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Hyperspectral Image Spectral-Spatial Feature
Extraction via Tensor Principal

Component Analysis
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Yanning Zhang, Senior Member, IEEE, and Xin Liu

Abstract— We consider the tensor-based spectral-spatial fea-
ture extraction problem for hyperspectral image classification.
First, a tensor framework based on circular convolution is
proposed. Based on this framework, we extend the traditional
principal component analysis (PCA) to its tensorial version
tensor PCA (TPCA), which is applied to the spectral-spatial
features of hyperspectral image data. The experiments show
that the classification accuracy obtained using TPCA features
is significantly higher than the accuracies obtained by its rivals.

Index Terms— Feature extraction, hyperspectral image classi-
fication, principal component analysis (PCA), tensor model.

I. INTRODUCTION

HYPERSPECTRAL imaging sensors collect hyperspectral
images in the form of 3-D arrays, with two spatial

dimensions representing the image width and height, and
a spectral dimension describing the spectral bands, whose
number is usually more than one hundred. Due to the redun-
dancy of the raw representation, it is advantageous to design
effective feature extractors to exploit the spectral informa-
tion of hyperspectral images [1], [2]. For example, via a
linear projection, after an eigenanalysis, principal component
analysis (PCA) reduces a high-dimensional vector to a lower
dimensional feature vector. By choosing the so-called principal
components, the obtained feature vectors can retain most of
the available information. But PCA, like many other vector-
based counterparts, lacks, in its model, a prior mechanism to
capture the spatial information in the relative positions of the
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pixels. This deficiency of vectorial models can be overcome
using a tensorial representation of hyperspectral imagery.

There exist many different tensor models derived from
different perspectives. Tensor models are essentially the
extensions of traditional vector models. In the recent
years, tensor-based approaches have been successfully
applied in many different areas, including image analy-
sis, video processing [3], [4], and remote sensing imagery
analysis [5], [6]. For example, Zhang et al. [6] reported a
tensor discriminative locality alignment method, called tensor
discriminative locality alignment (TDLA), to extract features
from hyperspectral images. Zhong et al. [7] proposed a ten-
sorial discriminant extractor called local tensor discriminant
analysis (LTDA) to obtain spectral-spatial features from hyper-
spectral images for image classification.

The aforementioned works have shown the superior rep-
resentation capability of a tensor-based multilinear algebra,
compared with that of the traditional matrix algebra. For
example, Kilmer and Martin [8] introduced the t-product
model and defined a generalization of matrix multiplication
for tensors in the form of 3-D arrays (tensors of order
three). The generalized matrix multiplication is based on
the circular convolution operation and can be implemented
more efficiently via the Fourier transform. The t-product
model is further developed using the concepts of tubal scalar
(also known as tubal fiber), frontal slice, array folding and
unfolding, and so on, to establish its connection to traditional
linear algebra [9], [10]. This development makes it possible
to generalize all the classical algorithms formulated in linear
algebra.

Inspired by the recently reported “t-product” tensor model,
we propose a tensor-based spectral-spatial feature extractor
for classifying the pixels of a hyperspectral image. First,
a novel straightforward tensor algebraic framework is pro-
posed. In the framework, the “t-product” tensors are confined
to the same size and, therefore, form an algebraic tensor ring.
The algebraic framework combines the “multiway” merits of
high-order arrays and the “multiway” intuitions of traditional
matrices, since the “t-product” tensors serve as the entries of
our proposed tensor-vectors or tensor-matrices. This algebraic
framework is backward compatible with the traditional linear
algebra based on nontensorial vectors and matrices. With
the help of the proposed tensor algebra, we extend PCA to
its tensorial counterpart tensor PCA (TPCA), which has a
prior mechanism to exploit the spatial information of images.
We demonstrate, in our experiments, on some publicly avail-
able images that the TPCA outperforms PCA and some other
vector or tensorial feature extractors in terms of classification
accuracy.
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This letter is organized as follows. In Section II, we discuss
the tensor algebraic framework. In Section III, we propose a
tensorial feature extractor called TPCA and its fast version
via the Fourier transform. In Section IV, we present the
experimental results and analysis. Finally, we conclude this
letter in Section V.

