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A Systematic Approach for Variable Selection
With Random Forests: Achieving Stable

Variable Importance Values
Amir Behnamian, Koreen Millard, Sarah N. Banks, Lori White, Murray Richardson, and Jon Pasher

Abstract— Random Forests variable importance measures are
often used to rank variables by their relevance to a classification
problem and subsequently reduce the number of model inputs
in high-dimensional data sets, thus increasing computational
efficiency. However, as a result of the way that training data and
predictor variables are randomly selected for use in constructing
each tree and splitting each node, it is also well known that
if too few trees are generated, variable importance rankings
tend to differ between model runs. In this letter, we characterize
the effect of the number of trees (ntree) and class separability
on the stability of variable importance rankings and develop
a systematic approach to define the number of model runs
and/or trees required to achieve stability in variable importance
measures. Results demonstrate that both a large ntree for a
single model run, or averaged values across multiple model
runs with fewer trees, are sufficient for achieving stable mean
importance values. While the latter is far more computationally
efficient, both the methods tend to lead to the same ranking of
variables. Moreover, the optimal number of model runs differs
depending on the separability of classes. Recommendations are
made to users regarding how to determine the number of model
runs and/or trees that are required to achieve stable variable
importance rankings.

Index Terms— Mean decrease in accuracy (MDA), mean
decrease in Gini (MDG) index, random forest, variable reduction.

I. INTRODUCTION

RANDOM Forests, based on the ensembles of classifica-
tion and regression trees, has become a widely used clas-

sification approach in various fields, including remote sensing.
It is relatively easy to implement in a variety of software
packages (e.g., R Statistics and Python) and is also computa-
tionally efficient. The latter is especially relevant today, since
high-dimensional data sets from different sources are widely
available, and are commonly used for image classification.
However, in many cases, not all data sets and predictor
variables provide relevant information to the classifier, and
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thus, it is oftentimes desirable to reduce the model data load to
the fewest number of inputs with maximal predictive accuracy.
This is especially relevant for large data sets (e.g., Landsat
imagery for all of Canada, RADARSAT-2 archive data, and
with its four day repeat pass cycle, high-frequency temporal
data via the RADARSAT Constellation Mission in the near
future [1]–[3]) and/or data acquired from multiple sensors.
Reducing model data load can reduce processing times and
storage requirements, and can also be used to inform long-
term analyses, as attention can focus on just the sensors and
variables that provide relevant information to a given classifi-
cation problem. Furthermore, it has also been demonstrated
that with very high dimensional data sets, results can be
noisier than models where only the most important variables
are used [4]. Both the mean decrease in accuracy (MDA)
and the mean decrease in Gini (MDG) are commonly used
statistical measures of variable importance for determining
which predictor variables are best suited to differentiate the
classes of interest and for reducing the dimensionality of
large data sets [4]–[7]. MDA quantifies variable importance by
measuring the change in prediction accuracy when the values
of the variable are randomly permuted. MDG is the sum of all
decreases in Gini impurity due to a given variable, normalized
by the number of trees (ntree) [8], [9]. However, because
of the random way in which training data and variables are
selected to determine the split at each node in Random Forests,
importance rankings differ from one model run to another,
especially when if only a small ntree are generated [4], [7],
[10]–[12]. As such, users should not rely on rankings derived
from a single model run [13]–[15].

II. BACKGROUND

A conservative approach to dealing with varying importance
values is to average outputs from a sufficiently large number
of forests and sufficiently large ntree (e.g., 50 forests with
more than 1000 trees), followed by a “forward” or “reverse”
stepwise approach to reduce model inputs to only the most
important predictor variables, until the minimum out of bag
error (OOBE) is achieved [12], [16]. It is notable that an
iterative variable importance reduction (i.e., recalculating
variable importance) is computationally expensive for big
data sets (in this context, and throughout this letter, the
computational expense refers specifically to the amount of
time required to generate importance values and/or predict
the classification) [6].
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Several automated methods of variable selection with
Random Forests exist (implemented in commercial software
such as R). For example, ggRandomForests [17], [18] assumes
that the variables that are used in the split closest to the
root are the most important. However, it appears to base this
ranking on a single forest. varSelRF [10], [16] runs a single
model, removes the 20% least important variables, and then
recalculates errors iteratively with the new set of variables until
an unacceptable level of error is reached. While this process
is iterative, the rankings are based on a single model run.
VSURF runs Random Forests in a two-step-process [11]. First,
it ranks the variables based on the average over 50 runs and
removes those ranked below a threshold. Then, it sequentially
builds Random Forest models and monitors OOBEs by adding
variables; starting from the first most important and excluding
those variables that do not improve OOBE (based on the
average error over 25 runs).

