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A Method for Detecting Aircraft Small Targets in
Remote Sensing Images by Using CNNs

Fused With Handcrafted Features
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Abstract— Aircraft target detection is a challenging task in
remote sensing images, especially for aircraft small target detec-
tion. The most advanced object detection framework currently
processes all information in the image uniformly through a
deep neural network. In the past, in the process of detecting
aircraft small targets, the feature extraction process was carefully
designed, and handcrafted features were derived from expert
knowledge or historical data, which included prior knowledge
that was conducive to object detection. Embedding prior features
into deep neural networks can enhance the saliency of target
information and improve the detection performance of the model.
Accordingly, this letter proposes a handcrafted feature fusion
stream (HFFS) for embedding prior knowledge. We obtain
handcrafted features based on the grayscale co-occurrence matrix
and edge extraction operator and generate an attention map in
deep convolutional neural networks (CNNs) to achieve the fusion
of handcrafted feature maps and high-level feature maps in deep
convolutional networks. The experimental results show that using
HFFS on the baseline model improves the detection performance
of the model for aircraft small targets. Compared with the
baseline model, our detection model achieves improvements of
1.1% AR, 1.6% AP@0.5, and 1.6% AP @(.5:0.95 in the proposed
dataset.

Index Terms— Aircraft target, feature fusion, handcrafted
feature, remote sensing, small object.

I. INTRODUCTION

EMOTE sensing technology is constantly developing and

has been widely applied in various fields such as military,
agriculture, and transportation. Remote sensing image object
detection, as a fundamental issue, is the foundation of various
remote sensing applications. Before the introduction of RCNN
in 2014, in the mainstream methods of remote sensing image
object detection, the quality of manually designed features
played a decisive role in the detection performance of the
final model. The process of handcrafted feature design is
deeply influenced by visual saliency, and low-level vision and
more detailed manual features are commonly used to improve
positioning accuracy [1]. With the development of deep learn-
ing algorithms, large-scale datasets, and high-performance
computing hardware, many methods based on deep learning
have been applied to remote sensing image object detection.
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Small targets are very common in remote sensing object
detection. On publicly available datasets such as COCO [2],
there is still a significant performance gap between small
objects and normal objects. Co-DETR [3], one of the state-of-
the-art detectors, as an example, the mean average accuracy
(mAP) of small objects on the COCO validation set obtained
by Co-DETR is only 45.1%, lagging behind medium- and
large-size objects (64.7% and 76.4%, respectively). Artificial
design of feature extraction operators can emphasize the target,
so we believe that prior features can be used to construct
attention mechanisms to help improve the performance of
DCNN in detecting aircraft small targets in remote sensing
images.

In this article, we investigate the method of integrating
handcrafted features into deep convolutional networks and
propose a new module called handcrafted features fusion
stream (HFFS). The HFFS module, as a branch, is obtained
by combining handcrafted feature fusion (HFF) layers and
convolutional layers. The HFFS module performs shallow
processing on the handcrafted feature map and integrates infor-
mation with the deep layers of the baseline network. Our HFFS
module can be inserted into other convolutional neural network
(CNN)-based neural networks. We used YOLOVS, one of the
mainstream models, as the baseline model. The experimental
results showed that compared to the baseline network, the
model with HFFS improved its detection performance for
aircraft small targets.

The main contributions of this article are summarized as
follows.

1) A detection model HFF-YOLO based on feature fusion
is proposed, which uses handcrafted features to improve
the detection performance.

2) An HFFS branch structure is proposed, which combines
handcrafted features and automatic learning features
through an attentional mechanism.

3) A new aircraft small target dataset has been proposed,
which includes multiple aircraft categories and scene
categories.

II. RELATED WORK
A. Aircraft Detection in Remote Sensing Images

Before 2014, the main steps of remote sensing object
detection methods included proposal box generation, feature
vector extraction, and region classification. Common hand-
crafted features include geometric features, texture features,
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moment features, scanning statistical features, scale-invariant
features [4], and HOG features [5]. These feature extraction
operators are a summary of a large number of experiments
and practical experiences and have been widely applied and
confirmed in practice. At present, the mainstream algorithm for
object detection in remote sensing images is based on CNN,
and the feature extraction process is completely automated
by deep neural networks. Anchor-based methods, such as
R-CNN family methods [6], YOLO family methods [7], [8],
and RetinaNet [9], achieve aircraft detection in remote sensing
images by predicting anchor box belonging to the target. Some
methods predict key points belonging to the bounding box for
aircraft detection, such as [10], However, there are dense and
symmetrically distributed aircraft in remote sensing images,
and clustering these key points is difficult.

