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Abstract— Training convolutional neural networks (CNNs)
for very high-resolution images requires a large quantity
of high-quality pixel-level annotations, which is extremely
labor-intensive and time-consuming to produce. Moreover, pro-
fessional photograph interpreters might have to be involved in
guaranteeing the correctness of annotations. To alleviate such a
burden, we propose a framework for semantic segmentation of
aerial images based on incomplete annotations, where annotators
are asked to label a few pixels with easy-to-draw scribbles.
To exploit these sparse scribbled annotations, we propose the
FEature and Spatial relaTional regulArization (FESTA) method
to complement the supervised task with an unsupervised learn-
ing signal that accounts for neighborhood structures both in
spatial and feature terms. For the evaluation of our frame-
work, we perform experiments on two remote sensing image
segmentation data sets involving aerial and satellite imagery,
respectively. Experimental results demonstrate that the exploita-
tion of sparse annotations can significantly reduce labeling costs,
while the proposed method can help improve the performance of
semantic segmentation when training on such annotations. The
sparse labels and codes are publicly available for reproducibility
purposes.1

Index Terms— Aerial image, convolutional neural networks
(CNNs), semantic segmentation, semisupervised learning, sparse
scribbled annotation.

I. INTRODUCTION

SEMANTIC segmentation of remote sensing imagery aims
at identifying the land-cover or land-use category of each

pixel in an image. As one of the fundamental visual tasks,
semantic segmentation has been attracting wide attention in
the remote sensing community and has proven to be beneficial
to a variety of applications, such as land cover mapping,
traffic monitoring, and urban management. Recently, many
studies [1] resort to learning deep convolutional neural
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Fig. 1. Comparisons of different levels of scribbled annotations. Trees
(marked as green) are taken as an example here. Images from left to right are
(a) aerial image, (b) point-, (c) line-, (d) polygon-level scribbled annotations,
and (e) dense pixelwise labels.

networks (CNNs) with full supervision for semantic
segmentation and have obtained enormous achievements.
However, training a fully supervised segmentation CNN
requires a huge volume of dense pixel-level ground truths,
which are labor-intensive and time-consuming to generate.
Moreover, expert annotators might be needed for correctly
identifying pixels located at object boundaries and ambiguous
regions (e.g., shadows in Fig. 1).

To alleviate the requirement of dense pixelwise annotations,
semisupervised learning approaches are proposed to make
use of additional information, such as spatial relations (e.g.,
neighboring pixels are likely to belong to the same class)
or feature-level relations (e.g., pixels with similar CNN fea-
ture representations are likely to belong to the same class),
for semantic segmentation. These methods aim to utilize
low-cost annotations, such as points [2], scribbles [3], [4],
or image-level labels [5], [6]. As the first attempt, Bear-
man et al. [2] proposed to learn semantic segmentation models
with point-level supervision, where only one point is labeled
for each instance. In scribble-supervised algorithms, anno-
tations are provided in the form of hand-drawn scribbles.
Wu et al. [3] propose to learn aerial building footprint seg-
mentation models from scribbles. Maggiolo et al. [4] argue
that a network directly trained on scribbled ground truths fails
to accurately predict object boundaries and propose to employ
a fully connected conditional random field (CRF) to refine the
shapes of objects. Compared to fully annotated ground truths,
scribbled annotations [see Fig. 1(c)] are easier to generate in a
user-friendly way. In comparison with point-level annotations
[e.g., Fig. 1(b)], scribbles can provide stronger supervisory
signals. However, point- and scribble-supervised segmentation
methods remain underexplored in the remote sensing commu-
nity. To this end, we propose a simple yet effective framework
for semantic segmentation of remote sensing imagery with
low-cost annotations. In this framework, we manually create
point- or scribble-level annotations and train networks on
them. Besides, we also evaluate polygon-level annotations [see
Fig. 1(d)], which can be easily yielded and cover more pixels
than the other types of annotations. Since these annotations
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Fig. 2. Illustration of the proposed FESTA. A sample xi belonging to building
(filled with black) is taken as an example.

are sparsely distributed across the images, we call them sparse
annotations in Sections II–IV. In order to better exploit sparse
annotations, we propose a semisupervised learning method
that encodes and regularizes the feature and spatial relations.
To demonstrate the effectiveness of our learning framework,
extensive experiments are conducted on two very high resolu-
tion (VHR) data sets: the Vaihingen and Zurich Summer.

