
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 13, NO. 12, DECEMBER 2016 1895

Deep Filter Banks for Land-Use
Scene Classification

Hang Wu, Baozhen Liu, Weihua Su, Member, IEEE, Wenchang Zhang, and Jinggong Sun

Abstract— Land-use (LU) scene classification is one of the
most challenging tasks in the field of remote sensing (RS)
image processing due to its high intraclass variability and
low interclass distance. Motivated by the challenge posed by
this problem, we propose a novel hybrid architecture, deep
filter banks, combining multicolumn stacked denoising sparse
autoencoder (SDSAE) and Fisher vector (FV) to automatically
learn the representative and discriminative features in a hier-
archical manner for LU scene classification. SDSAE kernels
describe local patches and a robust global feature of the
RS image is built through the FV pooling layer. Unlike previous
handcrafted features, we use machine-learning mechanisms to
optimize our proposed feature extractor so that it can learn
more suitable internal features from the RS data, boosting the
final performance. Our approach achieves superior performance
compared with the state-of-the-art methods, obtaining average
classification accuracies of 92.7% and 90.4%, respectively,
on the UC Merced and RSSCN7 data sets.

Index Terms— Deep filter banks, Fisher vector (FV),
land-use (LU) scene classification, stacked denoising sparse
autoencoder (SDSAE).

I. INTRODUCTION

W ITH the rapid development of airborne or spaceborne
imaging sensors, remote sensing (RS) images can

provide a spatial resolution of up to 0.41 m [1]. A massive
amount of high spatial resolution images has become available
for precise land-use (LU) scene classification, which aims to
assign a semantic label to an RS image according to its con-
tent. Therefore, it is necessary to develop effective and efficient
scene classification methods to annotate the RS images.

High intraclass variability coupled with low interclass dis-
tance makes labeling RS images a challenging problem in
the RS field. The same land cover and even the same
objects may appear on RS images belonging to different LU
classes [2]. LU scene classification calls for efficient and
strong discrimination of features.

In recent research, the bag-of-visual-words (BOVW)
model [3], [4] is a common and promising tool to solve the
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above problem. It represents RS images using the frequency of
codewords that are constructed by quantifying local features,
e.g., SIFT and HOG, with a clustering method such as
K -means. The frequency vector as the final global representa-
tion is then fed into a pretrained classifier to obtain LU scene
classification results. The traditional BOVW just considers the
occurrences of visual words, neglecting information about the
spatial distribution. Several improved variants of BOVW are
proposed to make up for this deficiency. For example, spatial
pyramid match kernel (SPMK) [3] and randomized spatial
partition [5] have added absolute spatial information into the
final representation. Further, spatial pyramid co-occurrence
kernel (SPCK) [6] and pyramid of spatial relations [7] are
designed to describe both the relative and absolute spatial
arrangement of the codewords.

The multilayer model is another effective way to improve
the scene classification performance. Hierarchical coding vec-
tor (HCV) [8] and two-layer sparse coding model [9] stack
multiple BOVW coding layers to develop a hierarchical fea-
ture learning structure, acquiring a more powerful represen-
tation to describe the RS images. Some researchers choose
to circumvent the BOVW model and directly design low-
level global descriptors. Zhao et al. [2] propose a novel
spectral feature, i.e., MeanStd, for LU scene classification
and Chen et al. [10] construct a multiscale completed local
binary patterns (MS-CLBP) descriptor to characterize the
dominant texture features in the RS images. Although these
methods have achieved good performance, they are essentially
handcrafted descriptors, and it is difficult to achieve further
enhancements in the LU scene classification performance due
to the limited descriptive ability of these low- and mid-level
features.

Recently, Fisher vectors (FVs) and deep neural net-
works (DNNs) have attracted attention in the computer vision
community as two great image classification pipelines with
different strengths. DNNs have shown superior accuracy on a
number of classification tasks, but FV classifiers are typically
less costly to train and evaluate [11]. For DNNs, the typi-
cal architecture includes deep belief networks (DBNs) [12],
stacked autoencoder (SAE) [13], and convolutional neural
networks (CNNs) [14]. CNNs have achieved remarkable suc-
cess in many computer vision benchmarks. However, the
supervised deep model, like CNNs, requires a tremendous
amount of labeled data, which is very expensive to obtain in
the RS filed. This intrinsic characteristic limits its application
for LU scene classification. SAE, a typical unsupervised
feature learning method, is suitable for solving this dilemma.
It learns complex semantic information from RS images
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Fig. 1. Illustration of the proposed deep filter banks for LU scene classification.

by encoding vector-form input data and then reconstructing
it [15], [16]. Stacked denoising sparse autoencoder (SDSAE)
is an enhanced variant of SAE using sparsity and denoising
criterions.

