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A Preconditioned Inexact Newton Method for
Nonlinear Sparse Electromagnetic Imaging
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Abstract—A nonlinear inversion scheme for the electromagnetic
microwave imaging of domains with sparse content is proposed.
Scattering equations are constructed using a contrast–source (CS)
formulation. The proposed method uses an inexact Newton (IN)
scheme to tackle the nonlinearity of these equations. At every
IN iteration, a system of equations, which involves the Frechet
derivative (FD) matrix of the CS operator, is solved for the IN
step. A sparsity constraint is enforced on the solution via thresh-
olded Landweber iterations, and the convergence is significantly
increased using a preconditioner that levels the FD matrix’s sin-
gular values associated with contrast and equivalent currents. To
increase the accuracy, the weight of the regularization’s penalty
term is reduced during the IN iterations consistently with the
scheme’s quadratic convergence. At the end of each IN iteration,
an additional thresholding, which removes small “ripples” that
are produced by the IN step, is applied to maintain the solution’s
sparsity. Numerical results demonstrate the applicability of the
proposed method in recovering sparse and discontinuous dielectric
profiles with high contrast values.

Index Terms—Electromagnetic (EM) imaging, inexact Newton
(IN), sparse optimization, thresholded Landweber (LW).

I. INTRODUCTION

THE formulation and implementation of methods for solv-
ing inverse electromagnetic (EM) scattering problems

have been an active research topic in the last three decades due
to their applications in various fields including nondestructive
evaluation, radar and remote sensing, crack detection, through-
wall imaging, and hydrocarbon reservoir exploration. In almost
all of these applications, the nonlinearity and ill posedness of
the inverse EM scattering problem must be tackled [1].

Inversion methods can be classified depending on how they
tackle the nonlinearity. When scattered fields are weak, first-
order Born and Rytov methods [2] can be used accurately.
However, as the contrast in the investigation domain increases,
more rigorous methods have to be used. The accuracy of the re-
construction increases as one moves from extended and second-
order Born approximations and the iterative Born method [3] to
“fully” nonlinear distorted Born [4], Levenberg–Marquardt [5],
and inexact Newton (IN) [6] schemes.
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The ill posedness of the inverse problem is circumvented
via regularization schemes, which minimize a cost function
weighted between a penalty term and the L2-norm of the mis-
match between the model’s scattered fields and measurements.
The most common scheme, i.e., the Tikhonov regularization,
uses the L2-norm of the solution as the penalty term. It is
well known that this promotes smoothness in the solution. Re-
cently, sparsity-promoting regularization schemes, which use
the L0/L1-norm penalty terms, have gained popularity in signal
processing communities for linear image recovery due to their
efficiency and accuracy in recovering sparse and discontinuous
solutions [7], [8]. Their use in inverse EM scattering problems
have been only limited to linearized inversion methods [9],
which are only applicable on investigation domains populated
with low-contrast scatterers.

To this end, in this letter, a nonlinear inversion method for
the EM imaging of sparse domains is proposed. The scattering
equations are constructed using a contrast–source (CS) for-
mulation [10] since it allows both contrast and (equivalent)
source samples to be sparse at the same time (as opposed
to a contrast–field formulation where field samples are not
immediately sparse). The nonlinearity is tackled using the IN
algorithm [6]. At every IN iteration, the proposed INCS calls
for the solution of a system of equations, which involves the
Frechet derivative (FD) matrix of the discretized CS operator,
for the IN step. The sparsity regularization is enforced on this
solution via thresholded Landweber (LW) iterations. However,
a naive application of this scheme results in slow convergence
since the FD matrix’s singular values that are associated with
CS components typically vary by a few orders of magnitude.
To this end, a preconditioning procedure is applied to the
FD matrix during LW iterations. This avoids the “loss of
information” by leveling the singular values associated with
the FD matrix’s CS components. Preconditioning significantly
increases the convergence rate. Additionally, to increase the
accuracy, the weight of the regularization’s penalty term is
reduced during the IN iterations consistently with the scheme’s
quadratic convergence. At the end of each IN, an additional
thresholding, which removes small “ripples” that are produced
by the modifications in the IN step, is applied. This helps
maintain the solution’s sparsity and significantly increases the
effectiveness of the regularization.

