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Abstract— Quick and automated earthquake-damaged build-
ing detection from postevent satellite imagery is crucial, yet
it is challenging due to the scarcity of training data required
for developing robust algorithms. This letter presents the first
dataset dedicated to detecting earthquake-damaged buildings
from postevent very high-resolution (VHR) synthetic aperture
radar (SAR) and optical imagery. Utilizing open satellite imagery
and annotations acquired for the 2023 Turkey–Syria earthquakes,
we deliver a dataset of co-registered building footprints and
satellite images of both SAR and optical data, encompassing
more than 4000 buildings. The task of the damaged building
detection is formulated as a binary image classification problem,
that can also be treated as an anomaly detection problem due
to extreme class imbalance. We provide baseline methods and
results to serve as references for comparison. Researchers can
utilize this dataset to expedite algorithm development, facili-
tating the rapid detection of damaged buildings in response to
future events. The dataset and codes together with explanations
and visualization are made available at https://github.com/ya0-
sun/PostEQ-SARopt-BuildingDamage.

Index Terms— Building damage, deep learning, earthquake,
geographic information system (GIS), large scale, openstreetmap
(OSM), remote sensing, synthetic aperture radar (SAR).

I. INTRODUCTION

EARTHQUAKES can result in substantial structural and
infrastructural damage, often with significant socioe-

conomic consequences. After an event, fast and accurate
detection of earthquake-damaged buildings in remote sensing
imagery is of great importance. Remote sensing technologies
can effectively improve the efficiency of disaster management
and have been employed to estimate the extent of earthquake
damage to buildings [1], [2], [3]. Very high-resolution (VHR)
optical images are easier to interpret, making them a preferred
choice for many studies. However, acquisition of cloud-free
optical images depends on weather conditions and often needs
to wait. In contrast, synthetic aperture radar (SAR) imagery
is particularly suitable for rapid disaster response scenarios

Manuscript received 24 March 2024; accepted 13 May 2024. Date of
publication 30 May 2024; date of current version 11 June 2024. The work of
Yi Wang was supported by the Helmholtz Association through the Framework
of Helmholtz AI. (Corresponding author: Yao Sun.)

Yao Sun is with Data Science in Earth Observation, Technical University
of Munich, 80333 Munich, Germany (e-mail: yao.sun@tum.de).

Yi Wang is with Data Science in Earth Observation, Technical University
of Munich, 80333 Munich, Germany, and also with the Remote Sensing
Technology Institute, German Aerospace Center, 82234 Wessling, Germany
(e-mail: yi4.wang@tum.de).

Michael Eineder is with the Remote Sensing Technology Institute, Ger-
man Aerospace Center, 82234 Wessling, Germany (e-mail: michael.eineder@
dlr.de).

Digital Object Identifier 10.1109/LGRS.2024.3406966

as it can be acquired regardless of cloud coverage and sun
illumination conditions. Moreover, the enhanced resolution
of contemporary SAR satellite images enables the extraction
of information at the individual building level [4], [5], [6],
comparable to VHR optical data.

Over the past years, many researchers have developed
algorithms utilizing SAR data to detect earthquake-damaged
buildings. Most works detect changes using both pre- and
postevent SAR images to acquire building damage informa-
tion [7], [8]; however, preevent high-resolution SAR imagery
is generally unavailable in most locations. A few works
simulate an SAR image using building shapes extracted from
a preevent optical image and acquisition parameters of a
postevent SAR image and detect earthquake-damaged build-
ings by comparing the simulated and real SAR images [9].
Utilizing only a single postevent SAR image, some researchers
detect damaged buildings by analyzing signatures of destroyed
buildings in high-resolution SAR data [10], [11], [12]. How-
ever, the study areas often comprise a limited number of
isolated buildings that do not depict the typical conditions
in densely populated urban areas, where partially occluded
buildings and geometric distortions in SAR images, i.e.,
foreshortening, layover, and shadowing, commonly exist.
Therefore, the question of whether a single VHR SAR image
acquired after an event can effectively identify damaged
buildings remains to be addressed. In this regard, benchmark
datasets play a pivotal role in the development and comparative
assessment of diverse methodologies aimed at addressing the
following questions: To what extent can a single VHR SAR
image, acquired postevent, allow to identify damaged buildings
and with which accuracy? Additionally, how do the outcomes
derived from a single postevent SAR image compare with
those of an optical image?

