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Abstract— We present a two-step strategy to solve an inverse
scattering problem in 2-D geometry. The first step approximates
the inverse scattering as a convex optimization problem and
provides an estimation of the total field inside the domain under
investigation without a priori knowledge or tuning parameters.
In the second step, the previously estimated total field is used
to reconstruct the unknown contrast permittivity, which is
represented by a superposition of level-1 Haar wavelet transform
basis functions. Subject to �1-norm constraints of the wavelet
coefficients, a least absolute shrinkage and selection operator
(LASSO) problem that searches for the global minimum of the
�2-norm residual is exploited by accounting for the sparsity of
the wavelet-based permittivity representation. Numerical results
are presented to assess the effectiveness of the proposed formu-
lation against objects with relatively small electric size. Finally,
the approach is validated against experimental data.

Index Terms— Convex optimization, CVX, Haar transform,
inverse scattering, least absolute shrinkage and selection operator
(LASSO), radar imaging, templates for first-order conic solver
(TFOCS).

I. INTRODUCTION

IN INVERSE scattering problems, the electromagnetic, and
morphological properties of targets are estimated from the

scattered field [1]–[3]. Despite the relative simplicity of the
sensing phenomenon, inverse electromagnetic scattering prob-
lems are characterized by challenging mathematical difficulties
such as nonlinearity and ill-posedness [1], [3]–[5].

The first class of solution approaches to the quantitative
inverse problem are based on iterative minimization schemes
with regularizations, such as the Born iterative method
(BIM) [6] and the distorted BIM [7]. The contrast source
inversion method [8] is also a deterministic minimization
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method. Another class of approaches uses a quadratic model of
the electromagnetic scattering that permits to enlarge the class
of retrievable unknowns compared to the one of the linear
inverse models [9], [10].

Improved reconstruction methods are present in the liter-
ature as in [11], where the unknowns are searched within
the wavelet domain and the optimization problem consists
of the minimization of the misfit about the data with the
sparsity constraints on the wavelet coefficients. To exploit spar-
sity [12], wavelet transforms, such as Haar and the Daubechies
wavelets, have been applied to a wide range of problems
in nonlinear electromagnetic inversions [13]. Besides the
deterministic approaches to solve inverse scattering problems,
a further class of approaches is based on stochastic searches
of the solution [1], and deep learning with neural network
approaches [14].

Convex optimization problems exhibit a number of compu-
tational benefits because they are a special class of nonlinear
optimizations problems [15]. First, every local optimum of
a convex optimization problem is also globally optimal; this
implies that convex problems can be solved using efficient
local search methods (e.g., Newton’s method) as opposed
to expensive global methods (e.g., genetic algorithms). With
modern solvers specifically designed for convex optimization,
a commodity desktop computer can easily handle convex
optimization problems up to 103 to 106 variables [16], depend-
ing on the problem type. Second, in many modern software
packages (e.g., CVX [17], [18]) for convex optimization,
users can specify convex optimization problems in high-level
domain-specific languages. Finally, it is known that convex
optimization problems can be solved by solving a sequence
of linear systems of equations [19]. This opens the possibility
to solve convex problems of very large size by leveraging
existing techniques from large-scale numerical linear algebra.

In this work, we approximate the nonlinear inverse scatter-
ing problem as a convex optimization one by proposing a new
inversion strategy consisting of two steps. First, we estimate
the total field inside the domain of investigation by solving a
convex optimization problem, which is obtained by discretiz-
ing continuous electric field integral equations by the Method
of Moment [20]. The solution of the convex optimization
problem can be efficiently computed using CVX [17], [18],
a software package for solving generic convex optimization
problems. Second, the estimated total field is exploited to
formulate an inverse problem that reconstructs the dielectric
permittivity and conductivity of the target from the scattered
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field data. To mitigate the ill-posedness of the inverse problem
at the second step, we assume that the permittivity profile has
a sparse representation in the wavelet domain. This regular-
izes the inverse problem by introducing an �1-norm penalty,
which is known to promote sparsity in the Haar wavelet
coefficients [11]. The resulting problem is known as the
least absolute shrinkage and selection operator (LASSO) [21]
problem and can be solved by the templates for first-order
conic solvers (TFOCSs) [22] software package.

II. THEORY

We consider the classical inverse scattering problem in
2-D geometry with the free space as background medium.
The transmitting antennas are modeled as filamentary electric
currents with the invariance axis orthogonal to the 2-D plane.
Thus, the electric field is scalar in this TM-mode case.

Let S be the domain under investigation, and r� ∈ S.
We denote by � = ��− j (σ/ω�0) the relative complex dielectric
permittivity in S, where � � and σ are the relative dielectric
permittivity and electrical conductivity.

