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Feasibility of Multispectral Airborne Laser
Scanning Data for Road Mapping

Kirsi Karila, Leena Matikainen, Eetu Puttonen, and Juha Hyyppä

Abstract— Multispectral airborne laser scanning (ALS) data
have recently become available. The objective of this letter is
to study the feasibility of these data for road mapping—for
road detection and road surface classification. The results are
compared with the results of traditional aerial ortho images using
object-based image analysis and Random Forest classification.
The results demonstrate that the multispectral ALS data are
feasible for automatic road detection and a significant improve-
ment compared to the use of optical aerial imagery is obtained.
In a test using ALS data, 80.5% points representing roads were
classified correctly. When aerial images were used, the percentage
decreased to 71.6%.

Index Terms— Airborne laser scanning (ALS), image classifi-
cation, lidar, multispectral, Random Forest (RF), road mapping.

I. INTRODUCTION

THE first commercial multispectral airborne laser scan-
ning (ALS) sensor, Optech Titan, has recently become

available. Currently, operational mapping processes are often
based on aerial image (AI) data and manual digitizing, and,
the automation of the mapping process has proved to be
very challenging [1]. Several factors complicate the automated
analysis of aerial imagery. These include shadows, tree cover,
changing light conditions, and dependence of the reflectance
on the illumination and viewing geometry. For active sensors
such as ALS the problems of shadows and light conditions
can be avoided, and, using multiple channels colored image
data can be collected with ALS.

Previous studies have shown the high capability of ALS
technology in various mapping applications, including 3-D
city modeling [2] and land cover analyses [3]. Conventional
ALS with one intensity channel has its main benefits in
mapping of elevated objects such as buildings and trees, and
mainly classification is done using point cloud metrics. The
use of two or more intensity channels can further increase
classification accuracy [4], [5], and the first studies with
the Optech Titan sensor suggest that multispectral ALS is
very promising for also classifying low-level classes such
as sealed and unsealed surfaces, roads and low vegetation.
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Such classifications have been proposed and tested in [6]–[9],
but detailed analyses focusing on road mapping are still
lacking. Ground-based multispectral lidar has already been
found superior to single-band lidar and passive imaging in
object classification [4], [10], [11].

A review of impervious surface (roads, buildings) map-
ping using remote sensing data has been provided in [12].
Automated road mapping from AIs has been discussed
in [1], [13], and [14]. A review of urban land cover mapping
from ALS has been published in [3]. Automatic road mapping
from ALS has been studied in [15] and [16]. Spectral char-
acteristics of road types discussed in [17] and [18] have used
hyperspectral images mapping asphalt road conditions.

The objective of this letter is to present the first feasibility
study concentrating on road mapping from multispectral ALS.
We will focus on detection and classification of paved and
gravel roads in a suburban setting. As the map updating is
currently often based on aerial ortho images, we will compare
the performance of multispectral ALS to the performance
of AIs. The research questions addressed are as follows:
1) what is the road detection rate using multispectral ALS
data; 2) is it possible to recognize the type of road surface
from multispectral ALS data; and 3) which features are useful?
We will focus on classification of roads and road-like areas;
road vectorization is not included in this letter.

In this letter, the point cloud data are analyzed in a raster
format. Some details are lost when point cloud data are
converted to the raster format. However, a wide selection of
methods is available for raster-based data analysis, and in
raster format different data sets can be easily analyzed visually
and compared with each other. In particular, comparison
to AIs becomes straightforward. In addition to pixel-based
image processing methods, object-based methods have become
widely available. Object-based methods [19] have been found
suitable for classification of data from very high resolution
remote sensing sensors because they allow the exploitation of
diverse object characteristics instead of single pixel values in
the classification process, e.g., mean values, texture, shape,
and contextual relationship.

For a large set of input variables, generating classifica-
tion rules manually is time-consuming, and thus, automatic
methods are needed for operational applications. The Random
Forest (RF) method creates a large number of classifica-
tion trees [20]. The advantage of RF is that it handles a
large number of input variables and a separate test data
set is not necessarily needed as RF estimates an out-of-bag
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Fig. 1. Study area. (Bottom right) Training points (cyan). (Top left) Test
data IIa (red). Coordinates: WGS84/ UTM zone 35N. AI courtesy of NLS,
2013.

error internally during each run. In addition, it estimates
which variables are important in the classification (variable
importance) [20].