II. TENSOR ALGEBRA

In this section, we extend the “t-product” model [8]–[10]
to a novel tensor algebraic framework, which is backward
compatible to the traditional matrix algebra. Without losing
generality, the tensors presented in this letter are second order.
It is easy to extend the method to higher order tensors.

Before extending the “t-product” model, we first confine
the “t-product” tensors to the same size. For the second-order
tensors, the tensor size is defined by m × n. In the following
discussion, given the second-order array X (such as tensor,
matrix, and so on), [X]i, j denotes its (i, j)th entry. If X is the
first order, [X]i denotes its i th entry. Then, some denotations
and definitions on the “t-product tensor” are summarized as
follows [8]–[10].

Tensor Addition: Given tensors xt and yt of the same size,
the sum ct = xt + yt is a tensor of the same size such that
[ct ]i, j = [xt ]i, j + [yt ]i, j ,∀i, j .

Tensor Multiplication: Given tensors xt and yt of size m×n,
the product dt = xt ◦ yt is defined by the result of the circular
convolution of xt and yt , such that

[d]i, j =
m∑

k1=1

n∑

k2=1

[xt ]k1,k2 [yt ]mod((i−k1),m)+1,mod(( j−k2),n)+1.

Given tensors xt and yt of the same size, their product can
be computed efficiently via the fast Fourier transform and the
inverse fast Fourier transform because of the following Fourier
transform theorem.

1) Fourier Transform: Given tensors xt , yt , dt = xt ◦ yt
and their Fourier transforms F(xt ), F(yt ), and F(dt),
the following equation holds [F(dt)]i, j = [F(xt)]i, j ·
[F(yt )]i, j ∀i, j.
By the virtue of the Fourier transform, the (mn)2 scalar
multiplications of the circular convolution are reduced to
the mn-independent scalar multiplications in the Fourier
domain. Thus, the Fourier transform can be employed
to speed up a convolution-based algorithm.

2) Zero Tensor: The zero tensor zt is a tensor whose entries
are all 0, namely [zt ]i, j ≡ 0 ∀i, j.

3) Identity Tensor: The identity tensor et is a tensor satis-
fying [et ]1,1 = 1 and [et ]i, j = 0 if (i, j) �= (1, 1).

It is not difficult to prove that the tensors of size m × n
defined previously form an algebraic ring R. The algebraic
operations of addition and multiplication in R are backward
compatible with the analogous operations in the field R of
real numbers. Based on the above-mentioned “t-product” def-
initions, we extend the “t-product” model to a novel straight-
forward algebraic framework by the following definitions.

Definition 1 (Scalar Multiplication): Given tensor xt and
scalar α, the product dt = αxt is a tensor of the same size
as xt such that [dt ]i, j = α[xt ]i, j ∀i, j .

Definition 2 (Vectors and Matrices of Tensors): A vector
of tensors is a list of elements of R. A matrix of tensors is
an array of elements of R.

In our tensor algebraic framework, the mathematical oper-
ations between the elements of the vectors of tensors or of

the matrices of tensors comply with the operations defined in
R. Some definitions of the mathematical manipulations of the
vectors and matrices of tensors are given as follows.

Definition 3 (Tensor Matrix Multiplication): Given X tm ∈
RD1×D2 and Ytm ∈ RD2×D3 , their product Ctm = X tm ◦
Ytm ∈ RD1×D3 is a new tensor matrix, such that [Ctm]i, j =∑D2

k=1[X tm]i,k ◦ [Ytm]k, j ,∀i, j .
Definition 4 (Identity Matrix of Tensors): The identity

matrix of tensors Etm is a matrix such that [Etm]i, j = et if
i = j , otherwise [Etm]i, j = zt .