II. METHODOLOGY

A. Supervision With Sparse Annotations

In contrast to conventional dense annotations, sparse anno-
tations have two characteristics: 1) a very small proportion
of pixels are assigned semantic classes and 2) objects do not
need to be entirely annotated [see Fig. 1(b)–(d)]. This greatly
reduces the effort required from the annotators, as complex
boundaries and ambiguous pixels can be avoided.

Here, we consider three levels of sparse annotations:
point-level, scribble-level, and polygon-level. Specifically,
point-level annotations indicate that, for an annotator inter-
action, only one single pixel is labeled. Scribble-level annota-
tions, also called line-level annotations, are yielded by drawing
a scribble line within an object and assigning all pixels
along this line the same class label. Similarly, polygon-level
annotations can be generated by drawing a polygon within
an object and classifying pixels located in the polygon into
the same semantic class. Examples of these three levels of
annotations are shown in Fig. 1.

B. Feature and Spatial Relational Regularization

When using sparse annotations, the vast majority of pixels in
the training images are left unlabeled. In order to exploit both
labeled and unlabeled pixels, we develop a semisupervised
methodology, named FEature and Spatial relaTional regulAr-
ization (FESTA), to enable a semantic segmentation CNN to
learn discriminative features while leveraging the unlabeled
image pixels. An assumption shared by many unsupervised
learning algorithms [7] is that nearby entities often belong to
the same class. Based on this assumption, a recent work [8]
achieves success in representation learning by encoding neigh-
borhood relations in the feature space. Inspired by this work,
we propose to encode and regularize relations between pixels
in both feature and spatial domain, as shown in Fig. 2,
so that the learned features become more useful for semantic
segmentation.

Specifically, given a sample xi (i.e., a CNN feature vector
extracted from location i in an image), we first encode its
relations to all other samples by measuring the distance in
space and feature similarity with respect to all other fea-
tures in the image. The sample with the smallest similarity
is considered as the far-away sample in the feature space,
xi f f , while that with the highest similarity is defined as the
neighboring sample in feature space, xin f . According to the
aforementioned proximity assumption, it is highly probable

that xi and xin f belong to the same class, and thus, the distance
between them should be as small as possible. In order to
prevent a trivial solution in which all features collapse to the
same point, xi and xi f f are encouraged to further increase their
dissimilarity. We apply similar reasoning in the spatial domain
since images are smooth in spatial terms. Thus, we take the
eight spatial neighbors of xi into consideration and chose the
one most similar in feature space as the spatial neighbor, xins .
This operation is intended to prevent pairing xi with a spatial
neighbor that belongs to the object boundary.

These priors can be incorporated into the learning objectives
by using the following loss function:

LFESTA = α

N∑

i=1

D(
xi , xin f

) + β

N∑

i=1

D(
xi , xins

)

+ γ

N∑

i=1

S(
xi , xi f f

)
(1)

where D denotes the Euclidean distance and S represents
cosine similarity. α, β, and γ are tradeoff parameters rep-
resenting the significances of the respective terms, and N rep-
resents the number of pixels in a given image. By minimizing
LFESTA, xin f and xins are forced to move closer to xi , while
xi f f is pushed far from xi . In order to jointly exploit the sparse
scribbled annotations and FESTA for the network training,
the final loss is defined as

L = Lce + λLFESTA (2)

where Lce indicates the categorical cross-entropy loss calcu-
lated from pixels with annotations.

C. CRF for Boundary Refinement

To further refine the predictions of networks trained on
scribbled annotations, we integrate a fully connected CRF [9]
into our system, and the energy function of CRF model is