Inspired by the success of DNNs and FV in the computer
vision community, we propose a hybrid architecture, i.e., deep
filter banks, which employs unsupervised SDSAE and an FV
pooling layer to automatically learn the abstract semantic
representation for tackling the LU scene classification task.
The SDSAE hierarchically refines deep semantic information
from local patches in the RS images and subsequently feeds
the information into an FV pooling layer to develop a robust
global representation. The effectiveness of the proposed model
is demonstrated on the UC Merced and RSSCN7 data sets. The
major contributions of our work are the following three points.

1) We first combine multicolumn SDSAE and FV to con-
struct deep filter banks. This structure forces our model
to learn more robust and abstract semantic features
for LU scene classification.

2) Unlike handcrafted feature representation-based meth-
ods, our deep filter banks use machine-learning mech-
anisms to optimize themselves to learn more suitable
internal features from the RS data.

3) Superior performance is achieved by our deep filter
banks compared with the state-of-the-art results on the
UC Merced and RSSCN7 data sets.

II. DEEP FILTER BANKS

A. Overall Architecture

The proposed deep filter banks form an unsupervised deep
network that stacks multicolumn SDSAE and an FV pooling
layer to generate high-level feature representation.

Fig. 1 illustrates the whole structure of our proposed model.
An input RS image is first sphered by a whitening L1 layer
to remove redundancy of raw data. Each kernel is a 3-D array
with size K1 × K2 × C . N × N local patches are extracted
from whitening L1 layer for each kernel using the sliding
window technique. Each patch is subsequently transformed

into a discriminating local feature vector 1×L through refining
semantic information layer-by-layer. The local feature vectors
developed by multicolumn SDSAE then construct robust and
abstract feature maps, i.e., Conv layer N × N × L. Through
whitening, the local abstract features are fed into the FV
pooling layer to produce global deep representation. Different
FVs from different columns are then concatenated into a final
representation that can be input into a classifier such as a
support vector machine (SVM) to obtain the LU classification
result. Unlike handcrafted feature extractors, the SDSAE in our
deep filter banks automatically learns parameters from those
patches in training RS images using the layerwise pretraining
approach and fine-tuning strategy.

Deep filter banks with more columns and deeper layers can
learn more complicated abstract features, but this increases the
complexity of our model. Considering the tradeoff between
effectiveness and efficiency, two different kernels (16×16×3
and 8×8×3) and three hidden layers (800-800-300) are used
in this framework. The proposed deep filter banks can be gen-
eralized to more columns and hidden layers without difficulty.
N and L are set as 49 and 300 in our work, respectively.
It should be noted that our framework is independent of the
size of the input images. The input as 256×256 pixels in Fig. 1
is used because it is the setting of the public data set.

B. Stacked Denoising Sparse Autoencoder

DNN is a computational model composed of multiple
processing layers to learn representations of data with multiple
levels of abstraction [17]. The SAE is a typical DNN that
is composed of multiple layers of autoencoder (AE) [13].
SDSAE incorporates sparsity and denoising criterions on the
basis of SAE. The AE learns features in an unsupervised
manner by minimizing the reconstruction error between inputs
at the encoding layer and reconstruction at the decoding
layer [1]. During the encoding step, a nonlinear activation
function g(x)transforms the input data x∈ R

K into a hidden
representation y∈ R

M

y = g(W x + b) (1)
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where W∈ R
M×K is a weight matrix, b∈ R

K is abias vector,
and g(x) is chosen to be a rectified linear unit g(x) =
max(0, x) in our model. We perform the decoding of y using
a separate linear decoding matrix

z = W ′ · y + b′ (2)

where W′ ∈ R
K×M is a weight matrix and b′ ∈ R

M is the
decoding bias. Feature extractor is learned by minimizing the
cost function

L(x, z) = 1

2

∑K

i=1
‖xi − zi‖2 + λ

2
‖W‖2 (3)

where x and z are the training and reconstruction data,
respectively. The first term is the reconstruction error, and
the second term is a weight decay term to relieve overfitting.
λ is the weight of this term. Sparsity is considered to be an
important attribute of the feature with strong discriminabil-
ity [13]. Therefore, we add a sparsity constraint to the cost
function

L(x, z) + β
∑M

j=1
K L(ρ ‖ ρ1) (4)

K L(ρ ‖ ρ1) = ρ log

(
ρ

ρ1

)
+ (1 − ρ) log

(
1 − ρ

1 − ρ1

)
(5)

where β is the weight of the sparsity penalty, ρ1 is the
average activation of each hidden neuron, and ρ is the sparsity
target that is typically a small value close to zero. KL( )
would increase monotonically as ρ1 diverges from ρ. We train
our model with noisy input to enhance the generalization
performance. The denoising criterion forces the model to
capture implicit invariances in the data, resulting in robust
features.