From a practical standpoint, there are several challenges
in creating such a dataset: 1) limited availability of VHR
SAR images in disaster-affected areas; 2) absence of labels
for damaged buildings; and 3) lack of accurate terrain models,
without which aligning the two is a complex task. Currently,
such a dataset does not exist in the remote sensing field.

This work presents the first dataset for detecting
earthquake-damaged buildings in postevent VHR SAR and
optical satellite imagery. We integrate publicly accessible
satellite imagery and annotations obtained following the 2023
Turkey–Syria earthquakes and construct a dataset comprising
over 4000 buildings, each with satellite image patches of both
postevent SAR and optical data and its footprint coregistered
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with the corresponding image patches. We formulate the prob-
lem of damaged building detection as an image classification
task and benchmark a set of popular machine learning and
deep learning methods as a baseline reference.

In the remaining part of the letter, Section II introduces the
dataset generation approaches, Section III presents the baseline
methods and results, and Section IV concludes the letter.

II. DATASET GENERATION

This work aims at addressing building-level damages. The
tasks of identifying pixel-level damages and classifying the
types of damages are beyond the scope of this dataset.

Considering the increasing availability of building footprint
information across various geographic locations, we integrate
preevent building footprints with postevent satellite images and
assess whether buildings at those locations are damaged. The
problem of detecting damaged buildings in postevent imagery
is therefore formulated as an image classification task with
two classes: damaged and intact buildings. We generate and
deliver a dataset comprising postevent VHR SAR and optical
image patches for each building, building footprint masks
corresponding to the image patches, and labels indicating
whether each building is damaged or intact. The image patches
and masks serve as inputs for the algorithm, while the labels
represent the ground truth.

A. Study Area and Data Sources

The study area is chosen in the city of Islahiye, located
in southeastern Turkey near the northwestern border of
Syria. On February 6, 2023, a magnitude 7.8 earthquake
struck Kahramanmaras, Turkey, followed by a 7.5 magni-
tude aftershock nine hours later. The earthquakes inflicted
widespread destruction, leading to significant damage to build-
ings, injuries, and loss of life. Islahiye was one of the most
affected areas.

After the earthquakes, a set of high-resolution satellite data
were released under CC BY 4.0 license1 to support rescue
operations by commercial remote sensing companies, such as
Maxar and Planet Lab for optical data, and Capella Space
in the SAR domain. During the humanitarian relief efforts,
communities across the globe, such as OSM and UN map-
pers, organized labeling events and identified and validated a
significant number of damaged buildings.

We utilize the spotlight SAR image from Capella Space,
acquired on February 9, 2023. The SAR image is of type
Geocoded Terrain Corrected (GEO),2 with a pixel spacing
of 0.35 m in both the azimuth and the range direction. The
incidence angle of this SAR image is 43.1◦. Fig. 1 shows
the image coverage and zoomed-in views of selected areas.
The optical image covering the same area was obtained from
Maxar analysis-ready data (ARD) under Maxar’s open data
program. The image was acquired on February 7, 2023 by
WorldView-3, with a ground sampling distance of 0.31 m
and an incidence angle of 83.1◦. In addition, we obtained

1https://creativecommons.org/licenses/by/4.0/
2https://support.capellaspace.com/hc/en-us/articles/360039702691-SAR-

Data-Formats

Fig. 1. SAR image coverage and zoomed-in views of three areas in the
colored boxes in the SAR image, respectively.

Fig. 2. Examples of four study areas in the SAR image. Building
footprint polygons before and after registration are plotted in red and green,
respectively.

postevent building footprints and labels of destroyed buildings
in the study area from Humanitarian OpenStreetMap Team3.4

Since we consider both SAR and optical images, all used data
are chosen or projected to the Universal Transverse Mercator
(UTM) coordinate system so that they can be processed
uniformly. The SAR image is logarithmically scaled in dB
for further processing.