E =
∑

i

θu(xi) +
∑

i j

θp
(
xi , x j

)
(3)

where θu(xi) is the unary potential and calculated as θu(xi) =
− log P(xi ). Here, i ranges from 0 to the number of pixels
in the image, and P(xi ) is the label probability of pixel i .
θp(xi , x j) is utilized to measure pairwise potentials between
pixel i and j . We tested with two Gaussian kernels

k1 = exp

(
−
∥∥pi − p j

∥∥2

2θ2
1

−
∥∥Ii − I j

∥∥2

2θ2
2

)

k2 = exp

(
−
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∥∥2

2θ2
3

)
(4)

where pi and Ii indicate the position and color intensity
of pixel i . θ1, θ2, and θ3 are hyperparameters that control
the kernel “scale”. In (4), k1 is known as appearance kernel
and tends to classify neighboring pixels with similar appear-
ances [10], i.e., color intensities, into the same classes, while
k2, so-called smoothness kernel, penalizes pixels nearby but
assigned diverse labels. This step is expected to make the class
map smoother within homogeneous areas.
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III. EXPERIMENTAL RESULTS

A. Data Set Description

The Vaihingen data set2 is a benchmark data set for semantic
segmentation provided by the International Society for Pho-
togrammetry and Remote Sensing (ISPRS); 33 aerial images
with a spatial resolution of 9 cm were collected over the city of
Vaihingen, and each image covers an average area of 1.38 km2.
For each aerial image, three bands are available, near-infrared
(NIR), red (R), and green (G). Besides, coregistered digital
surface models (DSMs) are provided for all images; 16 images
are fully annotated. In total, six land-cover classes are consid-
ered: impervious surface, building, low vegetation, tree, car,
and clutter/background. In this letter, we follow the train-test
split scheme in most existing works [11], [12] and select five
images (image IDs: 11, 15, 28, 30, and 34) as the test set. The
remaining ones are utilized to train our models.

The Zurich Summer data set [13] is composed of 20 images
that are taken over the city of Zurich in August 2002 by the
QuickBird satellite. The spatial resolution is 0.62 m, and the
average size of images is 1000 × 1150 pixels. The images
consist of four channels: NIR, red (R), green (G), and blue (B).
Following previous works [14], [15], we only utilize NIR, R,
and G in our experiments and train our model on 15 images;
the others (image IDs: 16, 17, 18, 19, and 20) are utilized
to test. In total, there are eight urban classes, including road,
building, tree, grass, bare soil, water, railway, and swimming
pool. Uncategorized pixels are labeled as background.

It is noteworthy that although full pixelwise annotations are
provided for all images in the Vaihingen and Zurich Summer
data sets, we only use them in the test phase to calculate
evaluation metrics. The training of all models is done with
scribbled annotations described in the following.

B. Scribbled Annotation Generation

To annotate large-scale images, we employ an online
labeling platform, LabelMe,3 and ask annotators to draw
by following these rules: 1) for each class, annotations are
supposed to cover diverse appearances (see region (a)–(c)
in Fig. 3, where cars of different colors are annotated) and
be located in different positions of the image separately and
2) polygon- and line-level annotations are not required to
delineate object boundaries precisely [see the annotations of
trees in Fig. 1(c) and (d)]. In order to make the time spent on
each level of scribbled annotations more equivalent, we ask
four annotators (including two nonexperts) to label 7, 5, and 3
objects per class for point-, line- and polygon-level annotations
in each aerial image. As a consequence, sparse but accurate
annotations can be provided rapidly without effort. Since a
point- or line-level annotation is often located in the center
area of an object and distant from its boundary, we perform
morphological dilation on all point- and line-level annotations
with a disk of radius 3. Afterward, pixels involved in dilated
annotations are assigned the same class labels as their central
points or lines. For polygon-level annotations, pixels within
each polygon are assigned the corresponding classes.

Table I shows the average amounts of pixels with sparse
and dense annotations in both data sets. It can be seen that
sparse annotations are several orders of magnitude fewer than
dense annotations. As to the labeling time, it took on average

2http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-
vaihingen.html

3http://labelme.csail.mit.edu/Release3.0/

TABLE I

TOTAL NUMBERS OF PIXELS LABELED WITH SPARSE POINT-, LINE-, AND
POLYGON-LEVEL ANNOTATIONS (MIDDLE THREE COLUMNS) AND

DENSE ANNOTATIONS (RIGHT COLUMN) IN THE VAIHINGEN AND

ZURICH SUMMER DATA SETS

Fig. 3. Example polygon-level annotations of an image (ID: 13) on the
Vaihingen data set. Annotations of cars are zoomed in to illustrate that
annotations should include variant visual appearances for one class. Legend—

: impervious surfaces; blue: buildings; cyan: low vegetation; green: trees;
and yellow: cars.

