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On the Mapping of Burned Areas and Burn Severity
Using Self Organizing Map and Sentinel-2 Data

R. Lasaponara , A. M. Proto, A. Aromando, G. Cardettini, V. Varela, and M. Danese

Abstract— In this letter, we propose an approach based on the
use of Sentinel-2 spectral indices and self-organizing map (SOM)
to automatically map burned areas and burned severity. These
analyses were performed on a test area in Chania, located
in Crete, affected by a fire (around 200 ha) that occurred
from July 13, 2018 to July 28, 2018. The investigated area is
characterized by heterogeneous land cover types made up of
natural and agricultural lands. To identify different levels of
fire severity without using fixed thresholds, we applied SOM
to the three spectral indices normalized difference vegetation
index (NDVI), normalized burn ratio (NBR), and burned area
index for sentinel (BAIS) used to enhance burned areas. This
is a particular critical issue because fixed threshold values are
generally not suitable for fragmented landscapes, vegetation
types, and geographic regions different from those for which
they were devised. To cope with this issue, the methodological
approach herein proposed is based on three steps: 1) indices
computation; 2) maps of the difference of the three indices
computed using the data acquired from prefire and postfire
occurrences; and 3) unsupervised classification obtained process-
ing all the difference maps using the SOM. The obtained results
were validated using an independent data set, which showed high
correlation with satellite-based fire severity.

Index Terms— Burned areas, burned severity, remote sensing,
self-organizing map (SOM), Sentinel-2.

I. INTRODUCTION

W ILDFIRES are considered as one of the most impor-
tant causes of degradation [1] being that they induce

significant alterations not only on the vegetation cover but also
on fauna, soil, and atmosphere, thus producing high direct and
indirect damage including economic ones.

Significant efforts have been addressed from the major
national and international space agencies to monitoring
forest fires from space so that several open products
are currently made available by NASA and ESA (see
http://www.esa.int/About_Us/ESRIN/World_fire _maps _ now_
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available_online_in_near-real_time). These products are
mainly related to global active fires and burned areas. Today,
fire is one of the most important focal issues of Copernicus
program (see european forest fire information system (EFFIS)
products [2]), which aims at supporting EU member states
through the use of satellites for risk monitoring including
fire mainly in terms of active fire mapping and the rapid
assessment of burned areas and burned severity. Burned
severity is a qualitative indicator of the effects of fire on
ecosystems whether it affects the forest floor, canopy, and
so on. The effects of fires on soil, plants, landscape, and
ecosystems depend on many factors, such as fire frequency
and plant resistance. Assessing and mapping burn severity
is important for monitoring positive and negative [3], [4]
fire effects to model and evaluate postfire dynamic and to
estimate the ability of vegetation to recover after fire (generally
indicated as fire-resilience). In an operational context, burn
severity estimation is critical to short-term mitigation and
rehabilitation treatments. Traditional methods of recording
fire severity involve expensive and time-consuming field
surveys, and the use of satellite remote sensing can help
in overcoming these drawbacks. Earth observation (EO)
technologies can enable advanced performance and new
operational applications specifically addressed to security
and risk. In particular, Copernicus Program and Sentinel
missions have been devised specifically for supporting risk
monitoring and offer advanced satellite data free of charge (as
Sentinel-2 [5]) that can suitably support forest fire monitoring
from risk estimation to damage quantification. Nevertheless,
the Sentinel data pose several challenges related to the
processing, analysis, and interpretation of the data that need
to be tackled by the scientific community in order to ensure
reliability and operational applicability.

In this letter, we propose an approach based on the use
of Sentinel-2 spectral indices and self-organizing map (SOM)
to automatically map burned areas and burn severity. The
methodology herein proposed is applied to a fire occurred
from July 13, 2018 to July 28, 2018 in Chania, Crete, Greece,
affecting both agricultural land and natural vegetated areas.
Strong winds were stoking the blaze, making it difficult for
firefighting crews to contain the flames (from Greek Fire
Brigade Report [6]). According to Corine land cover 2012,
the investigated area is characterized by the presence of
heterogeneous land cover types made up of natural vegetation
as woodland and sclerophyll Mediterranean Evergreen forest,
natural, and agricultural areas. To identify different levels
of fire severity without using fixed thresholds, burned areas
and severity were enhanced using spectral indices and further
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classified using SOM. This is a particular critical issue because
fixed thresholds are generally not suitable for fragmented
landscapes and inadequate for vegetation types and geographic
regions different from those for which they were devised.
The results obtained from Sentinel-2 were validated using an
independent data set.

II. METHODOLOGICAL APPROACH

There are many indices that can be derived from the
satellite data for burn severity estimation but, still today,
their automatic or semiautomatic classification is an open
issue. These methods are a part of Geo-visual Analytics
and also used for image analysis with different techniques
coming from disciplines, such as geographic information sci-
ence, exploratory data analysis [7], and visual data mining
of geospatial information [8]. The aim is to combine the
human visual ability to discover patterns [9] and the computer
processing ability to analyze and extract patterns in a huge
quantity of complex data.