B. Coregistration of Building Footprints and Satellite
Imagery

Building-level analysis requires accurate registration of 2-D
building footprints with satellite images. The ARD optical
image aligns well with building footprints, requiring no addi-
tional registration. For the GEO SAR image, inspection shows
that building polygons are not well-matched with the SAR
image, as shown in the first row of Fig. 2, and further
registration is needed.

In urban areas, the geocoding errors in SAR data are often
caused by inaccurate terrain heights, as illustrated in Fig. 3(a).
A height error δH causes an error of δL in the slant range
and a shift of δG on the ground. For the used SAR image, the
incidence angle is 43.1◦; thus, a height error of 10 m results in
an error of 10.69 m on the ground, causing errors of δx and δy
in the geocoded image related to the flight direction, as shown
in Fig. 3(b). The height error δH is usually inconstant over the
observed area by the SAR sensor; hence, so are the geocoding
errors.

To improve the alignment of building polygons and the SAR
image, we apply the algorithm developed in [13], which relies
on the corresponding building features representing the bottom
of sensor-visible walls in both the two data, i.e., double bounce
lines in the SAR image and near-range boundaries of 2-D

3https://data.humdata.org/dataset/hotosm_tur_buildings
4https://data.humdata.org/dataset/hotosm_tur_destroyed_buildings
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Fig. 3. Geocoding error from inaccurate height. (a) Ht and H f are the
accurate height and inaccurate height of a point, and θ is the incidence angle.
The height error δH results in an error of δL = δH cos θ in the slant range
and δG = δH cot θ on the ground. (b) Geocoded image, δG is decomposed
to δx and δy in the image coordinate system.

Fig. 4. Building signature in SAR imagery and building’s geometric
correspondence between SAR and building polygon: the near-range side of
the building footprint corresponds to the double bounce line in the SAR
image, which is the far-range side of the facade signatures [13].

building polygons, as illustrated in Fig. 4. As the majority of
buildings remain upright, with expected double bounce line
signatures on the SAR image, the algorithm is applicable.
Interested readers are referred to [13] for more details. Next,
we briefly explain the main steps of the algorithms.

1) Extracting Corresponding Features: In the SAR image,
double bounce lines correspond to the far-range side of the
bright building signature. The SAR image is first segmented
using Potts model [14]. Then, an intensity threshold and an
area threshold are applied to select building wall segments.
Subsequently, the boundary of wall segments is extracted, and
the visibility check is performed to extract the double bounce
lines caused by the wall segment boundary.

In the building polygons, the segments in the near-rage
side of building polygons are extracted from each footprint,
which in 3-D represent the bottom of illuminated or partially
illuminated walls.

2) Registering Corresponding Features: two point sets, GIS
points (from building polygons) and SAR points, are then
sampled in the extracted features from both data, and the reg-
istration problem is reduced to determine the correspondence
and the underlying spatial transformation between two point
sets.

Feature registration consists of three progressive steps:
global registration, subarea registration, and polygon registra-
tion, and the rigid registration in each step is solved with the
iterative closest point (ICP) algorithm [15]. Global registration

uses rough height values for an initial alignment of the two
data, ensuring that the residual shift falls within a manageable
range. Then, a set of grids, i.e., subareas, is evenly distributed
over the whole region. The distance between one GIS point
and its closest SAR point is calculated for all points. If the
distribution of all distances within one subarea shows a clear
center, the δH in each grid is considered to be constant, and
subarea registration is conducted. When the distribution of
all distances does not show a clear center, the constant δH
assumption does not hold, and the registration proceeds to
the polygon level, i.e., finding a rigid transformation for each
polygon.

Since the SAR image, i.e., the GEO product, has been
terrain corrected, we neglect global registration and perform
subarea and polygon registration. Afterward, manual valida-
tion and editing with expert knowledge are conducted to ensure
precise registration, relying on identifying double bounce lines
and the assumption of no abrupt terrain changes for editing
buildings with unclear double bounce lines [13]. For individ-
ual buildings, we estimate a maximum registration error of
5–6 pixels (approximately 2 m) that is sufficient for locating
individual buildings. Fig. 2 shows building polygons on the
SAR image in exemplary areas before and after registration.
As can be seen, the registration procedure effectively aligns
the two datasets. Note that buildings in the mountainous area
on the west side of the city (e.g., in or near the red box in
Fig. 1) are excluded due to unclear signals in the SAR image,
posing challenges for registration verification.

