTED.

s N Acro- Df)rigil,a] gzi!p B;st Padded Matrix (bpppb) Unpadded Matrix (bpppb)
ensor ame imensions ate PFD* PFD* PFD* PFD* PFD* PFD* PFD* PFD*
"M | xxyx2 | bpppb) | Value | PACs 89T SI6" T3y Ty Tipg 56 DACs il Ste 2 64 128 256

of AGO | 90x135x1501 1016 6 949 1006 969 988 959 959 982 | 894 (58 944 (61) 9.08 (63) 928 (6.1) 894 (68) 890 (72) 907 (16)
167 AGI6 | 90x135x1501 982 6 9.02 964 930 955 920 915 044 | 860 (57) 902 (64) 868 (67) 895 (62) 855 (10) 845 (17) 853 (96)
60t AG60 | 90x135x1501 1053 6 9.81 1050 10.12 1019 982 975 1000 | 928 (54) 989 (57) 951 (59) 965 (53) 922 (61) 910 (67) 9.19 (1)
1261 AGI26 | 90x135x1501 1033 6 961 1025 9.81 998 961 953 084 | 907 (56 965 (59) 921 (62) 941 (57) 900 (64) 885 (1) 901 (84)

AIRS 1297 AGI29 | 90x135x1501 950| 6 865 901 861 901 869 867 895| 810 (63) 839 (70) 798 (13) 839 (69 S80I (18) 792 (87) 798 (10.9)
151t AGISI | 90x135x1501 1031 6 953 999 9.54 979 943 941 079 | 897 (58 939 (60) 894 (63) 916 (64) 878 (69) 871 (14) 884 (9.7
1821 AGIS2 | 90x135x1501 1064 6 9.68 1044 1001 1009 979 977 1008 | 9.14 (56 986 (56) 942 (59) 953 (56 920 (6.1) 911 (68) 921 (86)
1931 AGI93 | 90x135x1501 1015] 6 9.44 1006 9.65 993 956 946 974 | 890 (57) 945 (6.1) 903 (64) 933 (60) 889 (10) 872 (18) 880 (0.7
Average 10.18 942 999 959 980 946 942 971 | 888 (5.7) 939 (6.1) 898 (64) 921 (60) 882 (67) 872 (14 883 (O.1)
Yellowstone sc. 007 AC00 | 677x512x224 012] 6 961 1037 10.11 980 941 935 940 | 947 (15 1020 (16) 995 (16) 967 (13) 928 (14) 921 (15) 926 (15
Yellowstone sc. 03¢ ACO3 | 677x512x224 959 6 942 9.80 9.57 940 903 899 907 | 929 (14) 965 (16) 942 (L6) 928 (13) 892 (12) 886 (14) 894 (1.4)
Yellowstone sc. 10 ACI0 | 677x512x224 741| 6 762 734 708 744 706 704 T14| 749 (18) 720 20) 704 20) 731 (I7) 694 (16) 690 (19) 702 (17)
Yellowstone sc. 117 ACIL | 677x512x224 904| 6 881 932 9.09 902 865 862 872 | 867 (I7) 917 (16) 894 (L7) 890 (13) 852 (L5) 849 (15) 859 (15
Yellowstone sc. 18¢ ACIS | 677x512x224 1000 6 978 10.52 1028 9.84 947 9.42 950 | 965 (13) 1037 (14) 1014 (14) 973 (L) 935 (1.2) 930 (13) 938 (1.3)