The electromagnetic scattering is governed by a pair of
integral equations. The state equation accounts for the total
field E p inside the investigation domain Sn as

E p + jk2
0

4

N�
n=1

(�n − 1)En

�
Sn

H(2)
0

�
k0

��rp − r�
n

��� dS� = Ei
p

(1)

where Ei
p is the incident field at pixel p, rp ∈ S, H(2)

0 (·) is the
Hankel function of the second kind and order zero, and k0 is
the wavenumber in free space. The investigation domain S is
discretized into N pixels, and �n is the homogeneous relative
complex dielectric permittivity within the pixel n. The integral
of H(2)

0 (·) over a circular region Sn was evaluated in [20] as
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where req is the equivalent radius of the discretized pixel, and
J1(·) is the Bessel function of the first kind and first order.

The data equation describes scattered field Es at the
mth transmitter–receiver combination by

Es
m = − jk2

0

4
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H(2)
0

�
k0

��rm − r�
n

��� dS�. (3)

A. Approximate 2-D Inverse Scattering via
Convex Optimization

A multiview/multistatic/single-frequency configuration is
considered for the problem at hand. We assume NTX trans-
mitters and NRX receivers encircling the investigation domain,
i.e., NTX NRX observations of the scattered field. Let the vector,
�δ = � − 1, �δ ∈ CN , be the complex contrast function for N
pixels, and the matrix variable Y ∈ CN×NTX be the total field at
N pixels due to NTX transmitters. These two variables allow
as to write (1) and (3) as

A diag(�δ) Y = D (4)

Y + B diag(�δ) Y = C (5)

where D ∈ C
NRX×NTX consists of the scattered field data

Es
m in (3). The matrices, A ∈ CNRX×N , B ∈ CN×N , and

C ∈ CN×NTX , are known once the measurement configuration
and the number of pixels are fixed. Elements of A relate the
scattered field collected at the nRX receiver to pixel p as

AnRX, p = − jπk0req

2
J1(k0req) H(2)

0

�
k0

��rnRX − r�
p

���. (6)

Elements of the symmetric matrix B, given in (2), rely on the
relationship between pixels p and n. The matrix C accounts
for the incident field radiated by a filamentary current in free
space, which is expressed at pixel p for transmitter nTX as

CnTX, p = − k2
0

4ω�0
H(2)

0

�
k0

��rnTX − r�
p

���. (7)

DnRX, nTX is the scattered field data at receiver nRX due to
transmitter nTX.

Equation (4) contains data of the problem, i.e., the scattered
field, whereas (5) accounts for the total field within the
investigation domain. Therefore, a nonconvex optimization
problem can be reformulated from (4) and (5) as

min
Y, �δ

�A diag(�δ) Y − D�2

s.t. Y + B diag(�δ) Y = C. (8)

To approximate the nonconvex problem (8), we substitute
diag(�δ) Y with a new optimization variable, Z ∈ CN×NTX

min
Y, Z

�A Z − D�2

s.t. Y + B Z = C. (9)

The objective function is a Euclidean norm of an affine func-
tion, and the constraint is also affine; therefore, this optimiza-
tion problem is convex [15]. This convex optimization problem
does not require picking appropriate regularization parameters.
With CVX, optimal solutions, Ŷ and Ẑ, of our stated convex
optimization problem are easily obtained. Equation (9) relaxes
the nonlinear inverse problem and considers the equivalent
currents and the total field inside the investigation domain as
separate optimization variables. Due to the nonuniqueness of
optimal solutions, CVX would arbitrarily retrieves one solution
from the set of optimal solutions and varying constraints do
not affect the set of optimal solutions. For any Z, there exists
Y such that the constraint is satisfied. The inverse source
problem, the estimation of Z, is affected by the inherent
nonuniqueness issue as discussed in [23] and [24] that we
are trying to estimate a function of spatial variables (defined
over a 2-D investigation domain) by exploiting the knowledge
of the scattered field on a line (1-D domain).

The weakness of approximating the original problem as a
convex optimization problem is the absence of the nonconvex
constraint of Z = diag(�δ) Y. Consequently, solution Ẑ returned
by CVX cannot be expressed as the multiplication of a
diagonal matrix and the solution Ŷ. To estimate the permittivity
contrast �δ , we only use the estimated total field, Ŷ, and adopt
a LASSO problem at the second step.

B. Linear Inversions in the Wavelet Domain

Equation (4) can be reformulated to determine the unknown
permittivity contrast �δ through Ŷ returned at the first step.
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We separate real and imaginary parts of matrices in (4) so
that in the real domain

��O �O
�O −�O

�� ��δ

−��δ

�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�D∗, 1
...