The numerical results presented in this letter demonstrate the
superiority of the proposed sparsity-regularized INCS method
in recovering sparse and discontinuous dielectric profiles with
high contrast values.

II. FORMULATION

A. CS Formulation

Let Sd represent the support of the investigation domain
residing in the unbounded 2-D space. Let ε(r) represent the
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permittivity. Inside the investigation domain (r ∈ Sd), ε(r)
is unknown, and in the background medium, ε(r) = ε0. The
permeability of both the investigation domain and the back-
ground medium is μ0. Sd is surrounded by N t line sources.
Let Ei

i(r) represent the incident electric field generated by the
ith source. Upon illumination by Ei

i(r), the equivalent electric
current density Ji(r) is induced on Sd, and Ji(r) generates
scattered field Es

i (r). Let Ei(r) represent the total electric field.
Enforcing Ei(r) = Ei

i(r) + Es
i (r) for r ∈ Sd and noting that

Ji(r) = τ(r)Ei(r), where τ(r) = ε(r)/ε0 − 1 is the contrast,
yield [10]

Ld
i (τ, Ji) = Ji(r)− τ(r)Ei

i(r)

− k20τ(r)

∫
Sd

Ji(r
′)G(r, r′) ds′ = 0, r ∈ Sd. (1)

Here, G(r, r′) = H
(2)
0 (k0|r− r′|)/(4j) is the 2-D Green func-

tion, k0 = ω
√
ε0μ0 = 2π/λ0 is the wavenumber, ω is the

frequency, λ0 is the wavelength, and H
(2)
0 (·) is the second

kind Hankel function. Let Sr represent the observation domain,
where Es

i (r) are given by

Es
i (r) = Lr

i (Ji) = k20

∫
Sd

Ji(r
′)G(r, r′) ds′, r ∈ Sr. (2)

Equations (1) and (2) represent the well-known CS formulation
[10]. Assume that Es

i (r) measured at r ∈ Sr are known and
denoted by Er

i (r). Then, τ(r) can be obtained from Er
i (r) by

solving

L(z)− y = 0 (3)

which is constructed by cascading (1) and (2) for all sources.
Here, z(r)=[τ(r),J1(r),. . . ,JNt(r)]t, y(r)=[0,. . . ,0,Er

1(r),
. . . , Er

Nt(r)]t, and L(z)=[Ld
1(τ,J1),. . . ,L

d
Nt(τ,JNt),Lr

1(J1),
. . . , Lr

Nt(JNt)]t.

B. IN Formulation

Equation (3) describes a nonlinear relation in unknown vari-
able z(r). This suggests that it can be solved using a Newton-
type method with quadratic convergence [6]. Indeed, the IN
method has been used together with the CS formulation in solv-
ing the EM inverse scattering problem [6]. The IN iteratively
finds the zeros of (3). The iteration k of this algorithm reads

F [L(z)] |zk
(
Δz(k)

)
= y − L

(
z(k)

)
z(k+1) = z(k) +Δz(k). (4)

Here, subscript (k) indicates that the variables it is attached to
belong to IN iteration k, operator F [L(z)]|z(k)

(Δz(k)) returns
the first-order multivariate FD of L(z) evaluated at z = z(k) and
applied to Δz(k), and Δz(k) = [Δτ(k), ΔJ1(k), . . . ,ΔJNt(k)]

t

is the IN step at iteration k. Let operators ∂Ji
[Ld

i (τ, Ji)](ΔJi),
∂τ [L

d
i (τ, Ji)](Δτ), and ∂τ [L

r
i (τ)](Δτ) represent the func-

tional derivatives of Ld
i (τ, Ji) and Lr

i (τ) with respect to Ji and
τ , respectively, and operate on ΔJi and Δτ , respectively. From
(1) and (2), one can obtain the expressions of these operators as