AVIRIS | Average 9.23 905 947 925 910 872 868 876 | 891 (15) 932 (16) 9.10 (16) 898 (13) 860 (1.4) 855 (15) 863 (5
Yellowstone sc. 001 AU00 680x512x224 12.39 9 11.92 14.01 13.79 11.93 11.54 1144 1155 | 11.75 (1.4) 13.83 (1.2) 13.62 (1.2) 11.75 (1.6) 1133 (1.8) 11.22 (1.9 11.30 (2.2)
Yellowstone sc. 031 AUO3 | 680x512x224 198 9 | 1174 1354 1329 1156 1115 1108 1122 | 1158 (14) 1337 (13) 1312 (13) 1137 (16) 1095 (18) 1087 (20) 1097 (22)
Yellowstone sc. 10T AUIO | 680x512x224 1017 9 9.99 1090 10.54 961 920 910 926 | 982 (I7) 1072 (1L6) 1036 (L7) 942 (20) 898 (24) 887 (26) 899 (29
Yellowstone sc. 11T AU11 680x512x224 11.49 9 11.27 13.12 12.89 11.24 10.85 10.77 1094 | 11.08 (1.7) 1294 (1.4) 1271 (1.4) 11.05 (1.7) 10.64 (1.9) 1056 (2.0) 10.69 (2.2)
Yellowstone sc. 18 AUIS | 680x512x224 1229| 9 | 1215 1419 1401 12.10 1170 1163 1175 | 1199 (13) 1401 (12) 1384 (13) 1191 (1.6) 1150 (18) 1141 (1.9) 1150 (2.1)
Average 11.66 1142 13.15 1291 1129 10.89 10.80 10.94 | 1124 (15) 1298 (13) 1273 (14) 1110 (17) 1068 (19) 1058 (20) 1069 (23)
fr1000065¢6_07_sc1641 | CRI | 640x420x545 1098 6 | 1008 1135 1114 1044 1022 1037 1054 | 1000 (08) 1109 22) 1089 23) 1036 (0.7) 10.14 (08) 1029 (0.8) 1045 (0.9)
fn000088497lJ775C165f CR2 640x450% 545 11.03 6 10.37 11.78 11.57 10.69 10.49 10.65 10.84 | 10.29 (0.8) 11.69 (0.8) 11.48 (0.8) 10.62  (0.7) 1042 (0.7) 10.57 (0.7)  10.76  (0.7)
fr10001077d_07_sc166! | CR3 | 640x480x545 1120 6 | 105 1299 1274 1141 1122 1135 1149 | 1097 (0.7) 1289 (08) 1264 (0.8) 1135 (0.5 1LI5 (07 1127 ©7) 1139 (0.8)

CRISM | 1ri00004f38_07_scI81T | CR4 | 320x420x545 1077 s 9.97 10.93 1072 1053 1030 1037 1034 | 990 (0.7) 1088 (04) 10.67 (05) 1048 (0.4) 1024 (06) 1031 (0.6) 1028 (0.6)
hr]OlJlJ0648fJJ7isC182f CRS 320x450%545 10.90 5 10.11 11.24 10.99 10.67 10.47 10.53 10.50 | 10.06 (0.5) 11.21 (0.2) 10.97 (0.3) 10.64 (0.3) 1043 (0.4) 1049 (04) 1046 (0.4)
hrl0000ba9_07_sc1837 | CR6 | 320x480x545 1087 5 | 10.65 1233 1205 1121 1101 11.04 1099 | 1057 (0.7) 1227 04) 1199 (0.5) 1115 (0.5 1095 (0.5 1097 (0.7) 1092 (0.7)
Average 10.96 1037 1177 1154 1082 10.62 1072 1078 | 1030 07) 11.67 (0.8) 1144 (08) 1077 (05) 1056 (0.6) 1065 (0.7) 1071 (0.7)
Agricultural® HCI | 256x3129x242 s84| 8 854 979 956 880 842 835 837| 852 (03) 977 (02) 954 (02) 886 (0.7) 849 (0.9) 836 (02) 836 (.1
Coral Reef? HC2 | 256x3127x242 745| 8 762 828 793 760 718 708 7.0 | 762 0.) 828 (O.1) 793 (01) 767 (-0.8) 729 (15) 7.5 (L) 715 (-0.7)
Urban' HC3 | 256x2905x242 885 8 8.86 1030 10.04 891 851 846 850 | 883 (03) 1028 (0.2) 1002 (02) 893 (02) 851 (0.0) 844 (03) 848 (03)

