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Leveraging Multi-Primary PS-InSAR Configurations
for the Robust Estimation of Coastal Subsidence

Stacey A. Huang , Member, IEEE, and Jeanne M. Sauber

Abstract— Interferometric synthetic aperture radar (InSAR)
is a key technique used to constrain contributions of diverse
processes to coastal subsidence, also known as vertical land
motion (VLM). However, coastal environments can pose major
challenges for InSAR due to natural disturbances that degrade
interferogram quality. We describe a new multi-primary pairing
strategy for persistent scatterer InSAR (PS-InSAR) to estimate
subsidence in challenging coastal environments. Our method
retains only consistent PS candidates across multi-primary sub-
stacks and solves for redundant velocity observations using
SVD-based inversion, similar to the conventional small base-
line subset (SBAS) method. Through simulations and a case
study comparing with single-primary PS-InSAR and conventional
SBAS techniques, we show that our pairing strategy reduces
temporal and spatial uncertainty in subsidence estimates in
the presence of strong but temporary decorrelation loss, even
with increased distance from the reference point. Moreover,
our method visibly dampens time-series variation and decreases
standard error in our time-series fit by nearly 2x in our
case study. Thus, we find that implementing a multi-primary
PS-InSAR configuration is a simple method of increasing the
robustness of VLM estimates in challenging coastal environments.

Index Terms— Coastal subsidence, persistent scatterer
(PS-InSAR), sea level rise, vertical land motion (VLM).

I. INTRODUCTION

COASTAL subsidence is a major issue that accelerates
the hazards of sea level rise in many areas around the

world. Interferometric synthetic aperture radar (InSAR) is a
well-established spaceborne geodetic technique for character-
izing the severity and extent of coastal subsidence with high
spatial resolution, a strong complement to sensors such as
GPS/GNSS and tide gauge stations with denser temporal sam-
pling [1], [2]. Using these data to identify local and regional
trends in subsidence enables decision-makers to develop the
most effective resilience measures for the local population.
However, obtaining meaningful measurements with InSAR
can be difficult over small, heavily vegetated tropical islands,
limiting valuable measurements of local subsidence patterns
over many landmasses which are known to subside at rates
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higher than the global average [3]. The small surface area of
these islands also hinders the effectiveness of standard meth-
ods to combat strong decorrelation, including multilooking and
filtering.

In such environments, persistent scatterer InSAR
(PS-InSAR) can be a strong alternative. PS-InSAR techniques
process scenes at full resolution and analyze only strong,
nondecorrelating, point-like scatterers [4], [5]. Still, coastal
environments can introduce challenges for PS-InSAR due
to events such as storm surges, flooding, and heavy rains
that can result in temporary or long-term changes in the
position and scatterering characteristics of potential PS,
effectively reducing the number of true PS. These disruptions
can also lead to noisy and biased subsidence estimates
that can be difficult to systematically correct across many of
thousands of PS. Despite these limitations, PS-InSAR analysis
techniques remain the most viable option for challenging
coastal environments compared with non-PS methods because
PSs are resistant to all other forms of decorrelation. In this
letter, we present a method of reducing the spatial and
temporal uncertainties in the presence of strong but temporary
decorrelation using multi-primary pairing strategies for
PS-InSAR interferogram generation. Our work extends
upon previous studies that have only, until now, empirically
demonstrated the benefit of multi-primary configurations.
In particular, we explicitly address the theoretical basis
for a multi-primary configuration and apply our findings
to a specific context: coastal PS decorrelation. Within that
context, we also directly examine the relationship of the
number of primary images used with the resulting error. Our
findings demonstrate a robust, easy-to-implement method for
improving estimates of vertical land motion (VLM) along
coasts worldwide using InSAR.

II. BACKGROUND AND THEORY

A. Modeling InSAR-Derived VLM Uncertainty

To estimate deformation velocities from InSAR measure-
ments, we solve a linear equation in the form [6]

Av = 8

v = A+8 (1)

where A is an m×n matrix, given the number of interferomet-
ric pairs m and number of total scenes n, v is defined as an
n × 1 velocity vector, and 8 is an m × 1 matrix that contains
the observed interferometric phases, i.e., 8i, j = φi − φ j .
The entries of A are defined as the time difference between
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acquisitions in the chosen scene pair, e.g., Ai, j = t j − ti
between the phase observations i and j ; we assume that j > i .
The + operator denotes the Moore–Penrose inverse.

