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Confident Naturalness Explanation (CNE):
A Framework to Explain and Assess

Patterns Forming Naturalness
Ahmed Emam , Mohamed Farag , and Ribana Roscher , Member, IEEE

Abstract— Protected natural areas characterized by mini-
mal modern human footprint are often challenging to assess.
Machine-learning (ML) models, particularly explainable meth-
ods, offer promise in understanding and mapping the naturalness
of these environments through the analysis of satellite imagery.
However, current approaches encounter challenges in delivering
valid and objective explanations and quantifying the contribution
of specific patterns to naturalness. These challenges persist due
to the reliance on hand-crafted weights assigned to contributing
patterns, which can introduce subjectivity and limit the model’s
ability to capture relationships within the data. We propose the
confident naturalness explanation (CNE) framework to address
these issues, integrating explainable ML and uncertainty quantifi-
cation. This framework introduces a new quantitative metric to
describe the confident contribution of patterns to the concept of
naturalness. Additionally, it generates segmentation masks that
depict the uncertainty levels in each pixel, highlighting areas
where the model lacks knowledge. To showcase the framework’s
effectiveness, we apply it to a study site in Fennoscandia,
utilizing two open-source satellite datasets. In our proposed
metric scale, moors and heathlands register high values of 1 and
0.81, respectively, indicating pronounced naturalness. In contrast,
water bodies score lower on the scale, with a metric value of 0.18,
placing them at the lower end.

Index Terms— Explainable machine learning (ML), natural-
ness index, pattern recognition, remote sensing, uncertainty
quantification.

I. INTRODUCTION

PROTECTED natural areas are regions of the Earth that
have remained largely untouched by significant human

intervention, such as urbanization, agriculture, and other
human activities [1]. These areas are characterized by their
preserved and authentic state, and they boast high levels of
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biodiversity and provide numerous ecological benefits. They
also offer unique opportunities to study natural ecosystem
processes, including water and pollination cycles, in their
unaltered form. To maintain the authenticity of these areas,
it is crucial to conduct careful and comprehensive mapping
and monitoring efforts. One obstacle, however, is the vague
definition of the land cover class, which prevents a com-
prehensive mapping. Nevertheless, these efforts help reveal
the complex geo-ecological patterns essential for preserving
these regions’ naturalness. As a result, the monitoring and
understanding of natural areas have gained significant attention
in both remote sensing and environmental research fields
recently [2], [3]. Satellite imagery emerges as an effective
technique for consistently observing vast protected natural
expanses, which can be challenging for humans to access.
This technology enables efficient and cost-effective data
collection while minimizing disturbances to delicate ecosys-
tems. By using machine-learning (ML) models, specifically
convolutional neural networks (CNNs), it becomes possible
to accurately classify natural regions by analyzing satellite
imagery datasets.

In previous studies on naturalness analysis, such as [4]
and [5], the quantification of naturalness has been done by
defining a feature-engineered modern human footprint index
within a predefined range of 0–10. These studies use proxies
like railways, electric power structures, and population den-
sity to assess the impact of human activity. Our approach
distinguishes itself by specifically focusing on naturalness as
the primary concept of interest and assessing and explaining
the underlying patterns that contribute to it. With a similar
goal, though a different approach, explanatory frameworks
designed by [6], [7] generate attribution maps that effectively
highlight patterns indicative of protected natural areas in
satellite imagery. However, despite the effectiveness of these
methods in identifying natural regions using specific indices or
distinct patterns characterizing natural regions, they struggle
to provide a quantitative metric that accurately reflects the
patterns’ importance, while also considering their certainty.