II. DATA AND METHODOLOGY

A. Study Area

The study area is located in Espoo, Southern Finland
(60° 9’25 N, 24° 38’0 E). A separate training area is located
in Espoonlahti (2.5 km2), and the test area (6 km2) comprises
of areas of Saunalahti, Kattilalaakso, Tillinmäki (Fig. 1). The
area is a suburban area, including dense and sparsely built
areas, industrial area, forests, and parks. Roads in the area
vary from highways to narrow cycle paths.

B. Remote Sensing Data

The multispectral ALS data were acquired on
August 21, 2015 using the Optech Titan sensor, which
has three spectral channels; ch1: infrared 1550 nm
(∼8 points/m2 in the study area), ch2: near infrared (NIR)
1064 nm (∼9 points/m2), and ch3: green 532 nm
(∼8 points/m2). A range correction [21], [22] was applied to
avoid lower intensity values near the edges of flight strips.
This calibration method takes into account the distance from
the scanner to the scanned point in relation to the flying
height [23]. The point clouds were rasterized to 20 cm grids
representing the average intensity of all pulses, minimum
height [minimum digital surface model (MinDSM) in the
following discussion] and maximum height (MaxDSM).
More details on the data and processing are available
in [7] and [24].

For comparison, we used open image data from the National
Land Survey (NLS). These data are currently operatively used

for map updating in Finland. The AIs used in this letter were
acquired on May 3, 2013 using an UltraCamEagle camera.
The images have been pan-sharpened and matched to a tonally
adjusted model image provided by NLS. The ortho image was
produced using NLS digital terrain model (DTM), created
from ALS data in 2 m grid. The aerial ortho image has a
50 cm pixel size. According to visual evaluation, the spatial
resolution corresponds approximately to the resolution of the
multispectral ALS data when the visibility of road features is
considered. The AI had four channels: red (ch1), green (ch2),
blue (ch3), and NIR regions (ch 4). We also combined height
information to the AI using a DSM derived from open NLS
single channel ALS data acquired in 2008. The ALS points
were rasterized to 1 m grid (MinDSM and MaxDSM).

For the terrain height the NLS 2 m DTM was used for
both the multispectral ALS and AIs. It should be noted that
a similar terrain model could also be extracted from the
multispectral ALS data. However, since the existing DTM
has been manually edited, to get a similar result from the
multispectral ALS data would require some manual editing,
and existing DTM was used.

C. Auxiliary Data

1) Training Data: A total of 367 road training points were
selected so that the road surface was visible in both the data
sets; the multispectral ALS and the AIs. The points were only
placed on roads, not on parking lots or courtyards which may
have a similar surface cover. Shadows, road markings, and
zebra crossings were not used as road training points. 137 of
the points were on gravel roads and 230 on paved roads. The
paved roads included mostly asphalt and few different kinds
of pavers (e.g., street tiles). For the class “other than road”
the training data used in [7] excluding the points presenting
paved and gravel surfaces, was used. A total of 66 points were
added to outcrop type areas (nonvegetated ground) as the class
is easily mixed with roads. In total, there were 330 points in
the class “other” including buildings, forest, open vegetated
areas, and open natural nonvegetated areas (no parking lots or
playgrounds were included).

2) Test/Validation Data: Test data I: The data set consists
of 254 land cover ground truth points collected and fur-
ther classified as gravel surfaces, paved surfaces, and other.
14 points were not on roads, situated mainly on parking
lots, a few on playgrounds and courtyards. Error matrices are
calculated based on these points.