Definition 5 (Tensor Transposition): Given tensor xt , its
transpose x�t is a tensor of the same size, satisfying [x�t ]i, j =
[xt ]mod(1−i,m)+1,mod(1− j,n)+1,∀i, j .

Definition 6 (Tensor Matrix Transposition): Given X tm ∈
RD1×D2 , X�tm ∈ RD2×D1 is a new tensor matrix satisfying
[X�tm]i, j = [X tm]�j,i , ∀i, j , where [X tm]�j,i is the transpose of
tensor [X tm] j,i , as defined by Definition 5.

Definition 7 (Orthonormal Matrix of Tensors): If the
matrix X tm of tensors satisfies X�tm ◦ X tm = Etm, we call X tm
an orthonormal matrix of tensors.

Definition 8 (Singular Value Decomposition of a Square
Tensor Matrix): Each matrix Gtm ∈ RD×D has a singular value
decomposition Gtm = Utm ◦ Stm ◦ V�tm such that Utm ∈ RD×D

and Vtm ∈ RD×D are both orthonormal tensor matrices and
Stm ∈ RD×D is a diagonal tensor matrix and [Stm]�i,i =[Stm]i,i ,∀i .

To speed up the computations with the vectors and matrices
of tensors, we extend the Fourier transform of a tensor to the
Fourier transform of a vector or matrix of tensors.

Definition 9 (Fourier Transform of a Tensor Matrix): Given
a tensor matrix X tm, let its Fourier transform be F(X tm), such
that [F(X tm)]i, j = F([X tm]i, j ),∀i, j .

The Fourier transform of a tensor matrix is defined by
the Fourier transform on its matrix tensorial entities. This
definition gives a mechanism to decompose a tensor matrix in
the Fourier domain to a range of separate traditional matrix.

To have the mechanism, we define the following slice of a
tensor matrix by the index of its tensorial entity (ω1, ω2), for
all ω1 = 1, . . . , m and ω2 = 1, . . . , n.

Definition 10 (Slice of a Tensor Matrix): Given X tm ∈
RD1×D2 , let its slice by index (ω1, ω1) be X tm(ω1, ω2) such
that X tm(ω1, ω2) ∈ R

D1×D2 and

[X tm(ω1, ω2)]i, j = [[X tm]i, j ]ω1,ω2 ∀i, j, ω1, ω2.

Let the slice of X f tm
.= F(X tm) by index (ω1, ω2) be

X f tm(ω1, ω2), such that X f tm(ω1, ω2) ∈ C
D1×D2 and

[X f tm(ω1, ω2)]i, j = [[X f tm]i, j ]ω1,ω2 ∀i, j, ω1, ω2.

Tensor vector is a special case of tensor matrix, and thus, the
slicing of a tensor vector complies with the definition of the
slicing of a tensor matrix.

By the virtue of Definitions 9 and 10, given the tensor
size of m × n, a mathematical tensor matrix operation can
be decomposed to and efficiently computed by m×n separate
traditional matrix operations in the Fourier domain.

III. TENSOR PRINCIPAL COMPONENT ANALYSIS

A. PCA

Traditional PCA can be briefly described as follows—given
x1, . . . , xN ∈ R

D and x̄ = (1/N)
∑N

k=1 xk , the covariance
matrix G is given by G = (1/N − 1)

∑N
k=1(xk− x̄)(xk− x̄)�.
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The singular value decomposition of G is computed such
that G = U · S · V�, where both U and V are D × D
orthonormal matrices, in that U� · U = V� · V = ID×D
and S = diag(λ1, λ2, . . . , λD), where λ1 � λ2 � · · · λD � 0.

Then, given y ∈ R
D , its PCA features are given

by ŷ = U� · (y − x̄). To reduce the dimension of ŷ from
D to d (d < D), the last (D − d) entries of ŷ are simply
discarded.