Hyperion | Average 3.38 834 946 9.8 844 804 796 799 | 832 (02) 944 (02) 916 (02) 849 (0.6) 810 (0.7) 799 (-03) 800 (-0.1)
Erta AleT HUL | 256x3187x242 869 8 776 830 800 799 747 732 733 | 773 (05) 827 (04) 797 (04) 805 (07) 156 (12) 737 (06) 732 (02)
Lake Montana® HU2 | 256x3176x242 869| 8 782 838 810 811 760 7.46 747 | 7.80 (02) 837 (O.) 808 (01) 819 (-10) 771 (13) 751 (07) 750 (-0.3)
Mt. St. Helenaf HU3 | 256x3242x242 826] 8 791 848 820 814 763 750 753 | 787 (0.5) 844 (04) 817 (05) 820 (0.7) 174 (14) 755 (06) 752 (.1
Average 8.55 783 838 8.10 808 757 743 745 | 780 04) 836 (03) 807 (03) 815 (0.8) 767 (1.3) 747 (06) 744 (0.0)
Level 0 11 TASI | 60x1528x8359 590 12 | 632 626 594 654 610 595 595| 614 28 608 (28) 576 29) 641 (20) 596 (23) 580 (24 580 (4
Level 0 21 IASD | 60 1528x8359 596 12 638 627 596 655 61l 597 598 | 621 27) 610 28 579 29) 643 (19) 598 (22) 583 (24) 585 (23)

IASI Level 0 31 TASI3 | 6015288359 525| 12 | 631 619 589 648 604 590 591| 614 27) 601 29) 571 (30) 635 20) 591 (22) 576 (23) 577 (23)
Level 0 41 IASI4 | 60 1528x8359 630 12 | 643 637 604 665 620 606 607 | 625 29 619 28 587 29) 652 (20) 607 (22) 592 (23) 591 (26
Average 585 636 627 596656 611597 598 | 619 28 609 (28 578 (29) 643 _(20) 598 (22) 583 (24 583 (4

T: Uncalibrated (U). : Calibrated (C). *: S9: Simple-9, S16: Simple-16, PFD: PForDelta.

a fixed interval, and at each interval, the partial sums of the random access function, the code was also modified

the number of integers are computed. With these strategies,
random cell access can be done in constant time. Note that,
however, it may incur some overhead and this should be taken
into consideration when used in a real-time application.

IV. EXPERIMENTAL RESULTS

In this section, we present the results for storing hyper-
spectral data with a k>-raster structure, incorporating the
aforementioned improvements in padding storage and integer
encoding strategies.

The hyperspectral scenes were captured by different sen-
sors in real remote-sensing missions: Atmospheric Infrared
Sounder (AIRS), AVIRIS, Compact Reconnaissance Imag-
ing Spectrometer for Mars (CRISM), Hyperion, and IASI.
These images are often used in the remote sensing data
compression literature. All of them, save for IASI, are publicly
available for download (http://cwe.ccsds.org/sls/docs/sls-dc/
123.0-B-Info/TestData). The tested hyperspectral scenes are
listed in Table I. Note that the storage size for hyperspectral
scenes is measured in bits per pixel per band (bpppb).

We extended the algorithms presented in the paper by
Ladra et al. [11], and our k’-raster implementation was based
on these new extended algorithms. The DACs’ software was
downloaded from the Universidade da Corufia’s Database
Laboratory = website (http://Ibd.udc.es/research/DACS/).
The original implementations for Simple-9, Simple-16,
and PForDelta can be found on the website for the
Poly-IR-Toolkit (https://code.google.com/archive/p/poly-
ir-toolkit/source/default/source). However, to incorporate

and extended.

Programs for the experiments were written in C and C++
and compiled by GNU g++ 6.3.0 20170516 with -O3 opti-
mization. The testing computer had an Intel(R) Xeon(R) 4-core
CPU E3-1230 V2 @ 3.30 GHz with 8192 KB of cache and
32 GB of RAM. The operating system was Debian GNU/Linux
9 with kernel Linux 4.9.0-8-amd64. The software code is
available at http://gici.uab.cat/GiciWebPage/downloads.php.

