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Abstract— Deforestation poses a critical environmental chal-
lenge with far-reaching impacts on climate change, biodiversity,
and local communities. As such, detecting and monitoring
deforestation are crucial, and recent advancements in deep
learning (DL) and remote sensing technologies offer a promising
solution to this challenge. In this study, we adapt Change-
Former, a transformer-based framework, to detect deforestation
in the Brazilian Amazon, employing the attention mechanism
to analyze spatial and temporal patterns in bitemporal satellite
images. To assess the model’s effectiveness, we employed a
robust approach to create a deforestation detection (DD) dataset,
utilizing Sentinel-2 imagery from select conservation areas in
the Brazilian Amazon throughout 2020 and 2021. Our dataset
comprises 7734 pairs of bitemporal image chips with a resolution
of 256 × 256 pixels and 1406 pairs of image chips with a
resolution of 512 × 512 pixels. The model achieved an overall
accuracy (OA) of 93% with a corresponding F1 score of 90%
and an intersection over union (IoU) score of 82%. These results
demonstrate the potential of transformer-based networks for
accurate and efficient DD.

Index Terms— Change detection (CD), deep learning (DL),
deforestation, transformer.

I. INTRODUCTION

DEFORESTATION significantly impacts environmen-
tal sustainability, causing biodiversity loss, ecological

imbalances, and amplified climate change effects. The Brazil-
ian Amazon, the world’s largest rainforest, is indispensable
for climate stability and carbon management. Unfortunately,
rapid deforestation leads to multiple complications, including
heightened greenhouse gas emissions, curtailed carbon reten-
tion, and increased forest fires [1]. Therefore, it is essential
to implement effective policies that are grounded in reliable,
up-to-date data, recognizing deforestation detection (DD) as
the cornerstone for obtaining such valuable information.

Although DD is recognized as an essential task in restor-
ing the biodiversity of the Brazilian Amazon, it is fraught
with various challenges. One of the major obstacles is the
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vast size of the Brazilian Amazon, covering approximately
5.2 million km2 of land, which is about 60% of the country’s
total area [2]. This makes conventional methods, such as
map interpretation, field surveys, and ancillary data analysis,
impractical due to their time-consuming and labor-intensive
nature.

Remote sensing imagery (RSI) has become a more
advanced alternative, owing to its wide geographic coverage,
cost-effectiveness, and capacity to produce consistent and
reproducible data, vital for tracking temporal changes. The
popularity RSI has increased further with the introduction
of open-access policies for Earth observation satellites and
advances in analytical technologies [3], leading to the cre-
ation of multiple RSI systems by both public and private
organizations.

Moderate Resolution Imaging Spectroradiometer (MODIS),
Landsat 8, and Sentinel-2 are some of the most commonly
used satellites in remote sensing studies. MODIS offers
36 spectral bands with a maximum spatial resolution of
250 m and a revisit time of two days. Landsat 8 has
11 spectral bands with 15-m panchromatic and 30-m
multispectral spatial resolutions and a revisit time of 16 days.
Sentinel-2, launched by European Space Agency (ESA), has
13 spectral bands with a spatial resolution range of 10–60
m and a revisit time of five days. Sentinel-2’s advantage lies
in its higher spatial and temporal resolution compared with
the other open-access satellites, making it a better option for
mapping the expansive Brazilian Amazon.

In RSI change detection (CD) applications, a quantitative
analysis is performed to identify surface changes by comparing
images of the same location captured at different timestamps.
The aim is to accurately detect pixel changes in bitemporal or
multitemporal images by assigning a binary label to each pixel.
A null label represents an unchanged area, while a positive
label indicates the presence of change. Various CD methods
have been proposed in the literature, including algebra-based
techniques (such as image ratioing and image difference) and
machine learning classifiers (such as support vector machines,
decision trees, and fuzzy theory) [4], [5]. However, these
methods fail to produce accurate results when high-resolution
images are used due to the high contrast and frequency
components of the images.