While it is known that the ntree used in a Random Forest
model can impact the stability of variable importance [11], a
systematic analysis of the convergence of importance values to
a stable mean has not been undertaken in previous studies (in
this context, and throughout this letter, a stable mean impor-
tance value is one that closely approximates the true mean
importance value, which is unknown to the user). Running a
model multiple times and subsequently averaging importance
values will eventually lead to a stable ranking of important
variables. However, the optimum number of model runs using
an optimum ntree should be determined in order to maximize
computational efficiency. Several attempts have been made to
determine an optimum value for the latter parameter [19] but
have not addressed a link to the former.

III. OBJECTIVE

Given the inherent random variation of importance values,
we hypothesized that average variable importance values will
converge (to its true, but unknown mean) after a certain num-
ber of model runs. This may occur across relatively few mod-
els, thus unnecessary processing can be avoided. The primary
objective of this letter is to develop a systematic approach for
determining the number of model runs (i.e., forests) required
to achieve a stable mean variable importance value. We also
address whether the point of convergence varies as a function
of the ntree generated per Random Forest model, as well as the
separability of the classes (referring to the physical separation
of class values within multivariate feature space). With respect
to the latter, we hypothesized that the convergence of variable
importance will depend on the separability of the classes, as
classification accuracies are higher and more stable in the cases
where there is good separability. Thus, in this letter, we have
analyzed two data sets: one with “poor” and one with “good”
separability.

IV. METHOD

A. Study Areas

Two study sites are considered in this analysis. The first
site (hereafter referred to as Coronation Gulf) encompasses the
entirety of Coronation Gulf, Bathurst Inlet, and Dease Strait,
Nunavut (Table I), where the focus is to classify shoreline

TABLE I

LAND COVER CLASSES CONSIDERED IN THIS LETTER

types. This site and data set have been previously presented
in [6]. The other study site (hereafter referred to as Alfred Bog)
centers on a large peatland complex in South Eastern Ontario,
and was previously presented in [4]. For this site, the focus
is to discriminate peatland types and to differentiate peatland
and nonpeatland classes (Table I). For additional site specific
details, as well as information on model training and validation
data, readers are referred to [2], [4], and [6].

B. Remote Sensing Data

For both the study areas, a combination of Landsat,
RADARSAT-2, and digital elevation model variables were
provided as inputs to the model. In total, 49 variables
were classified for Coronation Gulf and 50 for Alfred Bog.
Banks et al. [6] provide all image processing details, which
were followed exactly for the Alfred Bog study area, with
the exception that: Landsat 8 imagery and Shuttle RADAR
Topography Mission data were used in the place of Landsat 5
imagery and Canadian Digital Elevation Data. RADARSAT-2
data for Alfred Bog were also Boxcar filtered instead of
Enhanced Lee filtered, and two additional variables (Shannon
entropy: phase and intensity) were used for this site (described
in [2]), and not for Coronation Gulf. The Julian date of the
RADARSAT-2 acquisition was also not included among the
set of variables for the Alfred Bog site.

With Users and Producers accuracies for seven land
covers ≥84%, Coronation Gulf has been selected to reflect the
“good separability” case [6]. Alfred Bog represents the “poor
separability” case, since Users and Producers accuracies for
five classes were much lower (≥63%) [2].