A. Storage Size With and Without Padding

In this section, we show how storage sizes fare among
the different encoders using padded and unpadded matrices.
The results are presented in Table I. It can be seen that
k>-raster produces smaller storage sizes than gzip. The table
also shows that the sizes for unpadded matrices are less than
the padded matrices with up to 6% in savings. PForDelta
using 128-integer blocks has the best results for the majority
of padded and unpadded matrices, followed by DACs and
Simple-16 encoders. Overall, the storage size has been reduced
for most data except for Hyperion scenes using PForDelta,
where PForDelta-128 codes for padded matrices produce sim-
ilar results for PForDelta-256 codes for unpadded matrices.
Both are almost equal, and the difference is not significant. If
we examine Table I, it can be seen that the use of an unpadded
matrix with PForDelta-128 compared with a padded matrix
with DACs results in a reduction for storage for almost all the
test files except for CRISM. We believe the experiments have
shown us that using an unpadded matrix together with one
of integer encoders, in particular PForDelta, can help improve
the storage size.



CHOW et al.: PERFORMANCE IMPROVEMENT ON k?-RASTER COMPACT DATA STRUCTURE FOR HYPERSPECTRAL SCENES

TABLE II

COMPARISON OF RANDOM ACCESS TIME (us) BETWEEN DIFFERENT
INTEGER ENCODERS FOR PADDED AND UNPADDED MATRICES. THE
BEST RESULTS ARE HIGHLIGHTED. THE ABBREVIATIONS FOR THE
INTEGER ENCODERS ARE THE SAME AS IN TABLEI .

S Padded Matrix (us) Unpadded Matrix (us)
cene

PFD PFD PFD PFD PFD PFD PFD PFD
Data DACs S9 S16 32 64 128 256 DACs S9 S16 32 64 128 256
AGY 0.65 0.65 0.65 0.62 0.59 0.56 0.66 0.58 0.67 0.66 0.60 0.62 0.62 0.70
AG16 0.58 0.67 0.60 0.57 0.56 0.57 0.60 0.55 0.64 0.65 0.58 0.61 0.63 0.71
AG60 0.63 0.67 0.69 0.56 0.61 0.61 0.67 0.55 0.64 0.67 0.59 0.60 0.65 0.73
AG126 0.51 0.69 0.64 0.59 0.50 0.49 0.62 0.60 0.65 0.64 0.62 0.63 0.66 0.73
AGI129 0.67 0.67 0.69 0.57 0.58 0.57 0.63 0.58 0.63 0.62 0.59 0.59 0.61 0.70
AG151 0.68 0.64 0.67 0.54 0.57 0.60 0.68 0.60 0.65 0.65 0.61 0.62 0.63 0.72
AG182 0.69 0.67 0.72 0.55 0.61 0.57 0.78 0.67 0.67 0.68 0.75 0.74 0.80 0.89
AG193 0.57 0.65 0.68 0.58 0.57 0.56 0.69 0.55 0.65 0.64 0.60 0.60 0.65 0.70
Average 0.62 0.66 0.67 0.57 0.57 0.56 0.67 0.58 0.65 0.65 0.62 0.63 0.66 0.73
ACO00 1.59 1.63 1.63 147 151 167 1.67 0.71 0.77 0.77 0.70 0.71 0.73 0.79
AC03 1.54 158 1.62 145 137 147 158 0.69 0.77 0.77 0.71 0.71 0.73 0.79
ACI10 191 163 1.65 162 159 134 151 0.89 0.76 0.76 0.68 0.68 0.69 0.76
ACI1 1.83 1.64 1.63 136 152 149 148 0.86 0.77 0.77 0.70 0.71 0.71 0.76
ACI8 1.59 1.62 1.64 144 153 145 1.59 0.72 0.78 0.77 0.70 0.70 0.73 0.78
Average 1.69 1.62 1.64 147 150 148 1.56 0.78 0.77 0.77 0.70 0.70 0.72 0.78
AU00 093 1.05 1.05 099 091 101 092 0.60 0.65 0.66 0.59 0.59 0.61 0.66
AU03 092 1.05 1.04 0.84 0.89 0.99 0.92 0.59 0.65 0.65 0.59 0.59 0.59 0.62
AUI0 1.24 1.05 1.06 092 097 0.87 1.01 0.78 0.64 0.64 0.57 0.57 0.57 0.65
AUl 1.13 1.05 1.02 095 094 087 1.05 0.73 0.66 0.65 0.57 0.57 0.58 0.60
AUI8 099 1.10 1.10 0.88 0.99 0.99 0.98 0.61 0.66 0.66 0.59 0.58 0.59 0.62
Average 1.04 1.06 1.05 091 094 094 0.98 0.66 0.65 0.65 0.58 0.58 0.59 0.63
CR1 1.66 1.64 1.62 143 152 156 1.60 0.82 0.88 0.89 0.78 0.78 0.80 0.87
CR2 1.71 1.60 174 150 141 1.65 1.51 0.85 0.89 090 0.81 0.80 0.81 0.89
CR3 1,59 172 1.73 151 149 152 153 0.80 092 091 0.81 0.81 0.81 087
CR4 143 149 142 122 120 126 1.37 0.82 0.81 081 0.74 0.73 075 083
CRS 148 151 1.54 122 126 127 142 0.84 0.82 081 0.73 0.74 0.75 0.84
CR6 144 150 1.53 132 1.29 132 144 0.77 0.82 082 0.73 0.73 0.76 0.83
Average 1.55 1.58 1.60 1.37 136 143 148 0.82 0.86 086 0.77 0.76 0.78 0.85
HC1 1.52 1.64 1.63 1.53 144 149 1.65 0.62 071 0.71 0.64 0.65 0.67 0.72
HC2 1.63 1.56 1.49 147 149 148 1.68 0.71 0.70 0.70 0.64 0.63 0.65 0.69
HC3 1.38 147 1.50 140 140 147 136 0.63 070 0.70 0.64 0.64 0.65 0.70
Average 1.51 1.56 1.54 147 144 148 1.56 0.65 0.70 0.70 0.64 0.64 0.65 0.70
HUI 191 202 202 170 172 1.61 1.76 0.79 0.88 0.89 0.79 0.79 0.80 0.84
HU2 1.82 2,01 2.00 1.76 1.68 1.82 1.85 0.78 0.89 0.88 0.79 0.79 0.81 0.87
HU3 1.82 202 2.05 1.82 1.83 177 187 0.76 0.89 0.89 0.79 0.78 0.80 0.85
Average 1.85 202 2.02 1.76 174 173 1.83 0.78 0.89 089 0.79 0.79 0.80 0.85
IASI1 134 124 130 1.10 1.02 1.05 1.09 125 146 132 127 131 138 144
IASI2 134 129 127 112 112 112 112 125 147 130 133 130 139 143
TASI3 135 131 1.29 1.11 112 1.02 1.13 129 142 130 131 131 140 145
TASI4 1.38 132 1.24 1.11 106 1.09 1.14 127 143 134 132 133 135 145
Average 135 129 1.28 1.11 1.08 1.07 1.12 127 145 132 131 131 138 144