We can generalize (1) to explicitly take into account the
role of interferometric pair selection given a fixed set of
SAR scenes. Suppose that k is the total number of unique
interferometric pairs that can be formed given the number of
scenes n, such that k = (n!)/(2(n − 2)!). Next suppose that
A = CAall and 8 = C8all so that (1) becomes

CAallv = C8all

v = A+

allC
+C8all (2)

where C is a logical combination matrix with dimensions
m × k and 1’s in the columns and rows corresponding to
observed interferograms and 0’s otherwise. Aall is a k × n
matrix containing the time differences between all possible
interferometric pairs, and 8all is a k × n matrix containing
the phases of all possible interferometric pairs. Aall and 8all
are fixed for a given set of scenes; C changes based on the
interferometric pairs chosen for analysis.

From (2), the uncertainty in the estimated velocities from
interferometric measurements can then be written in terms of
the uncertainty of v

rClCov(v) = A+

allC
+C Cov(8all) (C+C)T (A+

all)
T

= A+

allC
+C Cov(8all) C+C(A+

all)
T (3)

where Cov(8all) is the interferometric covariance. The entries
of the interferometric covariance matrix can be written as [7]

cov(φi, j , φk,l) = γ (φi, j , φk,l)σi, jσk,l . (4)

Here, γ (φi, j , φk,l) is the interferometric correlation coefficient,
and σi, j and σk,l are the interferometric variances. Often,
instead of the velocity v, we consider the cumulative displace-
ment d , given by

d =

∑
i

vi1ti (5)

with the corresponding uncertainty

σd =

√∑
i

∑
j

cov(vi, j )(t j − ti )2 (6)

where σd is the standard deviation of d , and cov(vi, j ) contains
the entries of the covariance matrix of v. Examining (6),
we can see that the covariance of d is a linear combination
of the covariances of the chosen interferometric scenes, which
depends on the interferometric correlation coefficient and the
individual interferometric variances. Reducing the value of σd

requires a strategic choice of C to reduce the contributions of
any high-variance terms in Cov(8all).

B. Interferometric Pairing Strategy

The choice of interferogram pairing strategy depends both
on the characteristics of the dataset (which determines A+

all
and Cov(8all)) and on the targeted scattering mechanism,
which generally falls into two main categories: point scatterers
and distributed scatterers. In PS-InSAR, which optimizes for

Fig. 1. Flowchart of the implemented PS-InSAR method, with the
multi-primary (redundant) aspects highlighted in blue.

point-like scatterers with little temporal decorrelation, a single-
primary pairing configuration is standard, where one scene
is chosen as the “primary” (or “reference”), and the inter-
ferometric stack is formed by pairing all the “secondary”
images with the chosen primary image. For techniques such
as small baseline subset (SBAS) and its derivatives, which
optimize for distributed scatterers that suffer from moderate
temporal decorrelation but whose signal can be averaged to
extract underlying deformation trends for effective time-series
analysis, a multi-primary configuration tends to be standard.
Several excellent reviews of InSAR time-series methods and
their pairing strategies contain further details [4], [5].

Although multi-primary configurations are associated with
distributed scatterers, they are also beneficial for PS analysis.
For example, multi-primary strategies can be used to expand
the number of possible PS through the detection of “imperfect”
PS in the quasi-PS (QPS) technique [8] and to counteract
the effects of noisy primary images such as in the coherence
pixel technique (CPT) [9] and stable point network (SPN)
techniques [10], [11]. Such studies have rarely been analyzed
in a more comprehensive framework relative to their contexts,
however, nor have they closely examined how much redun-
dancy should be introduced. Such generalizations are difficult
since it is impossible to determine an analytical expression
for A+

allC
+, and there are no standard metrics upon which to

evaluate the quality of a multi-primary method.
Our focus here is to retrieve a more robust time-series result

in a specific context—temporary PS decorrelation unrelated
to long-term scattering changes. We use a multi-primary
configuration to achieve these aims: first, by retaining only
consistent PS candidates in all the primary image substacks;
and second, by introducing redundancy in v using multi-
primary substacks, then solving for v using the SVD-based
inversion as in standard SBAS [6]. A flowchart of our method
is shown in Fig. 1. Our configuration is simple and introduces
additional redundancy and robustness in three distinct stages.

III. SIMULATED DATA

We compared the performance of different pairing strategies
using simulated data. We modeled a deformation sequence
with a horizontal linear gradient spanning −6 to −12 mm/y
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Fig. 2. CAall and A+

allC
+ for pairing strategies used in the simulations. For

the single-primary case, the solution vector v was defined with respect to the
primary image; for the multi-primary cases, v was defined with respect to the
velocity between adjacent scenes.

over an image size of 250 × 250 pixels. We assumed a high
correlation for all the scatterers, with no temporal decorrelation
other than a spurious decorrelation across six scenes, such that
given the scene number i , the correlation ρ is defined

ρ =

{
0.1, if 7 ≤ i ≤ 12
0.9, otherwise.