C. Random Forests and Variable Importance

The Random Forests model was implemented using the
randomForest [8] package in R. To address the objectives of
this letter, four sets of models with a different ntree (50 200 500
and 10 000) were each run for 25 iterations to assess the
stability of variable importance rankings, as well as the effect
of the ntree on the point at which importance values converge
to a stable mean. Each time the model was run using identical
training data, and for each run, variable importance was
calculated (both MDA and MDG). Mean importance values
were then calculated using the following equation:

V I p(i) =
⎛
⎝ i∑

j=1

V Ip( j)

⎞
⎠ / i (1)
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where p is the predictor variable of interest listed in
Section IV-B, V Ip( j) is the corresponding variable importance
value for an individual run j , and V I p(i) is the mean
importance variable over i runs.

To further investigate the number of runs required to achieve
stable mean importance values, the convergence of the devia-
tion of mean importance values from their true mean at each
model run was calculated for all predictor variables using
the following equation (assuming that the average of 25 runs
provides a good approximation of the true mean importance
value):

D(i) =
(∑P

p=1(V I p(i) − V I p(25))2

P

)0.5

(2)

where P is the total number of predictor variables (50 for
Coronation Gulf and 49 for Alfred Bog).

Note that the degree of correlation of variables was con-
sidered outside the scope of this letter, but it is an important
consideration when using Random Forests [4], [6], [11], [20].
For example, Genuer et al. [11] showed that the addition
of highly correlated replications of a true predictor variable
leads to a decrease in the magnitude of the importance of
the true variable, and likely results in a decrease in the
variability of importance values of the true variables (but not
the corresponding correlated ones). Additionally, in this letter,
effort was also not made to assess the effect of mtry (i.e., the
number of variables tried to determine the optimal split at each
node), since the mtry default value (i.e., the square root of
the number of predictor variables) has been shown to achieve
results that are close to optimal [21]–[24]; increasing this value
would greatly decrease the computational efficiency of the
algorithm, which is one of the primary benefits associated with
Random Forests.

V. RESULTS AND DISCUSSION

Fig. 1 shows the plots of mean variable importance rankings
for different numbers of trees (50, 200, 500, and 10 000) for
both the sites. In the good separability case (Coronation Gulf)
with only 50 trees [Fig. 1(A)], the MDA values over the first
25 model runs are highly variable. For instance, the ranking
of variable 4 (in bold blue line) has been changed from 4 to 8
after 21 runs. Results are similar in the poor separability case
[Alfred Bog; see Fig. 1(B)] though the separation between the
top eight variables is not reached even after 21 model runs
(e.g., variables represented by blue line and orange line are
still crossing). Fig. 1(a) and (b) represents the ranking and
the error bars (representing 95% confidence interval) of the
mean importance for the first 30 most important variables.
For Coronation Gulf, the first 20 variables exhibit a gradual
decrease in the value of the mean importance and the root
mean square values, but this is only the case for the first eight
or nine variables with the Alfred Bog data set. This could
be a result of the lesser ranking variables not containing any
additional information or that this additional information is not
relevant, given the land cover classes of interest.

The variability, and as a result, the stability of the mean
importance value for each variable, improves further as

TABLE II

REQUIRED NUMBER OF RUNS FOR VARIABLE IMPORTANCE STABILITY

the ntree is increased, and this is true for both the poor
separability case [see Fig. 1(C) and (D)] and the good
separability case [see Fig. 1(E) and (F)]. For example, when
the ntree is increased to 200 and 500, the MDA importance
ranking of all variables, including the top eight most
important variables, stabilizes after fewer runs. This lower
variation is also reflected in the magnitude of error bars
[see Fig. 1(c)–(f)].

These results clearly demonstrate that the convergence of
mean importance values to a close approximation of their
true mean requires more runs for models built with fewer
trees (see Fig. 1). With 10 000 trees, the low variation
of mean importance values based on sequential averaging
[Fig. 1(g) and (h)], in addition to the fact that there is almost
no cross-ranking among the variables [Fig. 1(G) and (H)],
indicates values closely approximate the real mean. As such,
the maximum deviation of the sequential mean importance
values from the mean with 10 000 trees [Fig. 2 (green line)]
can be used as a threshold to specify the point of conver-
gence of mean importance values for both Coronation Gulf
and Alfred Bog. This threshold is drawn in Fig. 2 using
a dashed horizontal line. These values are also listed in
Table II, and shown in Fig. 1 (vertical dotted lines). As can
be observed, the convergence point is consistently lower for
the good separability case (Coronation Gulf) than the poor
separability case (Alfred Bog; see Fig. 2). A similar analysis
was also performed using MDG (listed in Table II; results
not provided in detail here for brevity). Results were similar
and indicated that the predicted point of stability is similar to
those calculated from the MDA. However, with 200 or more
trees, convergence occurred after fewer iterations with MDG,
indicating that MDG may be slightly more stable. This obser-
vation is consistent with the findings of Liaw and Wiener [7].
We also found larger differences in importance values between
the most and least important variables with MDG com-
pared with MDA, meaning that a visual threshold between
the important and nonimportant variables was easier to
identify.