B. TPCA

The TPCA is a straightforward tensorial extension of the
traditional PCA—given X tv,1, X tv,2, . . . , X tv,N ∈ RD and
X̄ tv = (1/N)

∑N
k=1 X tv,k , tensor matrix Gtm ∈ RD×D is

defined by

Gtm = 1

N − 1

N∑

k=1

(X tv,k − X̄ tv) ◦ (X tv,k − X̄ tv)
�. (1)

Its singular value decomposition is computed as in
Definition 8, namely

Gtm = Utm ◦ Stm ◦ V�tm. (2)

Then, given a queryaq tensor vector Ytv ∈ RD , its tensor
feature vector Ŷtv is given by

Ŷtv = U�tm ◦ (Ytv − X̄ tv). (3)

We call Ŷtv the TPCA vector of Ytv. To accommodate the
traditional algorithms, which only deal with traditional vectors,
with the help of the tensor slicing operation, we propose a
mapping δ(·) to transform Ŷtv ∈ RD to δ(Ŷtv) ∈ R

D—let the
tensor size be m × n, δ(Ŷtv) is given by

δ(Ŷtv) = 1

mn

m∑

ω1=1

n∑

ω2=1

Ŷtv(ω1, ω2). (4)

We call ŷ = δ(U�tm◦(Ytv−X̄ tv)) the traditional TPCA feature
vector, which can be conveniently employed by traditional
nontensorial algorithms. To reduce the dimension of ŷ from
D to d , the last (D − d) entries are simply discarded.

TPCA is organized in Algorithm 1.

Algorithm 1 Tensorial Principal Component Analysis

Input: Query tensor vector Ytv ∈ RD and N training tensor
vectors Xtv,1, . . . , Xtv,N ∈ RD .

Output: non-tensorial TPCA feature vector y ∈ R
D

1: Compute Gtm and X̂tv as in equation (1).
2: Compute Utm as in equation (2).
3: Compute Ŷtv as in equation (3).
4: return y← δ(Ŷtv ).

C. Fast TPCA via the Fourier Transform

Note that, with the help of the slicing operation, (2) can
be computed much more efficiently via a series of traditional
SVDs computed in the Fourier domain. More specifically,
given the tensor matrix Gtm, and �

.= {(ω1, ω2) : ω1 =
1, . . . , m, ω2 = 1, . . . , n}, (2) can be computed as in the
following pseudocode.

Algorithm 2 Fast Tensorial SVD via the Fourier Transform
1: G f tm ← F(Gtm).
2: for all (ω1, ω2) ∈ � do
3: Compute the traditional SVD of slice G f tm(ω1, ω2) such

that G f tm(ω1, ω2) = U · S · V H , where V H is the
Hermitian transpose of the matrix V .

4: U f tm(ω1, ω2)← U , S f tm(ω1, ω2)← S,
V f tm(ω1, ω2)← V .

5: end for
6: return Utm ← F−1(U f tm), Stm ← F−1(S f tm),

Vtm ← F−1(V f tm).

Furthermore, the Fourier transform and the slicing operation
are also applicable to (1)–(3). Thus, the whole TPCA proce-
dure can be implemented by a series of traditional PCAs in
the Fourier domain. More specifically, with the tensors of size
m × n, the fast implementation of the whole TPCA can be
carried as follows.

Algorithm 3 Fast TPCA via the Fourier Transform

1: X̄tv ← (1/N)
∑N

i=1 Xtv,i .
2: Y f tv ← F(Ytv − X̄tv ), X f tv,i ← F(Xtv,i − X̄tv), ∀i .
3: for all (ω1, ω2) ∈ � do
4: G ← 1

N−1

∑N
i=1 X f tv,i(ω1, ω2)

(
X f tv,i(ω1, ω2)

)H
.