To address these limitations, we propose a framework that
extracts patterns that contribute to the concept of naturalness
in satellite imagery and assesses the importance and certainty
of these patterns with a novel metric called confident natural-
ness explanation (CNE). This metric combines existing tools
for explainability and uncertainty quantification that enable
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Fig. 1. Illustration for the CNE framework. In the explainability part, the input images are fed to the segmentation model, resulting in predicted
segmentation masks; they are fed to logistic regression with ground-truth labels of the input images to vectorize patterns and classify the input into naturalness
and anthropogenic areas. After training the logistic regression, we use only the positive coefficients to calculate the CNE metric. In the uncertainty, the
MC-Dropout resembles multiple sampled models used to quantify the uncertainty of each pattern in the input image. In the lower right corner, the knowledge
gained from parts 1 and 2 is combined to calculate the CNE metric in part 3 and assign a quantifiable metric value to each pattern, reflecting its confident
contribution to the concept of naturalness. The uncertainty part is shown in detail in Fig. 2.

prioritization and sorting of the contributing patterns based on
their quality. Our main contributions are as follows.

1) We demonstrate our CNE framework using a study
site in Fennoscandia. We extract patterns associated
with the concept of naturalness and protected areas
from the AnthroProtect dataset [6] by using domain
knowledge from the comprehensive, well-known, and
well-understood CORINE dataset [8].

2) We generate uncertainty-aware segmentation masks to
highlight the pixels where the model exhibits the lowest
certainty.

3) We compute CNE, merging both explainability and
uncertainty to show the significance of each pattern to
the concept of naturalness.

Here, we use the term “pattern” for a land cover class.
However, our framework is versatile in this regard, and the
term can be used more broadly, for example, for a temporal
or spatial regularity in a dataset, as already proposed in [4].

II. CNE FRAMEWORK

In the following, the CNE framework (Fig. 1) is presented
in the context of our study site in Fennoscandia.

A. Study Site and Datasets

The goal of the CNE framework is to extract patterns from a
dataset and explain them by utilizing domain knowledge from

another source of information. Here, we intend to find patterns
associated with the concept of naturalness in the coarse
AnthroProtect dataset [6] with the help of the more nuanced,
well-understood CORINE dataset [8]. The AnthroProtect
dataset comprises 24 000 multispectral Sentinel-2 images of
the 256 × 256 pixels in the Fennoscandia region. In our study,
we focus on the red, green, and blue bands. The reference
images are either classified as protected [WDPA categories:
“strict nature reserve” (Ia), “wilderness” (Ib), “national park”
(II)] or anthropogenic areas. The protected areas are used as a
proxy for naturalness; by doing so, we aim to establish a foun-
dation for understanding and explaining naturalness, starting
with these well-protected and minimally influenced environ-
ments. Anthropogenic areas in the AnthroProtect dataset align
closely with “artificial surfaces” and “agricultural areas” in
the CORINE land cover classes (patterns), which means
that both datasets are consistent. CORINE dataset’s unique
composition captures the broad spectrum of naturalness in
Fennoscandia. The original (1 × H × W )-dimensional label
masks are converted to a C × H × W one-hot-encoded mask,
where H × W is the size of the image, and C is set to 44,
creating a channel for each class from the original label. This
results in 1 and 0 s in these channels, with the rest as 0 s.

B. Components of the Framework

The CNE framework shown in Fig. 1 consists of three
parts, detailed below. In the first part, the explainability part,
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Fig. 2. Illustrative diagram for the tensor generated by the segmentation model. The input images are passed to the model, and the middlebox includes
the tensor Y where b is the image index at a single batch, and j is the number of sampled models. On the right, we have two outputs. The upper image shows
the output after taking the average over dimension J and assigning each pixel to the class with the highest probability, and at the bottom, an uncertainty-aware
segmentation mask is generated by getting the standard deviation across MC runs where high-intensity pixels—white—represent high uncertainty and vice
versa.

we train a black-box semantic segmentation model with the
CORINE land cover segmentation masks. We assign an impor-
tance value to predefined patterns by learning a white-box
logistic regression model that uses as input the segmentation
model output and the AnthroProtect labels. Both together
build a gray-box approach that is inspired by [9]. In the
second part, the Monte Carlo (MC)-Dropout technique is used
to quantify the uncertainty in predicting the patterns con-
tributing to naturalness. The gained knowledge is integrated
to create the CNE metric in the third part, which assigns
confident importance to the patterns forming naturalness in
Fennoscandia.