It is worth noting that the OOBE reached a minimal value
with as few as 50 trees for Coronation Gulf and slightly
higher for Alfred Bog (OOBE ∼14% and ∼18%, respectively),
and remained the same regardless of the ntree that were
generated for each model, as shown in Fig. 2(c) (which
also suggests the approximate lowest limit of the ntree value
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Fig. 1. Sequential averages of the variable importance based on the MDA, plots with capital letters, and the variable importance ranking over 25 runs, plots
with small letters. (Left) Coronation data set. (Right) Alfred Bog data set. (A), (a), (B), and (b) 50 trees. (C), (c), (D), and (d) 200 trees. (E), (e), (F), and
(f) 500 trees. (G), (g), (H), and (h) 10 000 trees. Dotted lines: number of runs at which the convergence achieved. Only the first 30 important variables are
illustrated here.

Fig. 2. Deviation of the all predictor variables from their true mean at each model run. (a) Coronation. (b) Alfred Bog. Dashed lines: convergence threshold.
(c) OOBE against the ntree for both the Coronation Gulf and Alfred Bog data sets. Dotted lines: minimum value of OOBE.

to users). Furthermore, running one Random Forest model
with a large ntree required considerably more time than
running multiple models with fewer trees. For example, based

on the training data from Alfred Bog (number of training
data points = 500 and P = 50) using a desktop computer
(Intel i7 6700HQ at 2.6 GHz and 16 GB of DDR4 RAM
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at 2400 MHz), one Random Forest model with 50 trees
required 0.114 s and one random forest model with
10 000 trees required 21.54 s (both averaged over 1000 repli-
cates). Thus, the minimum required time to achieve sta-
ble importance rankings with the latter is 2.62 s, which
is one order of magnitude less than the time required for
one Random Forest with 10 000 trees. This difference has
important implications for the operational uses of Random
Forests with much larger data sets. Specifically, these results
show that in obtaining stable mean importance values, it is
more computationally efficient to run many iterations of the
model with a small ntree than to run a single stable forest of
10 000 trees. Note that, in this case, both the approaches led to
approximately the same ranking of variables (i.e., the top ten
most important tended to remain constant, while the ranking
of lesser important variables varied slightly and the OOBE
was not significantly different). The methods used here to
determine the optimum number of model runs based on the
ntree in each forest can be fully automated by the user. This
requires a two-step process, including: 1) defining threshold
for the deviation of mean importance values from their true
mean by calculating D(i = 2) with a large ntree (for example
10 000), and 2) comparing the convergence plots such as those
in Fig. 2(a) or (b) with the calculated threshold value (e.g., for
a given ntree determined using [19]).

VI. CONCLUSION

Importance rankings of MDA and MDG can be variable
between runs of Random Forests, even if the same settings
are used (e.g., the ntree). Therefore, it is recommended that in
order to select variables based on their importance ranking,
Random Forests should be run more than once and the
variability of values must be assessed. We have demonstrated
that variable importance rankings based on the average of
sequential models eventually stabilize, but that the minimum
number of runs required to achieve stability depends on both
the ntree used to build the models and the separability of
the classes in the input data. We have demonstrated that
convergence to a stable mean can be achieved either by using
very large ntree (10 000 or more) or by taking the average
variable importance over an optimal number of runs. While
both the approaches tend to lead to the same ranking of
variables (especially for the top most important), the latter
has also been found to be more computationally efficient.
A systematic approach to determine the optimum number of
runs to achieve a stable mean variable importance has been
demonstrated, and recommendations have been made to the
user on how to repeat this process.
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