For aircraft small target detection, Wang et al. [11] mod-
eled the bounding boxes as 2-D Gaussian distributions and
proposed a new evaluation metric using Wasserstein distance
for small object detection. Yuan et al. [12] proposed coarse-to-
fine RPN (CRPN) and the conventional detection head with a
feature imitation (FI) branch to ensure high-quality proposals
and region representations for small objects.

YOLOVS was released in January 2023 by Ultralytics [13],
the company that developed YOLOv5. YOLOvV8 uses a C2f
module (cross-stage partial bottleneck with two convolutions),
decoupled head, CloU [14], and DFL. [15] loss functions for
bounding box loss and binary cross entropy for classification
loss. These improvements have improved object detection
performance, particularly when dealing with smaller objects.

B. Feature Fusion in Object Detection

There is currently limited research on the fusion of manually
designed features and deep learning automatically extracted
features. Zhang and Zhang [16] have conducted a preliminary
discussion on the possibility of injecting traditional hand-
crafted features into CNN, and experiments have shown that
injecting handcrafted features into CNN models can effectively
improve classification accuracy.

The fusion of automatically extracted features at different
scales has been extensively studied and used in several detec-
tion methods, such as FPN [17], PANet [18], DetectoRS [19],
CO-DETR [3], AAHRH [20], YOLOVS [21], and YOLOVS8
[21]. The main idea of feature fusion in these methods is
to fuse features of different scales by feature pyramid or by
attention weighting. The objects incorporated in these studies
are all automatically extracted features.

The mainstream object detection methods tend to learn
features in data automatically, but the fusion of automatically
extracted features and handcrafted features is relatively less
studied. However, in some cases, combining handcrafted fea-
tures with those learned from deep learning models can further
improve detection performance. In this letter, feature fusion is
carried out from another perspective. Handcrafted features are
introduced into the fusion step, and this method can coexist
with FPN, PAN, and other methods for fusing automatically
extracted features.

Zhang et al. [22] proposed a feature fusion method that
combines HOG features with principal component analysis
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and deep learning fully connected layers to improve the ship
classification performance of the model. Saba et al. [23]
concatenated the features obtained from VGG-19 with HOG
and LBP features and used multiple classifiers for brain tuner
classification. Liu et al. [24] proposed a spectral—spatial fusion
method to improve the classification accuracy for multispectral
and hyperspectral images.

The closest research to this letter is literature [25], where
researchers proposed a two-stream CNN architecture for
semantic segmentation, called GSCNN. Utilize multitasking
learning to achieve the supervision of handcrafted features on
object boundary prediction, thereby improving the accuracy
of semantic segmentation. Our proposed HFFS is also a
two-stream architecture that utilizes the saliency of hand-
crafted features to construct an attention mechanism and
improve the detection performance of the baseline model.

III. PROPOSED METHOD

This letter proposes a method for fusing handcrafted fea-
tures with automatic learning features in deep convolutional
networks. We adopt the YOLOv8 as the baseline network,
and each module is described in detail next.

A. Network Structure

We use YOLOVS as the baseline model. We propose an
aircraft small target detection network HFF-YOLO that can
fuse features, as shown in Fig. 1. In addition to the orig-
inal image as input, we use the feature extraction operator
to extract the feature maps of the handcrafted feature and
downsample to the same scale of the deep learning feature
map after normalization. There are three HFF layers in the
HFFS structure, corresponding to the number of detection
heads in the baseline model. The feature maps after each layer
of HFF processing are used as the partial input of the next
fusion and the partial input of the detection head. The network
architecture can be seen as two streams: one is the original
deep convolutional network feature processing stream, and the
other is the stream that processes handcrafted features. The
output of the handcrafted feature stream is concatenated with
the input of the original detection head as the new input of
the detection head.