1) Explainability: The first part of the gray box approach
is a black-box semantic segmentation model F. In this work,
we utilize the DeepLabV3 based on the ResNet-50 backbone
[10]. It efficiently captures multiscale contextual information,
enabling precise object boundary delineation. DeepLabV3 uses
varying dilation rates to comprehend intricate image details
and context through its spatial pyramid pooling module, result-
ing in highly accurate and fine-grained segmentation outcomes
[10]. The architecture has a dropout layer localized after the
last fully connected layers and before the output layer. The
layer in our architecture serves a dual purpose: It contributes
to regularization during training and plays a crucial role in
uncertainty quantification. By employing MC-Dropout [11],
we use the dropout layer to evaluate prediction uncertainty,
offering insights into the model’s confidence. The first prime
component of the gray box resembles as

F(X ) = Y . (1)

In our case, the output Y B×J×C×H×W is a 5-D tensor, with
B being the number of images, H and W being the width
and height of each image, C being the number of classes,
and J the number of MC-Dropout runs as shown in Fig. 2.

For simplicity, we omit the indices b for the image j for the
MC dropout run for further consideration unless we consider
multiple images and runs. Each predicted segmentation mask
Y comprises C binary masks, one for each class, indicating
which pixels are classified as class c. The segmentation mask
is transformed into a C × 1-D vector of patterns z, where each
element in the vector represents the abundance of a specific
pattern in the predicted segmentation maps. The segmentation
mask vectorization is described as follows:

zc =

∑
h,w

Y w,h,c (2)

which means that all pixels that are predicted as class c in
each binary segmentation mask are summed.

In the second part of the gray box approach, we employ
logistic regression, known for its high interpretability and
alignment with algorithmic transparency criteria. It optimizes
coefficients to classify predicted segmentation masks as “nat-
uralness” or “anthropogenic.” It is worth noting that the gray
box approach may sacrifice some spatial information, but
this tradeoff serves our primary goal of achieving explainable
results.

For this, a logistic regression classification model L(z; α)

is used

L(z; α) =
1

1 + e−αT z (3)

with α being a C-dimensional vector where each coefficient
is assigned to one class c.

2) Uncertainty Quantification: Improving models by pro-
viding additional information about outputs to increase con-
fidence plays an important role in uncertainty estimation.
Models approximate the real world, creating two sources of
uncertainty: Epistemic uncertainty (model uncertainty) and
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Fig. 3. Qualitative results. Demonstrating RGB Sentinel 2 images, predicted segmentation masks, and uncertainty-aware segmentation maps for two
examples. The greyscale bar indicates pixel uncertainty in the segmentation maps. Each color in the segmentation masks represents a different pattern.

Aleatoric uncertainty (data uncertainty) [12]. Model uncer-
tainty represents the lack of knowledge about the best model,
while data uncertainty relates to the inherent stochastic com-
ponent in the data-generating process. Predictive uncertainty is
the combination of both. A well-known method that provides
aleatoric and epistemic uncertainty estimates is Bayesian neu-
ral networks (BNNs) [13]. Also Softmax outputs can be used
to assess uncertainty in a fast way, but they provide only the
aleatoric part. Set-valued predictive techniques like conformal
prediction (CP) [14], [15], [16] are used for estimating the
overall predictive uncertainty. In deep learning (DL), the
common framework is to obtain a point estimate of the model’s
weights. However, there is a growing need to estimate the
model’s knowledge, or epistemic uncertainty, which has led to
the development of methods for addressing this issue. BNNs
are used to generate weight distributions that capture the
model’s uncertainty. Nevertheless, due to the complexity of
obtaining such distributions, approximate techniques such as
MC-Dropout and ensemble learning [17] are widely adopted.

Dropout is a regularization approach utilized in DL to
reduce overfitting [18]. During training at each forward pass j ,
dropout randomly deactivates some of the neurons controlled
by a hyperparameter pdrop, which represents the fraction of
neurons to switch off to force the DL model to have dis-
tributed representations. During inference, the dropout layer
is switched off to avoid getting stochastic outputs.