5: Compute SVD of G, such that G = U · S · V H .
6: Ŷ f tv (ω1, ω2)← U H · Y f tv (ω1, ω2).
7: end for
8: return y← δ(F−1(Ŷ f tv )).

D. Computational Complexity

By above-mentioned speeding-up scheme, a tensorial oper-
ation (such as TPCA or the tensor SVD) is decomposed
to |�| separate corresponding traditional nontensorial oper-
ations computed in the Fourier domain. If the traditional
operation in the Fourier involves one flop, the correspond-
ing tensorial operation needs |�| flops. If the cost of
Fourier transform is ignored, the computational complexity
of TPCA or tensor SVD is proportional to |�|. A com-
plex number is a tensor with |�| = 1, and therefore,
the computational complexity of PCA (or SVD) is O(1).
The computational complexity of TPCA (or tensor SVD)
is O(|�)|.

IV. EXPERIMENTS

Two publicly available image sets are employed in our
experiments. One is the Indian Pines scene. It consists of
145 × 145 pixels and 200 spectral bands. The groundtruth
of the Indian Pines scene is based on 16 classes. Another
image set is the Pavia University scene. It consists of
610 × 340 pixels with 103 spectral bands. Its groundtruth is
based on nine classes.

A. Tensorization

We employ a straightforward approach to tensorize the given
images—given a hyperspectral image Z ∈ R

D1×D2×D3 , let
Zi, j ∈ R

D3 denote the traditional vector representation of the
(i, j)th pixel such that [Zi, j ]k = [Z ]i, j,k ,∀i, j, k. Then, we
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Fig. 1. Classification maps obtained using RF with different types of features on the Indian Pines images. (a) Indian Pines scene. (b) Groundtruth.
(c) Original. (d) PCA. (e) LDA. (f) TDLA. (g) LTDA. (h) TPCA.

Fig. 2. Classification maps obtained using RF with different types of features on the Pavia University images. (a) Pavia University scene. (b) Groundtruth.
(c) Original. (d) PCA. (e) LDA. (f) TDLA. (g) LTDA. (h) TPCA.

Fig. 3. Classification accuracy curves obtained using NN, SVM, and RF with PCA/TPCA on the Indian Pines image. (a) NN. (b) SVM. (c) RF.

tensorize each pixel sample to a tensor vector whose entries
are 3×3 tensors, transforming traditional vector Zi, j ∈ R

D3 to
tensor vector Z tv,(i, j ) ∈ RD3 ∀i, j . More specifically, Z tv,i, j
is defined via its slice Z tv,(i, j )(ω1, ω2) ∈ R

D3 as

Z tv,(i, j )(ω1, ω2) = Zi ′, j ′ ∀i, j, ω1, ω2

where i ′ .= mod(i + ω1 − 3, D1) + 1 and j ′ .= mod
( j + ω2 − 3, D2)+ 1.

We call {(i ′, j ′) : ω1 = 1, 2, 3 and ω2 = 1, 2, 3}
the 3 × 3 circular-shift neighborhood of (i, j). Given a
hyperspectral image with N training pixels and D-bands
(D = D3), we denote the acquired tensor vectors in order
by X tv,1, . . . , X tv,N ∈ RD , which are inputs in Algorithm 1.

B. Experimental Results

We report the overall accuracies (OAs) and the κ coefficient
of the classification results obtained by five feature extractors
and three classifiers. Higher values of OA and κ indicate a
better classification result [11]. The employed classifiers are
the nearest neighbor (NN), support vector machine (SVM),
and random forest (RF). The Gaussian radial basis function
kernel is employed for SVM and, in the experiments, the
Gaussian parameter σ ∈ {2i }10

i=−15 and the regularization
parameter C ∈ {2i }15

i=−5 are trained from the fivefold cross
validation.