In this letter, the SOM [10] was used. It is mainly a
multiparametric tool for dimensionality reduction and classi-
fication, and in this case, it demonstrated to be very useful
for the categorization of burned severity classes. It lies in
an unsupervised learning algorithm developed inside a neural
network architecture. The first part of SOM is a recursive and
competitive training process. Through it, the best matching
units (BMUs) constituting the neural network are chosen, and
the vectors of the analyzed data set are associated with them
by considering both the value of attributes and the distances
between them. The second part is a mapping process. BMUs
are organized in a 2-D lattice. The closer the SOM cells are,
the more they show similar behavior and spatial proximity.

III. STUDY CASES

The analyses were performed on a fire occurred in the
Chania municipality, located in Crete, Greece, in which a fire
between July 23, 2018 and July 28, 2018 affected 200 ha.

Sentinel-2 images analyzed has an extent of 427 × 261
(= 111447) pixels that have three attributes associated with
each of them: the variation computed between postoccurrence
and preoccurrence of three vegetation indices normalized
difference vegetation index (NDVI), normalized burn ratio
(NBR), and burned area index for sentinel (BAIS) shown
in Fig. 1 and defined in formulas (1)–(3)

N DV I = B8 − B4

B8 + B4
(1)

N B R = B8 − B12

NB8 + B12
(2)

B AI S =
(

1−
√

B6+B7+B8A

B4

)
∗
(

B12−B8A√
B12+B8A

+1

)
(3)

where B4 B06, B7, B8A, and B12 are the Sentinel-2 spectral
channels used for the index computation

For this letter, SOM classification was based on the use of
all the three indices 1–3.

Totally, there are 334 341 information (T in Table I) to ana-
lyze. SOM was performed with the V-analytics software [11].

Fig. 1. Study area location along with the difference in (Top) NDVI, (Middle)
NBR, and (Bottom) BAIS maps computed as prefire and postfire occurrences.

First, the Vesanto [12] expression [in formula (4)] was used
to determine the optimal SOM size

S = 5 · √N. (4)

While for the SOM shape, the recommendation [13], [14] to
use an asymmetrical SOM shape was followed. In particular,
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TABLE I

SAMPLE SIZE AND SOM DIMENSIONS

TABLE II

BURNT SEVERITY CLASSES, SOM DIMENSIONS,
AND BURNT AREAS DETECTED

the shorter side (Sa) should be at least half of the longer
side (Sb).

Consequently, the following expressions were used:

Sa =
√

S

2
Sb = 2·Sa. (5)

The SOM sizes found with expression (5) (see Table I)
were used first to perform SOM and identify burned areas.
In order to obtain fire severity categorization inside the burned
areas, we iteratively reduced the SOM size and, consequently,
the burn severity classes. Finally, three SOM sizes (13 × 6,
11 × 5, and 10 × 4) were chosen as final candidates
(see Table II) because under a lattice of 10 × 4 elements,
the classification is no more effective being that the burned
areas are not well extracted.

IV. RESULTS

The SOM colors found in the three results enabled us
to effectively visualize the classification system of burned
areas and burn severity via node clusters so that burned areas
and burn severity levels are easily identified and interpreted
according to their hot spot locations. Actually, the SOM cell
colors are a way to group data, in our case pixels, according to
their values and their spatial proximity. In other words, large
distance in values is automatically assigned to different colors
and clusters. The interpretation of the output of the SOM
classification (based on all the three indices 1–3) was made
mainly on the use of NBR because it is the most commonly
used index for burn categorization.

We found that burned areas and burn severity with similar
hot spot values have automatically similar colors on the
grid nodes and have a small distance in the pixel values.
By comparing the SOM outputs with the extension of the
known burned area and burn severity available from both
the Fire Brigade report (150 ha, plus areas damaged by
heat even if not directly affected by fire) and the EFFIS
website (200 ha) [5], we found that with SOM classifications,
the best result is given by the 13 × 6 lattice (see Fig. 2).
Here, we gave a severity level to the different SOM classes
found by considering dNBR mean that is the most commonly

Fig. 2. Fire severity classes and corresponding dNBR mean for the three
best SOM classifications found.
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TABLE III

� NBR BURN SEVERITY USGS CATEGORIES [4]

adopted for fire severity categorization compared with other
vegetation indices. Table III lists the United States Geological
Survey (USGS) burn categorization based on the dNBR values.
To characterize the burn severity level, we found six clusters
(plus one unburnt) coherent with the traditional assumption of
fire severity as listed from (2) to (7).

The number of classes and, in turn, the different levels of
burn severity were based on the following “guideline,” defined
considering a quantification of the direct impact of fire.

1) Unburnt Areas (No Change): Unchanged surfaces,
i.e., fire unaffected areas.

2) Burn Severity 1 (Very Low): Areas of surface fire
occurred with very little change in cover and little
mortality of the structural dominant vegetation.