MC-Dropout exploits the previous idea to estimate the
epistemic uncertainty by allowing the model to get a stochastic
output during multiple forward runs j = 1, . . . , J at the
inference phase. The mean prediction of each pattern c for
different model samples F j is Ac for a single image X and
obtained as

Ac =
1
J

J∑
j=1

Y c, j . (4)

Furthermore, the standard deviations S can be analyzed to
check the change in pixel-level values generated per class

Sc =

√√√√ 1
J

J∑
j=1

(Y c, j − Ac)
2. (5)

3) CNE Metric: We combine the knowledge gained in
both the explainability and the uncertainty quantification parts
and propose the CNE metric, which assesses the quality of

explanations of the patterns contributing to the concept of
naturalness in Fennoscandia. The metric is bounded between
0 and 1, where the pattern that has a value of one contributes
significantly to the concept of naturalness with high certainty,
and a pattern that has a value of zero will either have a
significantly low contribution to the concept of naturalness or
high uncertainty.

The metric is calculated as follows:

CNEc =
αc+

uc
(6)

with

αc+ = max(αc, 0)

uc =

∑
h,w

Sc.

The term αc+ represents the modified trained logistic regres-
sor’s coefficient at which negative values are set to zero.
The max function ensures that only positive coefficients are
retained to include patterns that positively contribute to the
naturalness concepts to ensure valid and objective explanations
of naturalness. At the same time, u is the summation of the
patterns’ pixels across the spatial dimensions after taking the
standard deviation over the MC-dropout dimension J .

III. EXPERIMENTS, RESULTS, AND DISCUSSIONS

A. Experimental Setup

In DeepLabV3 [10], a dropout layer is placed after the last
fully connected layers with pdrop = 0.1. The model achieved
91.2% IOU on the training set and 80.3% on the test set after
100 epochs using 80% of the AnthroProtect dataset.

B. Results Interpretation

To produce a single number representing the uncertainty
for each class, we take the standard deviation of the output
Y across the MC-Dropout (25 forward iterations or models)
dimension J . The generated output Sc is a 3-D tensor that
contains the uncertainty-aware segmentation map for each
class for a single test sample as shown in Fig. 3. We further
sum over the spatial dimensions H and W to obtain a single
value for each class. We used the maximum and minimum
CNE values to normalize the metric between 0 and 1, as shown
in Section II-A. The standard deviation will be zero if there
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TABLE I
CNE METRIC VALUES. EACH PATTERN HAS A VALUE REPRESENTING
ITS CONFIDENT CONTRIBUTION TO THE CONCEPT OF NATURALNESS.

WE EXCLUDE NONDESIGNATING PATTERNS WITH IMPORTANCE
COEFFICIENTS BELOW 0.01 TO ENHANCE THE

INTERPRETABILITY OF THE RESULTS

are no discrepancies among predictions of the sampled models,
which will generate a small value after summation. Conversely,
a nonzero standard deviation will indicate high uncertainty
and produce a larger summation. Furthermore, we achieved
expected calibration error (ECE) [19] value of 0.1317.

As illustrated in Table I, our investigation unveiled that var-
ious wetland patterns possess notably high CNE metric values,
ranging from 0.8 to 1. These scores signify the existence of
top-tier patterns that significantly boost the concept of natural-
ness. Wetlands are important ecosystems renowned for their
roles in carbon storage, safeguarding biodiversity, regulating
water resources, and providing niches for unique plant and
animal species finely adapted to their specific surroundings.

In contrast, glaciers, grasslands, and water bodies exhibit
relatively low-quality patterns, with an approximate metric
value of 0.2. These values indicate patterns with a dimin-
ished contribution to the naturalness concept, accompanied by
heightened uncertainty.

IV. CONCLUSION

We utilize ML models to analyze satellite imagery, focusing
on understanding naturalness. Our novel approach combines
explainable ML and uncertainty quantification to provide com-
prehensive and valid explanations for intricate natural patterns,
addressing the limitations of existing methods. Our framework,
CNE, offers a quantitative metric and certainty-aware segmen-
tation masks, transforming the understanding of naturalness
in Fennoscandia by delivering objective, valid, and quantifi-
able explanations. In addition, our proposed approach holds
promising potential for enhancing protected area preservation
and monitoring efforts. Our results provide a quantifiable

index, ranging from 0 to 1, for assessing pattern importance
in the context of wilderness. This approach ensures validity
by encompassing all distinctive patterns. At the same time,
objectivity is maintained through the use of logistic regression
coefficients, mitigating hand-engineered features and potential
subjectivity and entanglement associated with previous indices
and heatmap-based methods.