To address the limitations of the existing methods, deep
learning (DL) methods have emerged as dominant techniques
for image analysis. The literature indicates that DL methods
demonstrate superior performance compared with traditional
machine learning techniques in CD applications [6], [7].
Convolutional neural networks (CNNs) are a widely used
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TABLE I
TOP-5 CONSERVATION UNITS RANKED BY DEFORESTATION SIZE

classification method in CD applications, due to their ability
to generate powerful discriminative features. For example,
[1] utilized CNNs to predict annual changes in vegetation
cover within the Brazilian Amazon; however, this technique
entails redundant operations, leading to increased computa-
tional costs. The performance of CNNs for CD has been
enhanced by integrating dilated convolutions, stacked convo-
lution layers, and attention mechanisms into the models.

The transformer model, a DL model incorporating attention
mechanisms, is well suited for accommodating multitempo-
ral images, as it enables easy scaling, captures long-range
sequence features, and supports efficient parallel processing.
Considering these benefits, the transformer model has been
applied in various areas of computer vision, such as the vision
transformer (ViT) [8], bitemporal image transformer (BIT)
[9], and shifted windows (SWin) transformer [10]. One of
the key advantages of these networks over CNNs is that
they offer superior context-modeling ability between pixel
pairs, because they have a larger effective receptive field [11].
Regardless of the potential of transformer models, there is
limited research regarding their application in DD. This study
aims to investigate the application of the transformer-based
network, ChangeFormer [12], originally designed for CD in
urban areas, in the context of deforestation, with the objective
of demonstrating its effectiveness in DD. The model combines
a hierarchical transformer encoder in a Siamese architecture,
four difference modules for computing feature differences,
and a simple MLP decoder. The anticipation is that this
transformer-based network will provide superior DD accuracy
compared with that of CNNs.

II. METHODS

A. Data Sources
1) Satellite Imagery Source: Sentinel-2 satellite images

were used due to their superior spatial and temporal resolu-
tion compared with other open-access satellites. Images were
downloaded from The Copernicus Open Access Hub1 operated
by ESA. We used Level-2A Surface Reflectance product with
a maximum cloud cover percentage of 20%. The images were
downloaded in tiles, each of size 10 980 × 10 980 pixels,
covering an area of approximately 100 × 100 km.

2) Ground-Truth Source: To generate ground-truth poly-
gons for our study, we utilized the PRODES project datasets
developed by the Brazilian National Space Agency (INPE).
Since 1988, the PRODES project has been monitoring and
quantifying annual deforestation rates in the Brazilian Amazon
rainforest by visually interpreting medium-resolution satel-
lite imagery with a team of experienced professionals. The

1Copernicus portal: https://scihub.copernicus.eu/dhus/

Fig. 1. Amazon biome is outlined by the yellow boundary, and the
conservation units are highlighted in red.

PRODES data are publicly accessible on the TerraBrasilis
website.2 We selected two datasets: the yearly deforestation
dataset, which contains the locations where deforestation
occurred from one year to the next, and the conservation
units dataset, which we used to identify the areas from where
we downloaded the images. Fig. 1 shows the boundaries of
Amazon biome and the conservation units.

B. Location and Date Selection
The top-5 conservation units with the highest deforested

land areas were selected. Table I details their names, respective
sizes in km2, and the corresponding deforestation areas and
percentages. We targeted the years 2020 and 2021, as they pro-
vide the most recent and complete yearly deforestation data.
To determine the appropriate date range for each Sentinel-2
tile, we identified the polygons within the tile for both years
2020 and 2021 from the PRODES dataset. For each year
separately, we extracted the earliest date (d1) and the latest
date (d2) from the acquisition dates of the images used to
label these polygons. Consequently, two intervals were defined
for each tile: one for 2020 and another for 2021, each set
to [d1 − 30 days, d2 + 30 days]. These extended intervals
aim to capture a variety of images for quality selection while
ensuring that the imagery used in our study aligns closely with
the ground-truth labeling dates, minimizing the likelihood of
significant deforestation developments occurring in the interim
period between image acquisition and labeling.