Test data II: To study road detectability more comprehen-
sively, roads extracted from the NLS Topographic Database
were used as validation data. The database included infor-
mation on the road class (∼width, see Table V) and the
road surface (paved or gravel). Test points were created from
the road vector data with ca. 10 m interval, resulting in
7346 points (Test data IIa). The data were manually updated
for roads with incorrect location or outdated surface infor-
mation. In addition, some points were excluded in areas that
differed significantly in the AI and multispectral ALS data
due to different acquisition times. For the validation of the
AI + DSM data set, a reduced test set was used because of
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TABLE I

ATTRIBUTES DERIVED FOR EACH SEGMENT, QX = X% QUANTILE

the early DSM acquisition date. A total of 3803 points were
used for the second comparison (test data IIb).

D. Segmentation

In this letter, the multiresolution segmentation algo-
rithm [25] in the eCognition software (Trimble Germany
GmbH, Munich, 2016) was used to divide the images into
homogeneous regions, i.e., segments. The multiresolution seg-
mentation algorithm locally minimizes the average heterogene-
ity of image objects. The scale parameter (related to image
object size) is an abstract term that determines the maximum
allowed heterogeneity for the resulting image objects. The
object homogeneity (minimized heterogeneity) is a combina-
tion of color and shape, and further, shape is a combination
of smoothness and compactness.

The three intensity channels were used as input data in the
segmentation process of the multispectral ALS data. The seg-
mentation parameters for the multispectral ALS intensity data
were scale 2, shape 0.01 and compactness 0.05. For the AIs
the parameters were scale 10, shape 0.5, and compactness 0.9.
The choice of parameters was based on a visual analysis of
the segment size and shape.

After the segmentation, the segment attributes were calcu-
lated. Several multispectral features were included since it was
assumed that they are important in separating targets on the
ground level (e.g., roads). Basic geometric features were also
included. The attributes extracted for each data set are listed
in Table I.

E. Classification

To study first the road detection rate only, the classification
test was divided into two parts: 1) road detection: road/other
land cover and 2) road surface classification: paved/gravel.
Road surface was classified only for the segments classified
as road. Three data sets were studied: 1) multispectral ALS;
2) AI; and 3) AI + DSM from one-channel ALS.

For each training point, the corresponding segment is
selected. The segments and attributes are imported to

Fig. 2. (a) AI. (b) Rasterized ALS intensity data (R:ch1,G:ch2, B:ch3).
(c) AI classification: detected roads in yellow (asphalt) and orange (gravel).
(d) Multispectral ALS classification. (e) Close-up view [the red rectangle
in (c)] of the AI results; only segments classified as road are shown. Two
cars and shadows can be seen in the AI not classified as road. (Top) AI
of newly built noise barrier without vegetation classified as gravel road.
(f) MS-ALS result: road markings cause omission errors. AI courtesy of
NLS, 2013.

TABLE II

OUT-OF-BAG CLASSIFICATION ERROR FOR THE TRAINING DATA

MATLAB 2015b (The MathWorks Inc, Natick, MA, USA).
The RF models are trained using MATLAB’S RF implemen-
tation (fitensemble with bagging) included in its Statistics and
Machine Learning Toolbox [26]. A total of 1,000 classification
trees were used for the classification. From the training data
out-of-bag classification error is estimated by leaving part of
the training data for validation. In addition, the importance of
each predictor (segment attribute) is estimated.

III. RESULTS

The RF model was trained using the training points, and,
during the training out-of-bag error and predictor importance
was estimated for the training data. The out-of-bag classi-
fication errors are listed in Table II. An example of the
classification results is presented in Fig. 2. Fig. 2 clearly
demonstrates the feasibility of multispectral ALS intensities
to detect roads compared to aerial imaging.
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Fig. 3. Feature importance for ten most important features in RF classification
of different data sets.

TABLE III

ERROR MATRICES FOR (TOP) MULTISPECTRAL ALS
AND (BOTTOM) AI USING TEST DATA I

The most important features for road detection in the
multispectral ALS data and AIs + DSM data are presented
in Fig. 3.

The error matrix (Table III) was calculated based on Test
data set I. The overall accuracy for classification of gravel,
paved, and other was 94.1% for the multispectral ALS, 91.3 %
for the AI, and for AI + DSM 91.7 % (class change of one
point in comparison to AI alone).