∂Ji

[
Ld
i (τ, Ji)

]
(ΔJi)

= ΔJi(r)− k20τ(r)

∫
Sd

G(r, r′)ΔJi(r
′) ds′, r ∈ Sd

∂τ
[
Ld
i (τ, Ji)

]
(Δτ)

= Δτ(r)

⎡
⎣−Ei

i(r)− k20

∫
Sd

Ji(r
′)G(r, r′) ds′

⎤
⎦ , r ∈ Sd

∂Ji
[Lr

i (Ji)] (ΔJi)

= k20

∫
Sd

G(r, r′)ΔJi(r
′) ds′, r ∈ Sr. (5)

Additionally, Ld
i (τ, Ji) only depends on τ(r) and Ji(r), and

Lr
i (Ji) only depends on Ji(r). Therefore, ∂Jm

[Ld
i (τ, Ji)](·) =

0 and ∂Jm
[Lr

i (Ji)](·) = 0 for i �= m, and ∂τ [L
r
i (Ji)](·) = 0 for

i = 1, . . . , N t. Consequently, F [L(z)]|z(k)
is expressed in the

form of a sparse matrix with nonzero entries as follows:{
F [L(z)]|z(k)

}
i,1

= ∂τ
[
Ld
i (τ, Ji)

]∣∣
z(k){

F [L(z)]|z(k)

}
i, i+1

= ∂Ji

[
Ld
i (τ, Ji)

]∣∣
z(k){

F [L(z)]|z(k)

}
i+Nt, i+1

= ∂Ji
[Lr

i (Ji)]|z(k)
.

C. Discretization

To discretize (4), Sd is divided into Nd square cells, and Sr

is probed with Nr measurements. The centers of the square
cells and the locations of the measurement samples are denoted
by rdn, n = 1, . . . , Nd, and rrm, m = 1, . . . , Nr, respectively.
Quantities defined on Sd are approximated as

τ(r) ≈
Nd∑
n=1

{τ̄}npn(r), Ji(r) ≈
Nd∑
n=1

{J̄i}npn(r)

Δτ(r) ≈
Nd∑
n=1

{Δτ̄}npn(r), ΔJi(r) ≈
Nd∑
n=1

{ΔJ̄i}npn(r) (6)

where {τ̄}n = τ(rdn), {J̄i}n = Ji(r
d
n), {Δτ̄}n = Δτ(rdn),

{ΔJ̄i}n = ΔJi(r
d
n), and pn(r) is the pulse basis function on

cell n with support Sn and is nonzero only for r ∈ Sn with unit
amplitude. Inserting (6) into (4) and evaluating the resulting
equation at rdp, p = 1, . . . , Nd, and rrm, m = 1, . . . , Nr, yield

F̄(k)Δz̄(k) = ȳ − L̄
(
z̄(k)

)
(7)

where z̄(k) = [τ̄ t(k), J̄
t
1(k), . . . , J̄

t
Nt(k)]

t, Δz̄(k) = [Δτ̄ t(k),

ΔJ̄ t
1(k), . . . ,ΔJ̄ t

Nt(k)]
t, ȳ = [0̄t, . . . , 0̄t, Ēr, t

1 , . . . , Er, t
Nt ]t with

{Ēr
i }m = Er

i (r
r
m), and the nonzero entries of L̄(z̄(k)) and

F̄(k) are{
L̄
(
z̄(k)

)}
(i−1)Nd+p

=
{
J̄i(k)−D

[
τ̄(k)

]
Ēi

i−D
[
τ̄(k)

]
ḠdJ̄i(k)

}
p{

L̄
(
z̄(k)

)}
NtNd+(i−1)Nr+m

=
{
ḠrJ̄i(k)

}
m{

F̄(k)

}
(i−1)Nd+n,n

=
{
D

[
−Ēi

i − ḠdJ̄i(k)
]}

n,n{
F̄(k)

}
(i−1)Nd+p, iNd+n

=
{
Ī −D

[
τ̄(k)

]
Ḡd

}
p,n{

F̄(k)

}
NtNd+(i−1)Nr+m, iNd+n

= {Ḡr}m,n.