C. Band Combinations

Sentinel-2 images are composed of 13 bands at vary-
ing resolutions of 10, 20, and 60 m. We used the visible

2Terrabrasilis download: http://terrabrasilis.dpi.inpe.br/en/download-2/
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Fig. 2. Temporal and spectral comparison of satellite images from (top)
2020 and (bottom) 2021 highlighting deforestation changes. The first column
shows NGB images with forest appearing in red, while nonforest areas appear
in blue-green tones. The second and third columns show the same area but
with NDVI and EVI indices, respectively.

and near-infrared bands at 10-m resolution, along with the
scene classification layer (SCL) at 20-m resolution. The
near infrared is effective in distinguishing vegetation from
other features, as healthy vegetation reflects strongly in the
near-infrared part of the spectrum. The SCL band was resam-
pled from 20 to 10 m to match the resolution of the other
selected bands and used as a mask to remove areas classified as
clouds or cloud shadows, which were labeled as “no change.”
We used the following band combinations that emphasize the
spectral signature of vegetation.

1) Color-Shifted Infrared:

NGB = [Band8, Band3, Band2].

2) Normalized Difference Vegetation Index:

NDVI =
Band8 − Band4
Band8 + Band4

.

3) Enhanced Vegetation Index:

EVI = 2.5 ∗
Band8 − Band4

Band8 + 6 Band4 − 7.5 Band2 + 1
.

Fig. 2 illustrates the spectral variations resulting from different
band combinations applied to a pair of images captured in
2020 and 2021.

D. Image Processing

To ensure that our dataset is representative of the problem
domain and free from potential biases, we employed careful
preprocessing procedures. Our first step involved applying
linear normalization to facilitate image comparison on a
consistent scale. The minimum and maximum values were
selected as the 1st and 99th percentiles of the value histogram
to reduce the impact of outliers. This step ensures that the
resulting pixel values span the full range of possible values
for that band, which can help to enhance the contrast and
quality of the image. We also applied filtering at both the raster
and chip levels. High-quality rasters were manually selected
from the returned results of the download query. At the chip
level, we eliminated single-class chips and those where the
“change” class accounted for less than 10% of the chip’s total
area to mitigate extreme class imbalance between change and

Fig. 3. Dataset creation process.

no-change classes. Since deforestation changes in one year are
often dispersed across large no-change areas, the 10% filter
resulted in a significant reduction of chips. To compensate
for this loss, we implemented rotation augmentation at 90◦

and 180◦ to increase the dataset size and enhance model
robustness and generalization, and further augmentation as
described in [13] could be implemented as needed.

At the end of the chip creation process, a total of 7734 pairs
of chips of size 256 × 256 and 1406 pairs of chips of size
512 × 512 were generated. The dataset then was split into
three subsets: 60% for training, 20% for testing, and 20%
for validation. To ensure the integrity of the dataset, we took
measures to ensure that each chip and its rotations were kept
within the same subset, and the distribution of the classes
is maintained in each subset. The dataset creation process is
summarized in Fig. 3, highlighting the key steps.

III. EXPERIMENTS

In the employed ChangeFormer architecture, a hierarchical
transformer encoder processes bitemporal images, generat-
ing ConvNet-like multilevel features through self-attention
modules and downsampling blocks. The key compo-
nent of this architecture comprises four difference mod-
ules. These modules calculate feature differences between
prechange and postchange images at multiple levels,
employing the following sequence of operations: F i

diff =

BN(ReLU(Conv2D3×3(Cat(F i
pre, F i

post))), where F i
diff repre-

sents the feature difference, BN stands for batch normalization,
ReLU is the rectified linear unit function, Conv2D3×3 denotes
a 2-D convolution with a 3 × 3 kernel, and Cat indicates
the concatenation of F i

pre and F i
post, which are the features of

prechange and postchange images, respectively. These feature
differences are then aggregated by a simple MLP decoder
to predict the change map. The decoder encompasses MLP
layers and upsampling steps to fuse feature difference maps,
producing the final change mask prediction. Refer to Fig. 4
for a simplified diagram and the original research paper for
comprehensive details [12].

We randomly initialized the model and optimized the
performance by tuning six hyperparameters listed in
Table II. We trained multiple model configurations from the
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Fig. 4. Simplified overview of the ChangeFormer architecture, showing its three main components: a Siamese hierarchical transformer encoder, four difference
modules, and a lightweight MLP decoder.