We assumed an imaging wavelength of λ = 0.6 cm,
a temporal revisit of 12 days, and negligible geometric
baselines. We generated 60 scenes (spanning 720 days) and
simulated the presence of thermal noise by adding standard
normal-distributed random variables in both real and imagi-
nary channels. In addition, we modeled a residual, uncorrected
atmospheric signal with an rms value of 1 mm.

We tested four pairing configurations: PS-InSAR with one,
three, and six primaries drawn from the chronological center
of the stack, and a no-multilook SBAS configuration where
we paired all the scenes separated by up to six other scenes.
The corresponding CAall and A+

allC
+ are shown in Fig. 2.

We solved for v using (2), and then used (5) to reconstruct
the deformation sequence, dest, which we referenced to a
point deforming at the mean value of the original deformation
sequence dorig. To estimate (6), we computed the standard error
of a linear fit to the deformation sequence by bootstrapping
the residuals as in [12].

Fig. 3 shows the estimated cumulative subsidence and stan-
dard error for each pairing strategy. The original gradient and
correlation patterns are also shown for reference. We found
that the deformation pattern was retrieved more clearly with
more primary images, and the mean standard error decreased
as well. While the mean standard error appears low for the
SBAS result, the estimated cumulative subsidence is clearly

much more dominated by atmospheric noise than any of the
PS methods. Overall, we found that the original pattern was
most faithfully retrieved with the R-6 configuration.

IV. CASE STUDY: TUTUILA, AMERICAN SAMOA

The island of Tutuila is the largest and most populated
in American Samoa. Ongoing subsidence has been observed
due to viscoelastic relaxation after the 2009 Samoa–Tonga
earthquake [13]. For our case study, we compared the retrieved
subsidence time-series using Sentinel-1 data with different
pairing strategies, building upon results from Huang et al. [12]
and the preliminary comparisons presented by Huang and
Sauber showing the presence of spurious decorrelation on the
island [14]. Correlation drops in our dataset are estimated
to range in severity, spanning up to approximately 5% of
interferograms and with estimated PS correlation dropping
from values of 0.8 to 0.95 to anywhere between 0.2 and 0.7.

We analyzed all the scenes covering Tutuila between
December 3, 2015, and August 16, 2022, and generated
geocoded SLCs from L1 data using the Stanford InSAR
System [15] to NASADEM, processing to its native resolution
(30×30 m). We tested the same four pairing strategies as in the
simulations: PS-InSAR with one primary (July 27, 2019), three
primaries (July 3, 2019, July 27, 2019, and August 8, 2019),
and six primaries (June 6, 2019–August 8, 2019), as well as
SBAS. For SBAS processing, we found that no multilooking
resulted in poor performance, so we upsampled the DEM
by 2, took five looks in each direction, and formed all the
interferograms with less than a 150-day baseline. The baseline
plots are shown in Fig. 4. For multi-primary PS methods,
we used a parametric non-Gaussian maximum likelihood PS
detector [16], and for the single-primary method, we used
the Gaussian variant [17] as the false-positive rate in this
region was observed to be too high without multi-primary
filtering. We masked the results from all the methods to the
most restrictive PS set and selected the PS closest to the
ASPA GPS station as our reference point. We calibrated results
to the linear fit of subsidence at ASPA, using the Pacific
fixed-plate solution from the University of Nevada Geodetic
Laboratory [18], [19]. For atmospheric compensation, we used
the power-law correction algorithm [20]. Finally, we computed
cumulative subsidence rates with a linear fit to the time-series
results at each PS. As validation, we compared the time-series
to the VLM computed at the Pago Pago tide gauge station
using the altimetry-tide gauge differencing (Alt-TG) method,
which subtracts the absolute sea level measured by multisatel-
lite altimetry from the relative sea level measured at the tide
gauge station. The data and processing methodology are the
same as that described in [12].

Fig. 5 shows the subsidence time-series derived from the
Alt-TG method and InSAR. SBAS-derived perturbations are
smaller than the R-1 case but greater than the R-3 case.
Perturbations are significantly reduced when more primary
images are used for PS-InSAR, with the R-6 case adhering
most closely to the Alt-TG trends. The estimated cumulative
subsidence rates and standard error for the tested pairing
strategies are shown in Fig. 6. Consistent with our simulations,
the standard error decreases from one to three to six primary
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Fig. 3. (a) Deformation and (b) correlation patterns used in our simulations. We tested a horizontal gradient of −6 to −12 mm/y across an image of size
250 by 250 pixels, and all the pixels were simulated to have a correlation of 0.9 except for six scenes, from scene 7 to 12, inclusive, when correlation drops to
0.1. (c)–(f) Estimated cumulative subsidence rate using PS-InSAR with (c) one primary image (R-1); (d) three primary images (R-3); (e) six primary images
(R-6); and (f) SBAS. (g)–(j) Corresponding standard error (due to computational heft, every fourth pixel displayed for representative summary).