Here, {Ḡd}p,n=k20
∫
Sn

G(rdp,r
′)ds′, {Ḡr}m,n=k20

∫
Sn

G(rrm,

r′)ds′, {Ēi
i}p=Ei(rdp), and operator D[.] generates a diagonal

matrix with entries equal to the entries of the vector at its
argument.
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D. IN Iterations With Sparsity Constraint Regularization

Matrix system (7) is ill posed, and a meaningful solution
can be only obtained using a regularization scheme [1]. If
Δz̄(k) (or z̄(k)) is sparse (i.e., many entries of Δz̄(k) are zeros),
the regularization can be achieved through the solution of the
following optimization problem:

Δz̄(k)=argmin
x̄

{
0.5

∥∥ȳ−L̄(z̄k)−F̄(k)x̄
∥∥2
2
+γ(k)‖x̄‖l

}
. (8)

Here, l ∈ {0, 1} is the norm of the penalty term, and γ(k) is
its weight. For l = 0, the norm operation counts the number
of nonzero elements in vector x̄, providing information about
its sparseness. However, the L0-norm penalty term makes
minimization problem (8) nonconvex [7]. Consequently, it may
contain more than a single infimum as a solution. This issue can
be overcome by replacing the L0-norm (l = 0) with the L1-
norm (l = 1). The resulting minimization problem is the best
convex approximation to the L0-norm nonconvex minimization
problem [7]. In this letter, minimization problem (8) is solved
using truncated and thresholded LW iterations [7]. Conse-
quently, the following sparsity-regularized INCS algorithm is
proposed:

0) initialize z̄(1) = 0, γ1, δ
for k = 1, . . . , N IN

it

1) Δz̄
(1)
(k) = 0

for j = 1, . . . , N reg
it

2) Δz̄
(j+1)
(k) = T

γ(k)

l (Δz̄
(j)
(k)

+ β(k)F̄
∗
(k)[ȳ − L̄(z̄(k))− F̄(k)Δz̄

(j)
(k)])

end
3) {z̄(k+1)}iNd+1:(i+1)Nd =

T
Ai(k)

0 ({z̄(k)+Δz̄
(j+1)
(k) }iNd+1:(i+1)Nd), i=0,. . ., N t

4) γ(k+1) = δγ(k)
end

Several comments about the aforementioned algorithm are
in order. First, superscript (j) indicates that the variables it is
attached to belong to LW iteration j. Second, LW step β(k)

should satisfy 0 < β(k) < 2/σ2
1(k) for convergence. Here, σ1(k)

is the largest singular value of F̄(k). It is very accurately approx-
imated using a few power iterations applied to F̄(k). Third, the
LW iterations are “truncated” at j = N reg

it . Fourth, for l = 0,
the thresholding function used at Step 2, i.e., T

γ(k)

0 (·), is called
a hard-thresholding function, and in the complex domain, it is
defined as [8]

{
T

γ(k)

0 (x̄)
}
v
= {x̄}v

max
[
|{x̄}v| − γ(k), 0

]
max

[
|{x̄}v| − γ(k), 0

]
+ γ(k)

. (9)

For l = 1, T
γ(k)

1 (·) is termed soft-thresholding functions, and in
the complex domain, it is defined as [8]

{
T

γ(k)

1 (x̄)
}
v
=

{
{x̄}v, if |{x̄}v| >

√
2γ(k)

0, otherwise.
(10)