C. Patch Generation

For each building, we crop the SAR image and the optical
image based on the area of the building, considering including
the target building area, i.e., footprint, wall, and roof, as well
as the possible ruins around the target building and excluding
surrounding buildings.

For side-looking SAR images, layover areas of buildings
extend from building footprints toward the near-range direc-
tion. Therefore, when cropping SAR image patches, a buffer
size of 10 pixels, i.e., around 3.5 m, is counted for far-range
sides, and for near-range sides, an additional buffer size is
counted to include layover areas of the target building in the
image patch. Specifically, the layover length corresponding
to 50 m building height in the ground range direction is
decomposed to the image x- and y-directions and added to
the buffer size. The optical image has a small off-nadir angle
of 6.3◦, resulting in a minor offset between the roof outline
and the corresponding 2-D building footprint when the image
is not perfectly orthorectified. To ensure that the image patches
include the entire building roof, we apply a 16-pixel buffer to
compensate for the offset, which is approximately 5 m. This
buffer is slightly larger than the one used when cropping the
SAR image from the near-range side, and it is used to crop
the optical image around the bounding box of the building
footprint polygons.

In addition, for each building, its footprint mask is generated
corresponding to the SAR patch and the optical patch, respec-
tively. For side-looking SAR data, it is necessary to include
the footprint mask to help locate the target building, as the
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Fig. 5. Examples of the dataset (a), (b), (c) are intact buildings, and (d),
(e), (f) are damaged buildings.

SAR patch may include signals of surrounding buildings. For
nadir-looking optical data, footprint masks are included for a
fair comparison with the SAR data.

Among the 4029 buildings, 169 are damaged, and the
remaining 3860 buildings are intact. Consequently, the dataset
contains 169 damaged buildings and 3860 intact buildings, and
each of them has four patches: an SAR image patch, an SAR
footprint patch, an optical image patch, and an optical footprint
patch. Fig. 5 shows examples of the dataset on six buildings,
of which three are intact and three are damaged.

III. EXPERIMENTAL RESULTS

We benchmark an image classification task with two classes:
damaged and intact buildings. Due to the significant class
imbalance, it can also be viewed as an anomaly detection task,
i.e., detecting damaged buildings within the entire dataset.

A. Baseline Approaches

Four models are introduced to establish a benchmark: sup-
port vector machine (SVM), random forest (RF), three-layer
convolutional neural network (CNN), and ResNet-18 [16].

SVM and RF are selected for their good performance in
many applications, including classifying collapsed and stand-
ing buildings from postevent SAR imagery as reported in [11].
To extract features as the input, we mask out nonbuilding
pixels with footprints, and follow the setup proposed in [11],
which employs four first-order statistics, i.e., mean, variance,
skewness, and kurtosis, and eight second-order image statis-
tical measures, i.e., mean, variance, homogeneity, contrast,
dissimilarity, entropy, second moment, and correlation. For a
detailed explanation, the readers are referred to [11].

A simple three-layer CNN and a ResNet-18 are selected
as the deep learning backbones. The simple CNN consists of
three convolution-ReLU-maxpool blocks, followed by average
pooling, a linear layer with dropout, and a final classification
layer. We stack image and building footprint as the input. The

ResNet-18 follows the standard design in [16], with which
we benchmark both early and late fusion results of images
and building footprints. For late fusion, images and building
footprints are encoded by separate encoders, and the feature
vectors are concatenated together to a following linear layer
with dropout and a final classification layer. Apart from single-
modal results, we also conduct a late fusion experiment with
both SAR and optical data as a multimodal reference.

B. Evaluation Metrics

To evaluate the performance of the baseline methods,
we report the precision, recall, and F1 scores

P =
tp

tp + fp
, R =

tp
tp + fn

, F1 = 2 ·
P · R

P + R
(1)

where P and R denote the precision and recall, and tp, fp, tn,
and fn represent true positives, false positives, true negatives,
and false negatives for buildings, respectively. The thresholds
for positive/negative are determined by best F1 scores.