Fig. 4. Spatial and temporal baselines for pairing strategies used in our
case study: (a) one primary image; (b) three primary images; (c) six primary
images; and (d) SBAS. Our method imposes no baseline restrictions given
PS resistance to decorrelation, but we still selected primary images in the
chronological center of our dataset to reduce the possibility of PS disruptions
over time.

images. The error rates for SBAS appear similar to those for
the R-3 case for points close to the reference point, and similar
to the R-1 case for points farther from the reference point.
For PS-InSAR methods, in contrast, we observe a trend of
improved error reduction with more primary images as the
distance from the reference point at ASPA increases, and the
estimated cumulative subsidence rates in the R-6 case are
much less correlated with distance to ASPA compared with
the R-1 case.

V. DISCUSSION

Leveraging a multi-primary PS-InSAR configuration can
clearly reduce time-series error in the presence of spurious
decorrelation. There is evidence of further benefit beyond what
we modeled in our simulations as well. While we observed
no spatial trend in error reduction in our simulations, it was
clear in our case study that error reduction was greater with
increased distance from our reference point at the ASPA GPS
station, with less observed near the reference point. This effect
may be due to the fact that the reference point is located
in the most densely settled area on Tutuila with the highest
correlation, and correlation decreases in the more sparsely
settled areas farther away from the reference point. This
heterogeniety could also be due partly to the multi-primary

Fig. 5. Time-series comparison of subsidence at the Pago Pago station using
the Alt-TG method (data unavailable from January 31, 2020, to September
2, 2021) and InSAR with (a) one primary image; (b) three primary images;
(c) six primary images; and d) SBAS. R-6 case performs best.

effects of reducing false positives and primary-dependent
noise, which have been demonstrated in previous work but
were not modeled in our simulations. These effects may also
account for the variation in the average estimated cumulative
subsidence rates that were observed in our case study but not
in our simulations.

Several practical concerns should be considered when
applying the method. First, primary images with the highest
overall correlation should be selected; in our simulations,
we observed no performance difference between selecting two
scenes with the same correlation characteristics. Next, the
number of primary images should be kept small, as com-
putational redundancy increases for each image (in our
unoptimized implementation, the computation time roughly
doubled for each new primary image). In our simulations,
we observed that the largest error reduction was associated
with moving from a single-primary to a double-primary con-
figuration, and error reductions became less pronounced as the
number of primary images increased. However, in practice,
we observed notable error reduction when more than two
primary images were used (as shown in Fig. 6). Therefore,
some experimentation may be necessary. Generally, we found
that a reasonable guideline was to match the number of
primary images with the approximate number of scenes con-
taining spurious correlation drops, which must be estimated
by analyzing a limited subset of PS as decorrelation trends
can vary widely between datasets.
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Fig. 6. Estimated cumulative subsidence rates on Tutuila using PS-InSAR with (a) one primary image; (b) three primary images; (c) six primary images;
and (d) SBAS. (e)–(h) Corresponding standard error. Average error decreases from (e) to (f), with more error reduction at greater distances from the reference
point (ASPA, marked in (e). Accordingly, estimated cumulative subsidence rates in (c) appear much less correlated with distance from ASPA than in (a).
SBAS shows no such trend, with error rates similar to the R-3 case close to ASPA and error rates similar to the R-1 case farther from ASPA.

Finally, we note that the technique is designed for large
datasets, since it is more effective to manually inspect and
drop troublesome scenes with a small number of SLCs. Thus,
as many SLCs as possible should be used, given that PSs are
resistant to temporal and spatial decorrelation by definition.
In our simulations, increasing the number of SLCs used was
only detrimental if the proportion of scenes exhibiting spurious
decorrelation increased relative to correlated scenes.

VI. CONCLUSION

We have demonstrated a multi-primary PS-InSAR pairing
method that produces a more robust time series deformation
in the presence of sudden, temporary decorrelation compared
with standard PS-InSAR analysis. Our multi-primary method
is simple in implementation and can measure low-to-moderate
deformation rates under conditions that may be difficult to
impossible for other InSAR methods. These increased capabil-
ities will enable the estimation of rates of VLM in challenging
coastal environments where knowledge of local trends in
subsidence is key to developing effective resilience measures
to the drastic consequences of sea level rise.
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