B. Random Query With and Without Padding

In this section, we test the time it takes to query elements.
Random access to elements in each tested scene is performed
in 100000 iterations with and without padding. The GetCell
function in the paper by Ladra et al. [11] is modified using
partial sums and sampling to optimize random cell access time
in an unpadded matrix. To ensure more accurate results, we use
the same set of coordinates and bands generated randomly for
each scene for all the different encoders and matrices. The
program is repeated 20 times for each scene and the average
time is taken. The results are shown in Table II. It shows that
the best access time is to use the 32-, 64-, and 128-integer
PForDelta encoders for padded matrices and DACs, and
64- and 32-integer PForDelta encoders for unpadded matrices.
What is more notable is that the access times are cut almost in
half (49%) for most of the unpadded matrices, whereas AIRS
Granules and TASI data have more or less the same access
times for both types of matrices, possibly due to the similar
tree data built from the padded and unpadded matrices. Other
factors influencing execution times are the effectiveness of
the partial sums and sampling optimization, and the relatively
small spatial sizes of AIRS and IASI matrices (e.g., AIRS has
90 x 135 = 12 150 pixels) compared with others (e.g., AVIRIS
Yellowstone has 680 x 512 = 348 160 pixels). Thus, the effects
are less noticeable. Also, we should note that for access times
in unpadded matrices, the way the tree is traversed is greatly
boosted using the partial sums and sampling, which help
access elements faster.

5506605

These experiments prove that the storage space and random
access to elements in the k>-raster structure produce competi-
tive results not only for DACs but also for the Simple family
of word-aligned integer encoders.