The extractors include two classical vector-based
algorithms—PCA and linear discriminant analysis (LDA),
and three state-of-the-art tensor-based algorithms—TDLA [6],
LTDA [7], and TPCA (ours). We also give the quantitative
results obtained by the original raw vector representation

(denoted as “original”) as a comparison baseline. For PCA,
TPCA, and LDA, we use a range of values for the feature
dimension D, namely D = 5, 10, · · · , Dmax with Dmax = 200
for the Indian Pines image and Dmax = 100 for the Pavia
University image. The highest classification accuracy for
the range of values of D is reported. In the experiments,
10% of the pixels of interests are uniformly randomly
chosen as the training samples, the rest of the pixels are
chosen as query samples. The classification experiment is
repeated independently ten times and the average OA and κ
is recorded.

The quantitative comparison of the classification results is
given in Table I. The third and the fourth column of Table I
show the classification result of OA and κ obtained on the
Indian Pines image. It is clear that the results obtained by
the tensorial features (TDLA, LTDA, and TPCA) are better
than those obtained by the vectorial features (PCA and LDA).
Furthermore, among all the extractors, TPCA always yields the
highest OA and the largest κ , outperforming its tensorial rivals
TDLA and LTDA. For a comparison with its vectorial coun-
terpart, the OA obtained by TPCA is about 6%–11% higher
than that obtained by PCA—with RF, the TPCA accuracy
is 91.01% compared with the baseline 76.78% and the PCA
accuracy 79.78%. The Indian Pines image and the University
of Pavia image, the groundtruth, and the classification maps
with the highest classification accuracies for the different
experimental settings are shown, respectively, in Figs. 1 and 2.
It is clear that TPCA yields the best classification.

Since PCA and TPCA have a similar structure, to compare
their performances, the OA curves of PCA and TPCA over
varying feature dimension, obtained by classifiers NN, SVM,
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Fig. 4. Classification accuracy curves obtained using NN, SVM, and RF with PCA/TPCA on the Pavia University image. (a) NN. (b) SVM. (c) RF.

TABLE I

CLASSIFICATION ACCURACY COMPARISON OBTAINED ON THE

INDIAN PINES IMAGE AND THE PAVIA UNIVERSITY IMAGE

and RF on the Indian Pines image, are given in Fig. 3. Fig. 3
shows that, no matter which classifier and feature dimension
are chosen, TPCA always outperforms PCA.

The classification results obtained using a range of clas-
sifiers and feature extractors on the Pavia University image
are given in the last two columns of Table I. The visual
classification maps obtained by RF with different extractors
are shown in Fig. 2. The maps with the highest classification
accuracies for the different experimental settings are shown.
To compare the performances of PCA and TPCA, the OA
curves of PCA and TPCA for changing feature dimension,
obtained by classifiers NN, SVM, and RF on the Pavia
University image, are given in Fig. 4. From Table I and
Figs. 2 and 4, a similar observation that TPCA outperforms
its rivals can be drawn, supporting our claims for TPCA.

V. CONCLUSION

A novel tensor-based feature extractor called TPCA is
proposed for hyperspectral image classification. First, we
propose a new tensor matrix algebraic framework, which
combines the merits of the recently emerged t-product model,
which is based on the circular convolution, and the traditional
matrix algebra. With the help of the proposed algebraic frame-
work, we extend the traditional PCA algorithm to its tensorial
variant TPCA. To speed up the tensor-based computing of
TPCA, we also propose a fast TPCA for which the calculations
are conducted in the Fourier domain. With a tensorization
scheme via a neighborhood of each pixel, each sample is

defined by a tensorial vector whose entries are all the second-
order tensors and TPCA can effectively extract the spec-
tralspatial information in a given hyperspectral image. To
make TPCA applicable to traditional vector-based classifiers,
we design a straightforward but effective approach to trans-
form TPCA’s output tensor vector to a traditional vector.
Experiments to classify the pixels of two publicly available
benchmark hyperspectral images show that TPCA outperforms
its rivals, including PCA, LDA, TDLA, and LDLA in term of
classification accuracy.
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