To study the detectability of realistic roads with shadows
and vegetation covering parts of the road, test data IIa from
the topographic database was used. The results are reported
for the test area in Table IV. The road surface classification
was carried out for the segments classified as roads. The road
detection results based on the road class in the topographic
database are listed in Table V.

TABLE IV

TEST DATA IIA DETECTION RATES (%) AND CLASSIFIED CORRECTLY (%)

TABLE V

DETECTION RATES FOR THE ROAD CLASSES (TEST DATA IIA)

To validate the AI + DSM data set, the smaller point
set IIb was used. For comparison, the other data sets were
also validated using this subset of points. The percentage of
roads classified as roads was 78.3 % for the multispectral ALS,
68.1% for the AI, and 69.3 % for the AI + DSM data set.

IV. DISCUSSION AND CONCLUSION

There is a significant difference between the out-of-bag
classification accuracy (Table II) and the validation accuracy
(Table IV). The reason is that the out-of-bag estimate is
based on the training points that where selected to present the
road surface (road surface visible, no shadows, vehicles, etc.).
Based on the out-of-bag accuracies the multispectral ALS
data are slightly better in road detection and road surface
classification than the AIs. The test data IIa shows a larger
difference in the road detection accuracy (80.5 % road detected
in multispectral ALS and 71.6 % in AIs). Test data I included
paved and gravel surfaces other than roads and also a very
small number of gravel road points, which makes the compar-
ison to test data II and training data difficult.

Leaves were on trees when the multispectral ALS data
was acquired. The AI was acquired in leaves-off conditions.
Therefore, the performance of multispectral ALS data in
comparison to AIs for road detection is likely to improve when
leaf-off ALS data is available. An analysis approach avoiding
tree points and exploiting ground points under trees might also
lead to some improvement.

Omission errors in road detection from the ALS data were
caused by trees (direct blocking), road surface markings,
vehicles on the roads, and road reflectance being different
from the training data. Parking lots, courtyards, construction
sites, and playgrounds were classified into the same class as
roads with the same surface cover. Whether this is a problem
depends on the end user of the data. For the AIs shadows were
also causing classification errors.

Differences in detection rate of gravel and paved roads
(Table IV) are likely caused by the fact that 73% of the
gravel roads are narrow cycle ways, and 14 % are driveways
under 3 m. Therefore, the detection rates for gravel are lower
than for asphalt in both the data sets.
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In many cases gravel, new and old asphalt, and different
pavers can be separated in the multispectral ALS data visually.
In addition, the road surface classification results show slightly
better accuracy for the ALS. Higher resolution AIs might
perform better; however, for higher resolution AIs the same
problems with light conditions and shadows would exist. It is
possible to carry out advanced radiometric corrections on AIs
to improve the results, however, it is not as simple to perform
as the intensity calibration of ALS data. In addition, the AI
was acquired two years earlier than the multispectral ALS data.
Therefore, for few roads the surface may not be the same in
multispectral ALS and AI data in the Test data II.

The analysis based on the road class is hindered by different
number of points per class (Table V) and uncertainty in the
class definition. However, a comparison of classes with most
points, “road 3–5 m” and “cycle way” gives an idea of how
the road width affects the road detection (89 % versus 71 %
classified as road). It can also be noted that the express
way has notably lower accuracy than some smaller roads
for the multispectral ALS data. A more detailed examination
showed that many of the expressway points are located on
the centerline markings. In the multispectral ALS data, the
lane markings are not classified as road. The ALS data had a
smaller pixel size and different spectral channels than the AIs
resulting in paintings as separate segments. For the AIs the
paintings were mostly included in the road segments.

Different acquisition times and varying reflectance of the
AIs are a real problem for automated image interpretation
methods. The multispectral ALS intensity should have better
consistency between image acquisitions for stable targets such
as roads. Of course, changes in target properties, e.g., wetness
will have an effect on the data.

The scope of this letter was not to extract complete road
network. Some of the classification problems (e.g., road mark-
ings and vehicles) could be solved by doing additional pre- or
postprocessing steps on the data and the results. In any case,
multispectral ALS data are very promising input data for more
advanced road detection algorithms.
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