TABLE II
HYPERPARAMETERS INVOLVED IN TUNING PROCESS

hyperparameter space for 200 epochs each and evaluated
their performance using both overall and change-class-specific
metrics. Overall metrics, including mean F1 score, mean
intersection over union (IoU) score, and overall accuracy
(OA), were reported alongside change-class-specific metrics,
which included F1, IoU, precision, and recall. We utilized
Nautilus, a high-performance computing system, to perform
our data processing pipeline and model training with multiple
configurations.

IV. RESULTS

Although OA is a widely used metric, it may not be the
best indicator for our deforestation dataset due to the inherent
class imbalance. Therefore, to provide a more comprehensive
evaluation, we considered mIoU as an overall metric for com-
parison. In addition, we reported change-class-specific metrics,
including F1, IoU, precision (pre-1), and recall (rec-1) scores,
to further assess the model’s ability to detect deforestation
changes. This focus on change-class metrics obtains accurate
representation of the model’s ability to detect deforestation
changes, rather than results that might be skewed by the
detection of the majority unchanged class.

The 256 × 256 chips exhibited better performance in DD,
effectively capturing smaller deforested patches and their

Fig. 5. Four image samples with the corresponding predicted and
ground-truth deforestation maps. Top-2 rows show images from 2020 and
2021, respectively. The third and fourth rows display the predicted
and ground-truth maps, respectively.

surrounding context, thereby generating a more diverse pool of
training samples from the same geographic area and enhancing
model generalization. Conversely, the broader spatial context
of the 512 × 512 chips often includes a larger proportion
of the “no-change” class. While these chips can capture
more deforested patches, the extensive area they cover often
results in these patches constituting less than 10% of the
chip area, triggering their elimination based on the data filter
steps. This disproportionately reduces the sample size for the
512 × 512 chips, indirectly elevating the risk of overfitting
due to narrowed variability in the data.
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TABLE III
TOP-5 SCORING HYPERPARAMETER CONFIGURATIONS FOR (TOP) 256 × 256 AND (BOTTOM) 512 × 512 CHIP SIZES

We found that the combination of a learning rate of 0.0001,
CE loss, AdamW optimizer, and the NGB band produced the
best results within our experimentation. Table III presents the
results categorized by chip size (256 × 256 and 512 × 512),
displaying the top-5 scores for each image size. Fig. 5 shows
sample bi-temporal images with the predictions of the top-
performing model.

A previous study [14] applied DL for DD by comparing
six state-of-the-art fully convolutional network architectures,
namely, U-Net, ResU-Net, SegNet, FC-DenseNet, Xception,
and MobileNetV2 variants of Deeplabv3+. Similar to our
work, they used the PRODES dataset for ground truth, and
they utilized both Sentinel 2 and Landsat-8 satellite imagery.
The best result of this prior study for Sentinel-2 data was
FC-DenseNet with an F1 score of 70.7%. However, the
ChangeFormer model obtained at least 80.9% F1 score for
the change class (F1-1) across both chip sizes. Similar trends
were observed in recall (rec-1) and precision (pre-1), with the
values of 84.5% and 84.7%, respectively, outperforming the
75.1% and 78.0% reported in the previous study.

V. CONCLUSION AND FUTURE WORK

We obtained Sentinel-2 satellite imagery and ground-truth
data for deforested areas in the Brazilian Amazon rainforest
in 2020 and 2021. Using these data, we created a bitemporal
deforestation dataset and trained a transformer-based network
for DD. We conducted a thorough hyperparameter search,
exploring various configurations to identify the best settings
for our task. Our investigation showed that color-shifted
infrared composite and cross-entropy loss with AdamW opti-
mizer resulted in the highest mean IoU (0.9007) and mean
F1 score (0.8238) with precision and recall of the change
class of 84.70% and 84.53%, respectively, demonstrating a
well-balanced detection performance. In comparison with the
existing research in the field of DD, our findings suggest
that transformer-based networks are capable of achieving
significantly improved levels of accuracy.

Our future work involves experimenting with state-of-the-
art methods on a larger dataset that we plan to make publicly
available along with the data acquisition and processing
pipeline code. This could be a valuable contribution to the
field of DD, enhancing the accuracy and robustness of DL
models in this domain.
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