133, 126, and 161 s per image to produce point-, line- and
polygon-level annotations, respectively, for the Vaihingen data
set and 177, 162, and 238 s per image for the Zurich Summer
data set. In Section III-D, we demonstrate the proposed method
allows improving the semantic segmentation results using
these sparse annotations. In Section III-D, we discuss the
differences observed among the tested annotation types.

C. Training Details

We segment the images with a standard fully convolutional
network (FCN) (i.e., FCN-16s [17]) and initialize convolu-
tional layers with Glorot uniform [18] initializers. Specifically,
VGG-16 is taken as the backbone, and the outputs of the
last two convolutional blocks are upsampled to the original
resolution and fused with an elementwise addition. The fused
feature maps are finally fed into a convolutional layer, where
the number of filters is equivalent to the number of classes.
In the training phase, all weights are trainable and updated
with Nesterov Adam [19], using β1 = 0.9, β2 = 0.999,
and ε = 1e−08 as recommended. We initialize the learning
rate as 2e−04 and let it decay by a factor of 10 when the
validation loss is saturated. To train the network, we define
the loss as (2), and λ is set experimentally to 0.1 and 0.01 for
the Vaihingen and Zurich Summer data sets, respectively.
Tradeoff parameters, α, β, and γ , are set as 0.5, 1.5, and 1,
to ensure that: 1) the regularizers governing feature and
spatial relations are balanced and 2) neighboring pixels in
the image space receive more attention. The network, as well
as FESTA, is implemented on TensorFlow and trained on
one NVIDIA Tesla P100 16-GB GPU for 100k iterations.
The size of the minibatch is set as five during the training
procedure. In the training phase, we use a sliding window to
crop training images into 256 × 256 patches, and its stride is
set to 64 pixels. Besides, no class-dependent configurations
are considered. In the test phase, we employ dense CRF to
refine predictions before calculating metrics. We tuned the
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TABLE II

NUMERICAL RESULTS ON THE VAIHINGEN DATA SET (%): WE SHOW THE PER-CLASS F1 SCORE, MEAN F1 SCORE, AND OA ON THE TEST SET. MEAN
AND STANDARD DEVIATION OF EACH METRIC ARE CALCULATED FROM RESULTS ON SPARSE ANNOTATIONS PRODUCED BY FOUR ANNOTATORS.

RESULTS ON DENSE ANNOTATIONS ARE PROVIDED AS REFERENCE

TABLE III

NUMERICAL RESULTS ON THE ZURICH SUMMER DATA SET (%): WE SHOW THE PER-CLASS F1 SCORE, MEAN F1 SCORE, AND OA ON THE TEST
SET. MEAN AND STANDARD DEVIATION OF EACH METRIC ARE CALCULATED FROM RESULTS ON SPARSE ANNOTATIONS PRODUCED BY FOUR

ANNOTATORS. RESULTS ON DENSE ANNOTATIONS ARE PROVIDED AS REFERENCE

parameters of dense CRF [θ1, θ2, and θ3 in (4)] on validation
images and find that satisfactory results can be achieved for
both FCN and FCN-FESTA when setting them to 30, 10, and
10, respectively. In the case of large homogeneous areas of
an image belonging to the same class, α should be set to a
small value, which encourages the network to focus more on
geographically nearby samples. Besides, large batch size and
sliding window can also help alleviate the influence of such a
scenario.

D. Comparing With Existing Methods

We compare an FCN [17] learned using the proposed
FESTA (FCN-FESTA) against an FCN learned with weighted
loss function (FCN-WL) [16] on sparse annotations. We also
report segmentation results of the baseline FCN trained on
dense labels. In addition, we study the influence of the
fully connected CRF by comparing FCN-FESTA+dCRF and
FCN+dCRF [4]. Each model is trained and validated on
sparse annotations independently. Per-class F1 scores, mean
F1 scores, and overall accuracy (OA) are calculated on test
images with dense annotations. Considering that each model
is learned on labels from four annotators, respectively, we aver-
age metrics obtained by each annotator and report them in the
form of mean ± standard deviation.