B. Handcrafted Features

The size of traditional features is often different. In the
fusion model proposed in this letter, it is required that the
traditional feature map is 2-D for convolution and other
operations. In remote sensing images, there are fewer details
and textures of aircraft small targets, but the contour texture is
still preserved. Therefore, we obtain handcrafted feature maps
based on gray-level co-occurrence matrix (GLCM) [26] and
edge extract operators. The GLCM is a matrix that describes
the grayscale relationship between a certain pixel in an image
and adjacent pixels or pixels within a certain distance. Based
on GLCM, various texture description features have been
derived.

This letter selects contrast, dissimilarity, homogeneity, angu-
lar second moment (ASM), entropy, and standard deviation.
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Fig. 2. Handcrafted features map.

The edge extract operator is extracted through Sobel, Canny,
and Laplacian operators.

The handcrafted features map is shown in Fig. 2. The feature
map of the final input HFF is the normalized result.

C. HFF Model

In the traditional self-attention mechanism, the input of
query (Q), key (K), and value (V) comes from a unified feature
map. In asymmetric nonlocal neural network (ANN) [27],
the input of Q, K, and V in the AFNB module proposed
by the author comes from different layers, and experiments
have shown that this structure better integrates features of
different scales. Inspired by this, we use the feature map
from handcrafted feature stream as input for Q and feature
map from baseline as input for K and V. We define the feature
maps from the handcrafted feature stream as A, and the
feature maps from the baseline as By, and the standard 1 x 1
convolutional layer is defined as C;«;. Then, Q, K, and V are
calculated as follows:

0 =Cia(Ay),

K =Cii(By), V=Cra(By). ()
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self-attention calculation method, as shown in (2) [28], where
¢y represents the number of channels in K

a = softmax (QK" //cx). (2)

Simultaneously introducing residual connections to reduce
overfitting and gradient vanishing issues, the output of the final
HFF module can be expressed as

out = Reshape(V) x o + V. 3)

The higher the attention score of a certain point, the higher
the degree of correlation between the point and Q. The HFF
module can achieve attention on parts of high-level activation
that are more relevant to prior knowledge. The HFF module
structure is shown in Fig. 3.

IV. EXPERIMENTS
A. Experimental Data and Evaluation Metrics

The AI-TOD [29] is a dataset used for small object detec-
tion, we select images that contain aircraft targets. Considering
that the actual aircraft target still has flight status, we have
added some small target data for flight status. The image
source for the newly added data comes from WorldView,
which includes different types of backgrounds such as forests,
clouds, and cities. The final dataset used for this experiment
consists of approximately 1600 images, with an object instance
count of approximately 2100 and an image size of 640 x
640 pixels. Most of the targets in the dataset are smaller than
32 x 32 pixels.

We use average recall (AR) and average precision (AP)
under different intersection over union (IoU) as evaluation
indicators to measure the detector performance. AR and AP
are calculated based on precision (P) and recall (R)

1
R(IoU)d (IoU).
.5

1
AP =/ P(R)d(R), AR = 2/ )
0 0.

B. Training and Test Details

When training the model, Adam [30] was used as the
optimizer, with a batch size of 2 and a total of 100 epochs.
Both the baseline model and the improved model use the
OneCycleLR [31] method to accelerate the convergence of
the training process. The initial learning rate is 0.001, and the
maximum learning rate is 0.1. Train using an E5-2630 v3 CPU
and a single RTX-4080 GPU. All detection models are trained
and tested under the same hardware conditions.
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TABLE I
COMPARISON OF DETECTION RESULTS ON THE DATASET