V. CONCLUSION

In this research, we propose a new no-padding method
to reduce the storage space by saving only the elements in
the nodes of a k’-raster that are within the bounds of the
original matrix, and our experiments have shown that it saves
space up to 6%. The access time has also been reduced by
half for most of the data when using unpadded matrices.
Furthermore, the use of other random access integer encoders,
such as Simple-9, Simple-16, and PForDelta, has proven to
be competitive compared with DACs, the encoder originally
used by the authors of k?-raster. In particular, we can see that
for most hyperspectral data, PForDelta performs better than
DACs with up to 6% reduction in storage size and up to 20%
reduction in random access time to elements. The experiments
also show that the Simple family of integer encoders can also
be used as a good alternative to DACs for random access to
integer sequences.

REFERENCES

[1] G. Navarro, Compact Data Structures: A Practical Approach. Cam-
bridge, U.K.: Cambridge Univ. Press, 2016.

[2] G. Jacobson, “Space-efficient static trees and graphs,” in Proc. 30th
Annu. Symp. Found. Comput. Sci., Oct. 1989, pp. 549-554.

[3] Low-Complexity ~ Lossless — and  Near-Lossless ~ Multispectral
and Hyperspectral Image Compression. Blue Book. Issue 2,
Consultative  Committee  for Space Data  Systems (CCSDS),
Standard CCSDS 123.0-B-2, Feb. 2019. [Online]. Available:
https://public.ccsds.org/Pubs/123x0b2c3.pdf

[4] K. Chow, D. Tzamarias, I. Blanes, and J. Serra-Sagrista, “Using pre-
dictive and differential methods with K>-raster compact data structure
for hyperspectral image lossless compression,” Remote Sens., vol. 11,
no. 21, p. 2461, Oct. 2019.

[5] N. R. Brisaboa, S. Ladra, and G. Navarro, “DACs: Bringing direct
access to variable-length codes,” Inf. Process. Manage., vol. 49, no. 1,
pp- 392404, Jan. 2013.

[6] N. R. Brisaboa, M. R. Luaces, G. Navarro, and D. Seco, “A fun
application of compact data structures to indexing geographic data,” in
Proc. Int. Conf. Fun With Algorithms. Berlin, Germany: Springer, 2010,
pp. 77-88.

[71 N. Brisaboa, A. Farifia, G. Navarro, and J. Paramd, “Dynamic light-
weight text compression,” ACM Trans. Inf. Syst., vol. 28, no. 3, pp. 1-32,
Jun. 2010.

[8] N. R. Brisaboa, S. Ladra, and G. Navarro, “Compact representation of
Web graphs with extended functionality,” Inf. Syst., vol. 39, pp. 152-174,
Jan. 2014.

[9] N. R. Brisaboa, M. A. Rodriguez, D. Seco, and R. A. Troncoso,

“Rank-based strategies for cleaning inconsistent spatial databases,” Int.

J. Geograph. Inf. Sci., vol. 29, no. 2, pp. 280-304, Feb. 2015.

F. Silva-Coira, “Compact data structures for large and complex datasets,”

Ph.D. dissertation, Facultade de Informatica Universidade da Corufa, A

Coruiia, Spain, 2017.

S. Ladra, J. R. Paramd, and F. Silva-Coira, “Scalable and queryable com-

pressed storage structure for raster data,” Inf. Syst., vol. 72, pp. 179-204,

Dec. 2017.

K. Chow, D. E. O. Tzamarias, M. Herndandez-Cabronero, I. Blanes,

and J. Serra-Sagrista, “Analysis of variable-length codes for integer

encoding in hyperspectral data compression with the k*-raster compact

data structure,” Remote Sens., vol. 12, no. 12, p. 1983, Jun. 2020.

V. N. Anh and A. Moffat, “Inverted index compression using word-

aligned binary codes,” Inf. Retr., vol. 8, no. 1, pp. 151-166, Jan. 2005.

J. Zhang, X. Long, and T. Suel, “Performance of compressed inverted

list caching in search engines,” in Proc. 17th Int. Conf. World Wide Web

(WWW), 2008, pp. 387-396.

M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-scalar RAM-

CPU cache compression,” in Proc. 22nd Int. Conf. Data Eng. (ICDE),

Apr. 2006, p. 59.

[10]

(1]

[12]

[13]

[14]

[15]