�D∗, NTX�D∗, 1
...

�D∗, NTX

⎤
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(10)

where the linear complex operator O is

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1, ∗ ◦ Ŷ∗, 1
...

ANRX,∗ ◦ Ŷ∗, 1

A1, ∗ ◦ Ŷ∗, 2
...

ANRX, ∗ ◦ Ŷ∗, NTX

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

with element-wise multiplication symbol ◦, and all elements
in a specific row or column omitted by ∗. Apparently, (10)
shows a linear form

Lm = d (12)

through a linear operator, L ∈ R2NTX NRX×2N , between the data,
d ∈ R2NTX NRX , and the unknown model, m ∈ R

2N≥0 .
To tackle the ill-posedness of the inversion of the linear

operator L, we apply an �1-norm based regularization term.
When the permittivity profile either is smooth or contains
limited sharp features, the unknown permittivity function can
be projected in the wavelet domain. Therefore, the model
m can be unraveled by a linear inverse wavelet transform
operator W−1 and the wavelet coefficients w as m = W−1w.
To improve sparsity, we penalize the misfit between the data
and the proposed model with sparse constraints in the wavelet
domain as the LASSO problem [21]

min
w

1

2
�LW−1w − d�2

2

s.t. �w�1 ≤ γ. (13)

The parameter γ controls the sparsity of the solution for w,
where the value of γ increases when we consider contrast
functions with higher frequency content. Therefore, γ is the
maximum value that forces the solution �w�1 returned by
TFOCS at each iteration to decrease for sparsity. The feasible
initial point of w is set as w0 = 0.

III. NUMERICAL RESULTS AND ANALYSIS

In this section, we assess the proposed approach by consid-
ering both simulated and experimental data. For the synthetic
cases, the investigation domain S is divided into finer pixels
(144 × 144) in the forward model compared to the ones used
in the inverse model (50 × 50). The fine grid in the forward
model ensures more accurate numerical computations of the
scattered field and avoids committing the inverse crime. Eight
transmitters and 36 receivers give rise to 288 scattered field
data. Transmitters and receivers are located evenly along the
circle at 1.5 times the radius of the circular investigation
domain S.

Fig. 1. Relative error of total field within the investigation domain returned
by CVX at each iteration compared with exact total field.

TABLE I

�-2 NORM RELATIVE ERROR IN PERCENTAGE

The SDPT3 solver implementing a particular variant of
interior-point methods, and called by CVX, costs less than
2 min with an Intel Core i7-8700 CPU and 16 GB of RAM
for this moderate size problem. In TFOCS, the computation
time is within seconds. Overall, it is slower than BIM.

We present results and error analysis for these numeri-
cal data: 1) a homogeneous cylinder compared with BIM;
2) a sine-shaped distribution; 3) a layered cylinder; and
4) an L-shaped cylinder. For cases 2–4, we add the white
Gaussian noise Ñ ∼ N (0, σ 2/2) (σ is the variance, not the
symbol of conductivity) to the real and imaginary parts of
the scattered field data S̃ proportionally. The signal-to-noise
ratio is defined as SNR = 10 log[Power(S̃)/σ 2] and set to be
20 dB. Finally, case 5) is concerned with experimental data
for two high-density polyethylene (HDPE) cylinders and the
results of the proposed approach are compared with the ones
of a quadratic forward model.

Relative errors of reconstructed total field returned by CVX
at each iteration is shown in Fig. 1. For noisy cases (2–4),
CVX converges faster. All the relative errors with respect to
simulated results are listed in Table I.

1. Lossless Homogeneous Cylinder: � = 11

To test the effectiveness of CVX, we consider a homo-
geneous cylinder with permittivity � = 11. First, we follow
the case of Fig. 6 in [6] of a circular cylinder with a radius
of λ/20. In BIM, the total field within the cylinder EBIM

n is
achieved after 14 iterations with relative residual error less
than 10−4. The regularization method for the inversion is
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Fig. 2. Electric field relative error within the cylinder with � = 11:
(a) �δBIM. (b) �δCVX. (c) �δBIM. (d) �δCVX. The red dot at (0, 0.075λ)
shows the location of the transmitter. Results on the same row share the
colorbar on the right.

Fig. 3. Real part of permittivity reconstructed along y = 0 by BIM and
CVX-TFOCS for a circular cylinder with permittivity 11 with varying radius,
λ/20, λ/8, λ/4, and λ/2.

the algebraic reconstruction technique [25], instead of the
Tikhonov regularization in [6]. The total field estimated by
proposed convex optimization method is ECVX

n . Fig. 2 shows
the relative complex error for the total field

δBIM, CVX = ESimulation
n − EBIM, CVX

n��ESimulation
n

�� (14)

at each pixel of the investigation domain, when the transmitter
is located at (0, 1.5λ/20). Neither approximations nor a priori
knowledge are used, but CVX attains a better reconstruction
of the total field, especially for the real part of En .