REFERENCES

[1] J. S. Sze, L. R. Carrasco, D. Childs, and D. P. Edwards, “Reduced
deforestation and degradation in indigenous lands pan-tropically,” Nature
Sustainability, vol. 5, no. 2, pp. 123–130, Nov. 2021.

[2] R. A. Mittermeier et al., “Wilderness and biodiversity conservation,”
Proc. Nat. Acad. Sci. USA, vol. 100, pp. 10309–10313, Sep. 2003.

[3] R. J. Smith and A. N. Gray, “Strategic monitoring informs wilderness
management and socioecological benefits,” Conservation Sci. Pract.,
vol. 3, no. 9, p. e482, Sep. 2021, doi: 10.1111/csp2.482.

[4] E. W. Sanderson, M. Jaiteh, M. A. Levy, K. H. Redford, A. V. Wannebo,
and G. Woolmer, “The human footprint and the last of the wild,”
BioScience, vol. 52, pp. 891–904, Oct. 2002.

[5] B. Ekim, Z. Dong, D. Rashkovetsky, and M. Schmitt, “The naturalness
index for the identification of natural areas on regional scale,” Int. J.
Appl. Earth Observ. Geoinf., vol. 105, Dec. 2021, Art. no. 102622.

[6] T. T. Stomberg, T. Stone, J. Leonhardt, I. Weber, and R. Roscher,
“Exploring wilderness characteristics using explainable machine learn-
ing in satellite imagery,” 2022, arXiv:2203.00379.

[7] A. Emam, T. T. Stomberg, and R. Roscher, “Leveraging activa-
tion maximization and generative adversarial training to recognize
and explain patterns in natural areas in satellite imagery,” IEEE
Geosci. Remote Sens. Lett., vol. 21, pp. 1–5, 2024, Art. no. 8500105,
doi: 10.1109/LGRS.2023.3335473.

[8] CORINE Land Cover 2018 Europe 6-Yearly—Version 2020_20u1,
Copenhagen, Denmark, 2019.

[9] A. Bennetot, G. Franchi, J. Del Ser, R. Chatila, and N. Diaz-Rodriguez,
“Greybox XAI: A neural-symbolic learning framework to produce inter-
pretable predictions for image classification,” 2022, arXiv:2209.14974.

[10] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.

[11] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Rep-
resenting model uncertainty in deep learning,” 2015, arXiv:1506.02142.

[12] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty
in machine learning: An introduction to concepts and methods,” Mach.
Learn., vol. 110, no. 3, pp. 457–506, Mar. 2021.

[13] H. Wang and D.-Y. Yeung, “A survey on Bayesian deep learning,” ACM
Comput. Surv., vol. 53, no. 5, pp. 1–37, Sep. 2020.

[14] G. S. V. Vovk and A. Gammerman, Algorithmic Learning in a Random
World, 1st ed. New York, NY, USA: Springer, Dec. 2005.

[15] H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman, “Inductive
confidence machines for regression,” in Machine Learning, T. Elomaa,
H. Mannila, and H. Toivonen, Eds. Berlin, Germany: Springer, 2002,
pp. 345–356.

[16] J. Lei and L. Wasserman, “Distribution-free prediction bands for non-
parametric regression,” J. Roy. Stat. Soc. Ser. B, Stat. Methodol., vol. 76,
no. 1, pp. 71–96, Jan. 2014.

[17] L. Hoffmann and C. Elster, “Deep ensembles from a Bayesian perspec-
tive,” 2021 arXiv:2105.13283.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015, arXiv:1512.03385.

[19] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” 2017, arXiv:1706.04599.

http://dx.doi.org/10.1111/csp2.482
http://dx.doi.org/10.1109/LGRS.2023.3335473