Network Fusion method AR@0.5:0.95 AP@0.5 AP@0.5:0.95 APys@0.5:0.95 APs@0.5:0.95 APy@0.5:0.95
Faster rcnn [6] FPN 53.1% 70.4% 50.8% 5.5% 58.8% 78.0%
Cascade R-CNN [32] FPN 54.3% 71.7% 52.0% 6.5% 59.4% 79.6%
Co-DETR [3] FPN 36.2% 58.3% 30.3% 2.5% 24.7% 56.1%
Retinanet [9] FPN 56.4% 72.9% 52.4% 3.6% 56.3% 82.1%
CFINet [12] FPN 53.5% 72.5% 50.6% 8.0% 54.2% 77.0%
DetectoRS [19] RFP 54.7% 72.3% 52.6% 7.3% 60.1% 80.2%
NWD [11] RFP 56.2% 73.6% 53.7% 8.7% 61.5% 80.5%
PANet [18] PAN 52.5% 71.4% 50.4% 4.9% 57.1% 78.5%
YOLOVS [21] PAN 58.0% 72.9% 55.7% 12.0% 62.6% 80.8%
YOLOv8 [21] PAN 64.4% 77.8% 60.9% 17.1% 68.4% 85.7%
HFF-YOLO (3) PAN+HFFS 63.4% 77.3% 60.6% 17.4% 68.7% 83.8%
HFF-YOLO (5) PAN+HFFS 64.2% 77.9% 61.2% 17.9% 68.5% 85.4%
HFF-YOLO (7) PAN+HFFS 64.9% 78.6% 62.0% 18.6% 69.9% 85.3%
HFF-YOLO (9) PAN+HFFS 65.5% 79.4% 62.5% 19.5% 69.9% 86.0%

The number after “HFF-YOLO” represents the number of hand-crafted features selected.

Fig. 4. Example results on the test set. (a) Ground truth. (b) NWD. (c¢) YOLOVS. (d) HFF-YOLO.

C. Main Results and Analysis

We compared the proposed method with current mainstream
methods and the baseline model using the dataset proposed in
this article, and the experimental results are shown in Table I.

The experimental results show that compared with the
baseline model, the model detection performance improved
after adding the HFFS module, and it also has competitive per-
formance compared to current mainstream models. YOLOvS8
uses the idea of PAN for feature fusion, but it does not conflict
with the method proposed in this article. Based on YOLOVS,
the method proposed in this article can further improve the
detection performance. YOLOvV8 improves the optimal results
by 1.1% in AR, 1.6% in AP@0.5, and 1.6% in AP@0.5:0.95.
Compared with the mainstream model, HFF-YOLO not only
fuses automatically extracted features of different scales but
also uses an attention mechanism to introduce handcrafted
features into the feature fusion process so that the model has
the best detection ability for small targets. When the number

of handcrafted features exceeds 7, HFF-YOLO achieves better
performance than other models.

In mainstream datasets, such as the COCO dataset, any pixel
count below 32 x 32 is considered a small target. In order to
evaluate the detection performance of the algorithm on small
targets in more detail, this article regards the target pixels
in the range of (0, 16 x 16) as a very small target, (16 x
16, 32 x 32) as a small target, (32 x 32, 96 x 96) as a
medium target, and (96 x 96, +00) as a large target. It is
important to note that there are no large targets in the data
used in this experiment. Table I also shows the performance
of different algorithms on very small target, small target, and
medium target in AP@0.5 0.95. In Table I, APys@0.5:0.95,
APs@0.5:0.95, and APy @0.5:0.95 correspond to very small
target, small target, and medium target, respectively. The
detection performance of HFF-YOLO on very small tar-
gets is better than that of the baseline model, improving
by 2.4%.
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To further analyze the effectiveness of the method proposed
in this article, the results of YOLOv8 and HFF-YOLO are
compared. As shown in Fig. 4, due to the attention of hand-
crafted features, the features of small targets are not easily
submerged by background information, and HFF-YOLO can
detect targets even when the targets are very small.

More experiments and results are available at
https://github.com/heitong Yulj/HFF-YOLO.

V. CONCLUSION

In the past, there have been few studies on how to use
handcrafted features to enhance aircraft small target detection.
We propose a module HFFS that integrates handcrafted fea-
tures and deep learning automatic features, which is embedded
in the backend of deep convolutional networks in the form of
branches. HFFS utilizes the prior properties of handcrafted
features to achieve attention to high-level features of deep
convolutional networks, which is a knowledge and data-driven
approach. Compared with the baseline model, our detection
model shows higher performance in the aircraft small target
detection dataset proposed in this letter, with an improvement
of 1.1% AR, 1.6% AP@0.5, and 1.6% AP@0.5:0.95. For
very small targets in the dataset, AP@0.5:0.95 increased
by 2.4%.
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