Table II exhibits numerical results on the Vaihingen data
set. FCN-FESTA+dCRF achieves the highest mean F1 scores
in training with all kinds of scribbled annotations, which
demonstrates its effectiveness. To be more specific, with the
point- and polygon-level supervision, FCN-FESTA improves
the mean F1 score by 3.95% and 3.33% compared to FCN-
WL, respectively. By refining predictions with dense CRF,
FCN-FESTA + dCRF achieves improvements of 2.38% and

4.03% in comparison with FCN + dCRF. It is interesting
to observe that line-level scribbles improve the segmentation
performance the most, and FCN-FAST + dCRF learned
with such annotations obtains the highest mean F1 score,
70.58%. Moreover, we note that FESTA can enhance the
network capability of recognizing small objects, i.e., car,
in high-resolution aerial images. Example segmentation results
of networks trained online annotations are visualized in Fig. 4.

Numerical results on the Zurich Summer data set are shown
in Table III. As can be seen, FESTA contributes to increments
of 3.92%, 1.37%, and 1.31% in the mean F1 score when train-
ing with point-, line-, and polygon-level annotations. By uti-
lizing line annotations and dense CRF, FCN-FESTA + dCRF
obtains the highest mean F1 score, 69.43%. Besides, we note
that the exploitation of dense CRF plays a significant role
in improving the results of networks trained on point-level
scribbles. Example visual results of networks trained online
annotations are shown in Fig. 5. In our experiments, we also
train networks with multiclass dice loss and find that results
are comparative to those learned with cross-entropy loss.

E. Discussion on Annotation Type

To further study the influence of annotations, we also train
baseline FCNs on dense annotations and report numerical
results in Tables II and III. As shown in Tables II and III,
line-level annotations lead to the best performance on both
data sets, even though the number of labeled pixels is an
order of magnitude smaller than polygon annotations (see
Table I). Although it was expected that line annotations would
outperform point annotations, due to their ability to capture
within-object variations, we were surprised to see that they
also outperformed polygon annotations. We suspect that this
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Fig. 4. Examples of segmentation results on the Vaihingen data set. All
models are trained on line annotations. The legend is the same as that in Fig. 3.
(a) Image. (b) Dense GT. (c) FCN-WL. (d) FCN+dCRF. (e) Ours.

Fig. 5. Examples of segmentation results on the Zurich Summer data set.
All models are trained on line annotations. Legend—black: road; :
soil; green: grass; dark green: tree; : buildingl; and : background.
(a) Image. (b) Dense GT. (c) FCN-WL. (d) FCN+dCRF. (e) Ours.

is linked to the fact that the number of pixels per object
grows quadratically for polygons and linearly for lines. This
would lead to a more balanced weighing of differently sized
objects in the case of line annotations and an underweighting
of smaller objects in the case of polygon annotations, which
could harm the model’s performance. Another reason could
be that, since drawing a line is faster than drawing a polygon,
annotators for the line features provided more scribbles in the
same time budget.

In spite of the mean F1 performance boost provided by
FESTA, there is still a large gap with respect to the FCN model
trained with dense ground truths of 13% in Vaihingen and 8%
in Zurich. This gap is, however, not evenly distributed across
the classes. The gap is smaller or nonexistent in classes, such
as water, tree, grass, or soil, which are often homogeneous
in terms of materials. On the contrary, it is larger for classes
with more diverse materials (and therefore, observed spectral
values), such as building and car (in the Vaihingen data set).
It is noteworthy to mention that the class railway, in the Zurich
data set, is systematically missed in all cases, including the
densely supervised FCN.

IV. CONCLUSION

In this letter, we propose a simple yet efficient framework
for semantic aerial image segmentation using sparse annota-
tions and a semisupervised learning objective. In order to vali-
date the effectiveness of our approach, we conduct experiments
on the Vaihingen and Zurich Summer data sets. Numerical and
visual results suggest that the proposed method contributes

to the improvement of semantic segmentation results using
several kinds of sparse annotations. Although models learned
on sparse annotations achieve relatively lower accuracies than
those using dense annotations, we show that using a semi-
supervised deep learning approach can help to close this
performance gap while leveraging sparse annotations that can
significantly reduce the costs of label generation. As future
work, the proposed framework can be further improved by
introducing graph-based models and prior knowledge learned
from label semantics.
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