For the multicolumn SDSAE in our deep filter banks, the
parameters are updated using backpropagation with mini-batch
stochastic gradient and a batch size of 100. A total of 25%
of zero masking corrupt noise [13] is employed in the input
to our proposed model. The λ, β, and ρ are set to 0.003, 3,
and 0.05, respectively. To retain the spatial information, the
local features F developed by SDSAE are augmented with
their x- and y-coordinates before being fed into the FV pooling
layer.

C. Fisher Vector Pooling Layer

The FV pooling layer aggregates local features F ∈ R
M×T

into the global representation d∈ R
2M N , thus achieving greater

invariance to image transformations and better robustness
to noise and clutter. Local features were decorrelated using
whitening technology before being fed into the FV pooling
layer.

The FV method is based on fitting a parametric gener-
ative model [e.g., Gaussian mixture model (GMM)] to the
input local features F and then encoding derivatives of the
log-likelihood of the model with respect to its parameters.
The GMMs with diagonal covariance are used in our deep
filter banks framework, leading to a deep representation that
captures the Gaussian mean (first) and variance (second)
differences between the input local features F and each of

the GMM centers

d(1)
n = 1

T
√

wn

T∑

t=1

αt (n)

(
Ft − μn

σn

)
(6)

d(2)
n = 1

T
√

2wn

T∑

t=1

αt (n)

(
(Ft − μn)

2

σ 2
n

− 1

)
(7)

where {wn, μn, σn}n are the respective mixture weights,
means, and diagonal covariance, respectively, of the GMM
codebook B∈ R

M×N . This codebook is pregenerated in the
training phase by GMM clustering. Ft is one local feature fed
into the Fisher pooling layer and T is the number of the local
features. αt (n) is the soft assignment weight of the tth local
features Ft to the nth Gaussian distribution. Finally, the global
representation d∈ R

M×2N is obtained by stacking the first and
second differences

d = [
d(1)

1 , d(2)
1 , d(1)

2 , d(2)
2 , . . . d(1)

n , d(2)
n , . . . , d(1)

N , d(2)
N

]
. (8)

The output vector d is subsequently normalized using the
power + L2 scheme. Output vectors from different columns
are then concatenated as the final scene representation D of
our proposed deep filter banks. In our framework, we choose
the size of the GMM codebook as 8. This value strikes a
good compromise between efficiency gain and accuracy loss
according to the experimental results.

D. Reducing Overfitting
To avoid overfitting, we use dropout in SDSAE of the

proposed deep filter banks. This strategy randomly omits each
neuron in the hidden layers with a given probability, forcing
neurons to provide a more useful and robust contribution in
combination with arbitrary active neuron combinations [14].
Different networks of SDSAE are trained in different periods.
The changing training structure significantly reduces overfit-
ting. The dropout rate is set as 50% for all the layers in
the SDSAE of our proposed deep filter banks model.

III. EXPERIMENTS AND ANALYSIS

A. Experimental Design

To evaluate the effectiveness of the proposed deep filter
banks, we conducted LU scene classification experiments
using UC Merced and RSSCN7 data sets. The one versus rest
linear SVM classifier is employed and the average classifica-
tion accuracy (mean ± SD) is set as the evaluation index.

B. Experiment 1: UC Merced Image Data Set
The UC Merced image data set [3] is one of the first pub-

licly available LU geographical image data sets with ground
truth (http://vision.ucmerced.edu/data sets.html). The data set
consists of 21 LU classes, and each class contains 100 images
of the same size (i.e., 256 ×256 pixels). The pixel resolutions
of all the images are 30 cm per pixel. Sample images of
each LU class are shown in Fig. 2. Following [3], the data set
was randomly partitioned into five equal subsets. Each subset
contained 20 images from each LU category. Four subsets
were used for training, and the remaining subset was used for
testing.
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Fig. 2. Sample image from the 21 categories in the UC Merced data set.

TABLE I

COMPARISON OF OUR DEEP FILTER BANKS WITH THE STATE-OF-THE-
ART PERFORMANCE REPORTED IN THE LITERATURE

ON THE UC MERCED DATA SET

The classification performances of different methods with
the UC Merced image data set are shown in Table I. As shown
in Table I, our deep filter banks outperformed the current state-
of-the-art results on this data set. The result of our method
(92.7 ± 0.8) is the best among all, which demonstrates the
effectiveness of the proposed deep filter banks for LU scene
classification. Furthermore, the statistical z-test is used to test
the validity of the improvement. The result p ≤ 0.05 ensures
that the performance improvement is meaningful.