In addition, we report the area under the receiver-operator
curve (AUROC), a standard metric in anomaly detection tasks
that well reflects the model’s efficiency in distinguishing
between classes. The AUROC score summarizes the ROC
curve into a single number that describes the performance of
a model for multiple thresholds at the same time.

C. Implementation Details

We conduct cross-fold experiments for a robust evaluation
on the relatively small dataset. Specifically, we split the dataset
into five folds with a balanced number of damaged and intact
buildings, and run each experiment five times with four folds
training and one fold testing. The mean and standard deviation
are calculated and reported for every evaluation metric.

We preprocess the images by removing 2% pixel outliers
and normalizing the pixel values to the range [0, 1]. For
simple CNN, we randomly initialize the model; for ResNet-18
early fusion, we use pure ImageNet weights; for ResNet-18
late fusion, we use ImageNet weights for optical images and
footprints, and SAR-HUB [17] weights for SAR images. We
use random resized crop and random horizontal and vertical
flip as data augmentations. To deal with the significant class
imbalance, we give a bigger weight to damaged buildings
and a smaller weight to intact buildings during data sampling.
We optimize binary cross entropy loss with AdamW optimizer
for 30 epochs. The learning rate follows a cosine-decay
schedule starting from 0.0001. Batch size is set to 32.

For the statistic features used by the two machine learning
methods, we calculated the features of image patches based
on the implementation of or PyFeats.5 For calculating the
evaluation metrics, we use the implementation in scikit-learn.6

D. Performance Comparison

Table I illustrates variations in performance across different
models on the dataset. In general, deep neural networks

5https://github.com/giakou4/pyfeats
6https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_

score.html
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TABLE I
BENCHMARK RESULTS ON THE DATASET: FIVE-FOLD MEAN(STD). THE HIGHEST VALUES OF DIFFERENT METRICS ARE HIGHLIGHTED

IN BOLD FOR EACH SET OF UTILIZED DATA. EARLY FUSION IS NOTED AS EF, WHILE LATE FUSION IS NOTED AS LF

outperform SVM and RF in both SAR and optical scenarios.
For the SAR image, ResNet-18 underperforms simple CNN
regarding all four metrics with early fusion and ImageNet
weights, indicating the optimization challenge of complex
SAR data. This issue is resolved with proper weight initializa-
tion from SAR-HUB (around 10% improvement in AUROC
and F1 scores), highlighting the importance of SAR pretrained
models such as provided in [17].

For the optical image, ResNet-18 with late fusion stands out
with the highest recall, F1 score, and AUROC. It outperforms
other models across these three metrics. ResNet-18 with early
fusion gave best precision. The other deep learning model,
CNN, demonstrates a balance between precision and recall,
resulting in a high F1 score and an impressive AUROC
of 0.853. RF attains high precision at 0.611 but a relatively
lower recall rate. In contrast, SVM yields less favorable
outcomes compared to other models.

Comparing different modalities, we can see that SAR
images are more challenging for all models and generally show
lower performance. However, well-designed SAR models,
e.g., ResNet-18 with SAR-HUB weights, outperform inferior
optical models such as SVM.

In addition, the fusion of SAR and optical imagery pro-
vides further improvement compared to each single modality,
confirming the complementary information across different
modalities.

IV. CONCLUSION

Detecting earthquake-damaged buildings in postevent satel-
lite imagery is essential yet challenging. This study introduces
a dataset designed to address the issue and to foster the devel-
opment of robust algorithms. The dataset combines postevent
SAR and optical satellite images with labels of damaged and
intact buildings, and the problem is formulated as an image
classification task. We provide a benchmark on both modalities
with different baseline methods and a baseline of fusing
optical and SAR data. Results show that detecting damage
from postevent SAR images is valuable and possible but more
challenging than optical images. Such findings call for further
research on improved methods, in particular on SAR images.
In addition, the performance gain through simple SAR-optical
fusion verifies the potential in using multimodal data when
they can be acquired following an event.

Constrained by limited data quantity and data imbalance,
this dataset serves as a starting point. The dataset will undergo
expansion and updates as new data emerges in the future.
We hope that the research community will engage in further
algorithm development for post-earthquake-damaged building

assessment in SAR images and, where feasible, share their
data, thus expediting the identification of postdisaster damaged
structures.
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