Fifth, at Step 4, thresholding level γ(k) is reduced by multi-
plying it with parameter δ, 0 < δ < 1. This operation helps

increase the accuracy of the solution by decreasing the weight
of the penalty term in (8) as IN iterations proceed. This is fully
consistent with the fact that IN step Δz̄(k) quadratically shrinks
to zero. The initial value of thresholding level γ(1) is determined
based on the noise level in the measured scattered field samples,
i.e., Ēr

i . Sixth, Step 3 introduces an extra thresholding to
remove the small ripples (with respect to the background) gen-
erated by the modifications in IN step Δz̄(k). Hard-thresholding

function T
Ai(k)

0 (·) is used at this step since it clears all the
ripples beneath thresholding level Ai(k). Here, Ai(k) are the

means of input vectors {z̄(k) +Δz̄
(j+1)
(k) }iNd+1:(i+1)Nd , i =

0, . . . , N t. It should be clear from this description that τ̄(k) +

Δτ̄
(j+1)
(k) and J̄i(k) +ΔJ̄

(j+1)
i(k) , i = 1, . . . , N t, are thresholded

at different levels, depending on their averages. Finally, the
aforementioned algorithm can be used when l = 2 (the L2-
norm penalty term in (8), i.e., the smooth regularization) after
replacing the thresholding at Step 2 with the identity operator
and removing Step 3.

E. Preconditioning

The naive application of the aforementioned algorithm re-
sults in very slow convergence. This is due to the fact that
z̄(k) and Δz̄(k) contain samples of the contrast and the equiv-
alent current sources, which have values that are orders of
magnitude different from each other. The effect of this scaling
mismatch is also observed in F̄ and its Hermitian conjugate
F̄ ∗. This can be seen from the matrix entries of F̄ , where
the trace of D{−Ēi

i − ḠdJ̄i} is much higher than that of
Ī −D{τ̄}Ḡd. Due to this mismatch, the first Nd singular
values of F̄ are much higher than its remaining N tNd singular
values. Because of this, the LW iterations at Step 3 of the
IN algorithm converge very slowly. This can be explained by
using singular value decomposition (SVD) filtering factors,
as it is done with Tikhonov inversion schemes [11]. Let f (i)

v

represent the vth SVD filtering coefficient at LW iteration i,
i.e., f (i)

v = 1− (1− βσ2
v)

i, where σv is the vth singular value
of F̄ , and β is the LW step, which satisfies 0 < β < 2/σ2

1 ,
where σ1 is the largest singular value. f (i)

v is a measure of
how much the component associated with the vth singular value
contributes to the solution at iteration i. f (i)

v ≈ 1 means that
the solution component associated with the vth singular value
is recovered. Now, assume that σv ≈ σ1, v = 1, . . . , Nd, and
σv 	 σ1, v = Nd + 1, . . . , Nd(N t + 1), as required by the CS
formulation. Consequently, condition f

(i)
v ≈ 1 will be obtained

for small values of i for v = 1, . . . , Nd. However, it will take
much more iterations for the same condition to be satisfied
for v = Nd + 1, . . . , Nd(N t + 1). This discussion shows that
leveling the singular values of F̄ should decrease the number of
LW iterations.

In this letter, a preconditioning scheme is proposed to al-
leviate the effect of the scaling mismatch and increase the
convergence rate of the LW iterations. First, right diagonal pre-
conditioner M̄ is computed using {M̄}v, v = 1/

√
{F̄ ∗F̄}v, v .