C. Experiment 2: RSSCN7 Data Set

The RSSCN7 data set [23] is a public data set
(https://sites.google.com/site/qinzoucn/documents) released in
2015. It contains 2800 RS scene images that are from seven
typical LU scene categories. There are 400 images with sizes
of 400 × 400 pixels for each class. Each scene category is of
four different scales (1:700, 1:1300, 1:2600, and 1:5200) with
100 images per scale. The experimental setup in [23] is used.
Half of the images in each category were fixed for training
and the rest for testing.

Table II shows the classification accuracies of different
methods for the RSSCN7 data set. It can be observed that
our method achieves an accuracy of 90.4 ± 0.6, improving

TABLE II

COMPARISON OF OUR DEEP FILTER BANKS WITH THE STATE-OF-THE-
ART PERFORMANCE REPORTED IN THE LITERATURE ON

THE RSSCN7 DATA SET

Fig. 3. Comparison of deep filter banks with GIST, color histogram, LBP,
DBN, and HCV based on categorywise performance.

the classification performance significantly with a noticeable
margin on this data set. To further investigate the performance
of deep filter banks, we illustrate per-class accuracies of the
RSSCN7 data set in Fig. 3.

From Fig. 3, we observe that the proposed deep filter
banks is effective for almost all the geographical classes on
the RSSCN7 data set. Except for the River and Lake, the
deep filter banks achieve better performance in all the other
categories compared with other methods. The performance
improvement is especially profound over the Industry and
Parking lot categories, which need stronger semantic under-
standing. It should be noted that our deep filter banks used
the one versus rest linear SVM classifier in the two data
sets. The linear classifier makes the framework simpler and
more conducive to practical application. The classification
performance of our method should be improved further with a
sophisticated classifier, e.g., nonlinear SVM kernel or extreme
learning machine.

D. Experiment 3: Framework Analysis

We study the performance of different frameworks in
our proposed deep filter banks. We evaluated four dif-
ferent depths of SDSAE (corresponding hidden layers:
300, 800-300, 800-800-300, and 800-800-800-300) and com-
pared the FV-pooling layer to the traditional average-pooling
approach. Results on the UC Merced and RSSCN7 data sets
are shown in Fig. 4. In addition, we show the performance
using FV-pooling constructed from the typical handcrafted
feature, i.e., dense SIFT.

As shown in Fig. 4, the classification accuracy increases
with the deeper framework of more hidden layers at the
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Fig. 4. Performance of the deep filter banks with different frameworks. (The
unmarked accuracies of SIFT with average pooling are 42.2% and 50.4% for
UC Merced and RSSCN7, respectively.)

slowing growth rate. The deep filter banks significantly
outperform SIFT with the same pooling approach, demon-
strating the strong discriminability of the local features
developed by SDSAE. Furthermore, it can be observed that the
FV-pooling layer can produce a much better global representa-
tion compared with the traditional average-pooling approach.

E. Computational Complexity
Many approaches with a nonlinear classifier have to pay

a penalty for computational complexity O(n2) or O(n3) in
the train phase and O(n) in the testing phase, where n is the
training size. It implies poor scalability for the real application.
Our deep filter banks, using a simple linear SVM, reduce the
training complexity to O(n) and obtain constant complexity
in testing while still achieving superior performance. Finally,
we evaluated the computation complexity of our proposed
deep filter banks and used the UC Merced image data set
to obtain the processing time. All the codes of our proposed
model are implemented in MATLAB 2014a and run on a
computer with an Intel Xeon CPU E5-2620 v2 at 2.1 GHz and
32-GB RAM in a 64-b Win7 operation system. As observed
from our experiment, the training phase takes approximately
6.25 h, and the average processing time for a test RS image
(size of 256 ×256 pixels) is 0.26 ± 0.01 s. The training phase
of our method is slightly time-consuming compared with the
handcrafted features, which are highly dependent on the prior
knowledge. After completing the training phase, our method
is of good efficiency.

IV. CONCLUSION

In this letter, we proposed hybrid architecture, deep filter
banks for LU scene classification that combines the bene-
fits of FV and DNNs pipelines. The proposed model stack
multicolumn SDSAE and FV pooling layer to learn robust
and abstract hierarchical semantic feature representations from
raw RS data. The experimental results validated the effec-
tiveness of our method and showed that it outperforms the
current state-of-the-art methods on the challenging UC Merced
and RSSCN7 data sets.
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