3) Burn Severity 2 (Low): Areas of surface fire occurred
with little change in cover and little mortality of the
structural dominant vegetation.

4) Burn Severity 3 (Moderate): The area exhibits a mixture
of effects ranging from unchanged to high severity
within the scale of one pixel.

5) Burn Severity 4 (High): The area exhibits a mixture of
effects ranging from moderate to high severity within
the scale of one pixel.

6) Burn Severity 5 (Very High): Vegetation has high to
100% mortality.

7) Burn Severity 6 (Extreme): Soil burn severity assessment
with the characteristics of high severity, including heavy
white ash deposition indicating the loss of substantial
levels of organic matter and loose unstructured soil.

According to the report of Fire Brigade, the fire propagated
into areas with rough topography, burning mainly grassland
and forest land, also causing damage to crops and honeybees.
The type of burned vegetation reported in the Fire Brigade
report was mainly forested area 80 ha, grassland 50 ha,
agriculture 20 ha, plus additional areas made up of crops and
agricultural lands not directed affected by fire, but severely
damaged by heat released by combustion. Fig. 3 (top) shows
the Corine land cover for the fire affected area. The levels of
burn severity we adopted are based on the consideration that
they have to provide a qualitative measure of the immediate
effects of fire on the ecosystem. Therefore, the diverse burn
severity levels are related to the effect of fire on plants and
specifically “to the extent of mortality and survival of plant
and animal life both aboveground and belowground and to

Fig. 3. (Top) Land use as obtained from the Corine land use–land cover map.
(Middle) Burned severity as obtained from the Modis data in the EFFIS [2]
system (available free of charge online). (Bottom) Aerial photographs of
burning area as obtained from media and Fire Brigade report.

loss of organic matter” [15]. These effects are dependent on
intensity and residence and determined by the heat released
aboveground and belowground [15]. The diverse levels of
burn severity herein defined are characterized for each class
by a dNBR average whose meaning is consistent for the
different land cover types: from a visual comparison between
Fig. 2 (bottom) and Fig. 3 (top), it is clear that the highest
fire severity levels were mainly found in forest lands, shown
in Fig. 3 (top) in green colors and corresponding to transitional
woodland shrubs and sclerophyllous vegetation according to
the Corine land cover. As a whole, the levels of burn severity
herein adopted are not only coherent with the USGS catego-
rization (listed in Table III) but also they may be considered as
a “refined identification” of burn severity based on the USGS.
This “refined categorization” is necessary for many reasons,
and above all, it is driven by the scale of mapping, linked,
in our case, to the pixel size. The outputs from the satellite
were successfully compared with the independent validation
data set made up of the following.

1) Corine land cover to assess the meaning of each class
and this is consistent for the different land cover types
affected by the fire. Fire severity levels were mainly
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found in the areas with denser vegetation as forest and
agricultural lands.

2) EFFIS burn severity map 250 m (Sentinel 10–20 m).
3) Fire Brigade report, aerial photographs, and in situ

analysis to assess that, actually, the dNBR values reflect
the meaning of the burn severity classes (see [4] and
references therein).

The comparison between the satellite-based results and the
independent data sets and analysis confirmed that the different
classes of fire severity actually correspond to the areas affected
by the fire at different levels. Actually, we have to consider
that burn severity is: 1) related to the effect of fire [15] that
can be very different even in homogenous areas with similar
vegetation cover and 2) strongly dependent on local effects
(previous forest treatments, slope, aspect, elevation, specific
conditions of fuels, and so on) and meteorological conditions.

For these reasons, burn severity levels usually consider the
various percentages of burned severity in order to cope with
the presence of complex mixture of effects [15]. Therefore,
burn severity mapping is also strongly linked to the pixel size,
which obviously provides indication related to an average of
all the targets therein present. For this reason, the categoriza-
tion available in EFFIS, made using MODIS with a pixel size
at 250 m, roughly fits the burn severity herein obtained using
the Sentinel-2 data with a pixel size at 10 and 20 m. Of course,
to deeper investigate the scale effects/constrains, additional
analyses are needed using multiscale, multisensor data set.

V. CONCLUSION

This letter illustrates the potential for Sentinel-2 for burned
area mapping and for the characterization of burn severity
using the SOM approach. The results from the classification
were validated on the basis of independent analysis conducted
in the investigated area and shown in Fig. 3. The novelty of
our approach is the automatic identification of burn severity
obtained using the following three steps: 1) computation of
NDVI, NBR, and BAIS indices and their difference from
cloud-free images acquired before and after the fire occur-
rence; 2) maps of difference of these three indices computed
as postfire and prefire occurrences; and 3) unsupervised clas-
sification obtained processing all the difference maps (NDVI,
NBR, and BAIS) using the SOM. One of the most important
advantages of our approach compared with the traditional ones

is that both burned areas and the different levels of burn
severity can be identified automatically and without using fixed
threshold values. Further studies will be carried out to make
our approach more statistically robust.
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