Then, left diagonal preconditioner P̄ is computed using pre-
conditioned matrix F̄ M̄ and its Hermitian conjugate M̄F̄ ∗:
{P̄}v, v = 1/

√
{F̄ M̄M̄F̄ ∗}v, v . Finally, M̄ and P̄ are used to

precondition F̄ and F̄ ∗ as FS = P̄ F̄ M̄ and FS∗ = M̄F̄ ∗P̄ ,
respectively.
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Then, Steps 2 and 3 of the INCS algorithm are updated as

2)Δz̄
(j+1)
(k)

= T
γ(k)

l

(
Δz̄

(j)
(k)+β(k)F̄

S∗
(k)

[
P̄ ȳ−P̄ L̄

(
z̄(k)

)
−F̄S

(k)Δz̄
(j)
(k)

])
3)

{
z̄(k+1)

}
iNd+1:(i+1)Nd

= T
Ai(k)

0

({
z̄(k) + M̄Δz̄

(j+1)
(k)

}
iNd+1:(i+1)Nd

)

respectively. Note that β(k) should now satisfy 0 < β(k) <

2/σ2
1(k), where σ1(k) is the largest singular value of F̄S

(k), and
Ai(k) are the means of input vectors {z̄(k) +
M̄Δz̄

(j+1)
(k) }iNd+1:(i+1)Nd , i = 0, . . . , N t.

It should be also added here that the LW iterations can
be accelerated using recently developed iterative shrinkage
thresholding algorithms [8]. In this letter, a two-step iterative
shrinkage thresholding algorithm is used since it increases
the convergence rate of the LW iterations with no additional
computational cost.

III. NUMERICAL RESULTS

In this section, the accuracy and efficiency of the proposed
method are demonstrated via examples where field samples
Ēr

i are obtained from actual experiments or synthetically
generated, as described next. Let τ ref(r) and J ref

i (r), and
{τ̄ ref}n = τ ref(rdn) and {J̄ ref

i }n = J ref
i (rdn) represent the ac-

tual (known) contrast and (unknown) equivalent currents in the
investigation domain and their samples. Matrix system (I −
D[τ̄ ref ]Ḡd)J̄ ref

i = D[τ̄ ref ]Ēi
i is solved for J ref

i . Then, actual
scattered field samples, i.e., {Ēref

i }m = Eref
i (rrm), are obtained

by computing Ēref
i = ḠrJ̄ ref

i . Finally, Ēr
i are generated by

adding white Gaussian noise to Ēref
i . The level of this noise

is measured in decibels using 20 log10 (SNR), where SNR
represents the SNR.

In all examples, the results are obtained by the INCS method
regularized with: 1) thresholded, truncated, and preconditioned
LW iterations with l = 1 (termed as sparse-INCS and abbrevi-
ated as “SP-INCS”); and 2) truncated and preconditioned LW
iterations with l = 2 (termed as smooth-INCS and abbreviated
as “SM-INCS”, see the sixth comment in Section II-D).

The relative norm errors in the contrast and the scattered
field samples recovered at INCS iteration k are computed
using errd(k) = ‖τ̄(k) − τ̄ ref‖2/‖τ̄ ref‖2 and errr(k) = ‖Ēs

(k) −
Ēr‖2/‖Ēr‖2. Here, Ēr = [Ēr, t

1 , . . . , Er, t
Nt ]t, and Ēs

(k) =

[Ēs, t
1(k), . . . , E

s, t
(k)Nt ]

t, with Es
i(k) = ḠrJ̄i(k).

A. Two Dielectric Pulses

The investigation domain of size 1.3343λ0 × 1.3343λ0

contains two cylindrical pulses with a radius of 0.1λ0 and a
dielectric permittivity of 3. The distance between the centers
of the pulses is represented with ds. The transmitter–receiver
configuration is described in [12]. The investigation domain
is discretized using Nd = 3025 square cells. The sparseness
level (i.e., the ratio of the number of zero samples to N ) in τ̄ ref

is 3.7%.
In the first set of experiments, ds = 0.6λ0 and Ēr

i

are generated from actual measurements provided in file
“twodielTM_8f” [12]. N reg

it = 40 for both the SP-INCS and

Fig. 1. Profiles recovered by the (a) SM-INCS and the (b) SP-INCS at k=35.