The permittivity estimated along the slice of y = 0 by
BIM and CVX-TFOCS is shown in Fig. 3. For the cylinder
with a radius of λ/20, CVX-TFOCS yields less variance than
BIM. Due to more accurate estimates of En by CVX and the
exploitation of the sparse nature of a homogeneous permittivity
distribution (in terms of wavelet representation), the LASSO
solution enables a cleaner and more uniform reconstruction.
Also, it has been observed that a good performance of the

Fig. 4. Real part of permittivity within a sine-shaped permittivity distribution
with maximum � = 3: (a) actual. (b) Reconstructed with a 20-dB SNR. Results
share the colorbar on the right.

Fig. 5. Reconstructed permittivity: (a) layered cylinder, the red line indicates
the actual boundary between the outer layer with � = 4 and the inner layer
with � = 2. (b) L-shaped plexiglass with � = 2.6.

proposed approach also for even larger value of relative dielec-
tric permittivity: ((�ECVX

n − ESIM
n �2)/(�ESIM

n �2)) = 1.08%
for � = 15, 0.74% for � = 20, and 9.8% for � = 40.

After, we assess the performance of CVX with larger
objects, such as radius of λ/8, λ/4, and λ/2. Based on the
discretization rule in [20], with 50 × 50 pixels, the edge
dimension of each cell for an object with the radius λ/2 is
λ/50, which does not exceed the criterion 0.2/

√
11λ. Table I

shows, in this case, the larger extent of the targets entails a
worse quality of approximation of the total field, which leads
to worse permittivity reconstruction.

2. Sine-Shaped Distribution With a 20-dB SNR

A sine-shaped permittivity distribution with maximum equal
to 3 at (0, 0) and the minimum equal to 1 at the edge of the
circular domain with radius of λ/4 is considered. Fig. 4(b)
shows the reconstructed permittivity. With noisy data, overall,
the reconstructed permittivity is larger compared to the actual
object in Fig. 4(a).

3. Layered Distribution With a 20-dB SNR

We consider a lossless layered cylinder, where the outer
layer has permittivity � = 4 and the inner layer has permittivity
� = 2. The radius of the outer layer is 0.25λ, and the radius
of the inner layer is 0.15λ. Fig. 5(a) shows the reconstructed
permittivity. The homogeneous spatial behavior and the per-
mittivity value for the outer layer are well estimated, whereas
there is a smoothly varying distribution for the inner layer.

4. L-Shaped Plexiglass With a 20-dB SNR

The L-shaped plexiglass with � = 2.6 is placed in the inves-
tigation domain of radius λ/2. Fig. 5(b) shows that the
L-shape is clearly identified and that the remaining area of the
investigation domain has a clean � = 1 almost everywhere.
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Fig. 6. Reconstructed permittivity of two HDPE cylinders with � = 2.26:
(a) quadratic model. (b) CVX-TFOCS. The red circles indicate the contour
of the original cylinders. Results share the colorbar on the right.

5. Two HDPE Cylinders

We apply the proposed method to the experimental data
presented in [9]. Fifteen transmitter locations were uniformly
assigned along an arc of 280◦ with a radius of 0.432 m;
80 receiver locations were along a full circular orbit of radius
0.328 m. The transmitter and the receiver were log-periodic
antennas (Ramsey Model No. LPY26) at 5 GHz. Two HDPE
cylinders with a relative permittivity � = 2.26 are located in
the domain of investigation with radius λ. The cylinders have a
radius of 0.0127 m (0.21 λ) and the minimal distance between
them is 0.02 m (0.33 λ). First, reconstructed permittivity is
shown in Fig. 6(a) when a quadratic inverse model in [9] is
used. The boundaries are smooth and the maximum permittiv-
ity is 1.7823. Fig. 6(b) presents the reconstructed permittivity
by CVX-TFOCS. Two detected targets have a more accurate
permittivity and most of the background area has a correctly
estimated value of permittivity � = 1.

IV. CONCLUSION

We proposed a two-step strategy based on a convex opti-
mization scheme and a LASSO scheme in the wavelet domain
for solving an inverse scattering problem. After, we present a
validation of the method with both simulated and experimental
data. Without a priori knowledge or tuning regularization
parameters, CVX estimates total field information well for
objects with relatively small electric size and shows robustness
when noise is present. Future developments should analyze
theoretically the performance in the case of larger investigation
domains [26] and propose more tractable constraints on this
optimization problem.
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