TABLE I
errd

(35)
COMPUTED FOR VARIOUS VALUES OF ds

Fig. 2. Profiles recovered by the (a) SM-INCS (errd
(35)

= 74%) and the

(b) SP-INCS (errd
(35)

= 43%) at k = 35.

the SM-INCS, and γ(1) = 0.1 and δ = 0.85 for the SP-INCS.
The solutions recovered at the SM-INCS and SP-INCS iteration
k = 35 in are shown in Fig. 1(a) and (b), respectively. This
figure shows that the image recovered by the SP-INCS is
sharper and more accurate.

In the second set of experiments, the conductivity of the
pulses increased to 0.1 S/m, and Ēr

i are synthetically generated
with 20 dB noise, whereas ds is varied between 0.3λ0 and
0.6λ0. All other parameters are kept the same. Table I lists
errd(35) computed by the SP-INCS and the SM-INCS. The error
stays reasonably low, although the pulses are only separated by
ds = 0.3λ0. For ds = 0.4λ0, the solutions recovered at the SM-
INCS and SP-INCS iteration k = 35 in are shown in Fig. 2(a)
and (b), respectively. The SP-INCS works as expected, even
when the investigation domain involves lossy scatterers.

In the last set of experiments, ds = 0.6λ0, and the noise level
in Ēr

i is varied between 20 and 5 dB. All other parameters are
kept the same as those in the second set of simulations. The SP-
INCS produced errd(35) = 35%, errd(35) = 36%, errd(35) = 42%,

and errd(35) = 49% for noise levels of 20, 15, 10, and 5 dB,
respectively.

B. Circular Ring

The relative permittivity profile of the domain and the
receiver–transmitter configuration are shown in Fig. 3. The
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Fig. 3. Actual permittivity profile and transmitter–receiver locations.

Fig. 4. (a) errd
(k)

and (b) errr
(k)

computed by the SM-INCS and the SP-INCS.

investigation domain is discretized using Nd = 2500 square
cells. The sparseness level in τ̄ ref is 3.36%. The numbers of
transmitters and receivers are N t = 12 and Nr = 52, respec-
tively. N reg

it = 60 for both the SP-INCS and the SM-INCS,
and γ(1) = 3 and δ = 0.85 for the SP-INCS. Fig. 4(a) and
(b) plots errd(k) and errr(k) computed by the SP-INCS and the

SM-INCS, respectively. As expected, errd(k) computed by the
SP-INCS converges faster than that computed by the SM-
INCS. On the other hand, errr(k) computed by the SP-INCS
converges slower. This is observed because the thresholding
applied at Step 3 modifies the original Newton solution by
further emphasizing the sparseness, which is not accessible by
the minimization problem. The solutions recovered at the SM-
INCS and SP-INCS iteration k = 35 in are shown in Fig. 5(a)
and (b), respectively. Fig. 5(a) shows that the inner circle and
the outer ring are not separated and detected as one object by
the SM-INCS. On the other hand, in the solution recovered
by the SP-INCS, the inner circle and the outer ring are clearly
identified. Once again, results demonstrate the benefits of the
sparsity constraint regularization.

Fig. 5. Profiles recovered by the (a) SM-INCS (errd
(35)

= 75.5%) and the

(b) SP-INCS (errd
(35)

= 44.1%) at k = 35.

IV. CONCLUSION

An INCS algorithm regularized with truncated and thresh-
olded LW iterations is proposed for the microwave imagining of
domains with sparse content. The accuracy and efficiency of the
proposed scheme are increased using three methods. First, the
LW iterations are preconditioned by leveling the singular values
of the FD matrix. Second, an additional hard thresholding is
applied at the end of each INCS iteration to remove the small
ripples produced by the IN step. Finally, the weight of the
L0/L1-norm penalty term is reduced during the INCS iterations
consistently with the quadratic convergence of the iterations.

Numerical results, which demonstrate the accuracy and ef-
ficiency of the proposed method in recovering sparse and
discontinuous dielectric profiles with high contrast values, are
presented.
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