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Image Quality Assessment of UAV Hyperspectral
Images Using Radiant, Spatial, and Spectral

Features Based on Fuzzy Comprehensive
Evaluation Method

Wenzhong Tian , Za Kan , Arturo Sanchez-Azofeifa, Qingzhan Zhao , and Gaili He

Abstract— Currently, unmanned aerial vehicle hyperspectral
images (UAV-HSIs) lack quick, objective, and comprehen-
sive image quality assessment (IQA) methods. Therefore,
a multifeature-based fuzzy comprehensive evaluation (FCE)
method was proposed in this letter to comprehensively evaluate
UAV-HSI quality. To characterize the hyperspectral quality com-
prehensively, we selected four radiometric features, three spatial
features, and two spectral features to construct an indicator set.
After analyzing the statistical distribution of the above features of
the 23 UAV-HSIs, a fuzzy evaluation threshold table and member-
ship functions were established. To determine the optimal feature
weights, the weights obtained using the three methods were tested
on a test set of UAV-HSIs constructed with different degrees of
noise and blur. The test results showed that the combined weight
based on a combination of subjective and objective weight is more
robust. The experiment for comprehensive quality assessment
of different distortion types and flight heights was done with
UAV-HSIs. The results indicated that the comprehensive quality
score was in good agreement with the subjective assessment
and the objective fact. This comprehensive quality evaluation
method can be effectively used for blurred, noisy, overexposed,
and different-height UAV-HSIs.

Index Terms— Fuzzy comprehensive evaluation (FCE), hyper-
spectral image quality assessment (HIQA), multifeature fusion,
unmanned aerial vehicle (UAV).

I. INTRODUCTION

IMAGE quality assessment (IQA) of unmanned aerial vehi-
cle hyperspectral image (UAV-HSI) is often the first step

in screening qualified hyperspectral images (HSIs). It is also
an important basis for measuring whether the performance of
unmanned aerial vehicle (UAV)-borne hyperspectral imaging
is up to the standard and for optimizing image processing
algorithms. Furthermore, the quality of HSIs is directly related
to the accuracy of the remote sensing (RS) information extrac-
tion [1]. Thus, as part of the work before image application,
the quality evaluation of UAV-HSIs using a quick and effective
method has become an urgent problem.
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IQA includes both subjective and objective IQAs [2]. Sub-
jective IQAs are time-consuming and labor-intensive, and
objective IQAs have become increasingly popular with the
development of computers. Objective IQA includes full-, semi-
, and no-reference IQA (NR-IQA). However, owing to the lack
of standard reference images, UAV-HSI prefers NR-IQA. Cur-
rently, NR-IQA methods developed for UAV-HSIs are mainly
based on machine learning or deep learning techniques [3], [4];
however, they are complex and time-consuming. Simple and
efficient NR-IQA methods have been developed for satellite
RS images. For example, using single or single-type features
NR-IQA [5], [6] and, more recently, using multiple features
NR-IQA [7], [8]. However, compared with satellite HSIs,
UAV-HSIs have a higher resolution and richer texture features.
Compared with satellite visible and multispectral images,
UAV-HSIs contain not only spatial features but also spectral
features that are particularly important. Therefore, it is difficult
to comprehensively assess the image quality of UAV-HSIs by
using single or single-type features. Moreover, in a multi-
feature quality assessment, the extracted feature values are
not exactly the same for images with different distortion
types but the same quality grade, making it impossible to
judge a specific quality grade. Therefore, some algorithms
are needed to coordinate multiple features to comprehensively
evaluate the image quality. For example, Wu et al. [9] used
a fuzzy comprehensive evaluation (FCE) method and nine
features to comprehensively assess the image quality of GF2
and SPOT7. However, a few studies have been conducted
on comprehensive quality assessment methods using multiple
features for UAV-HSIs.

Therefore, in this letter, we propose a quick, no-reference,
and comprehensive IQA method for UAV-HSIs based on
the FCE method. First, nine feature factors are constructed
based on radiant, spatial, and spectral features in Section II.
Second, the fuzzy evaluation threshold table of UAV-HSI was
established after statistical analysis of the nine features of
the 23 UAV-HSIs in Section IV. Next, four types of feature
weights were screened. Finally, we demonstrate the robustness
and accuracy of our method on UAV-HSIs with different
distortion types and flight altitudes.

II. METHODOLOGY

A. Feature Extraction of UAV-HSIs
1) Radiant Feature: In this study, radiometric features were

used to evaluate the quality of UAV-HSIs, including the
signal-to-noise ratio (SNR), entropy, AG, and contrast. These
features were used to evaluate the image noise level from
the perspective of noise, the image information level from
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the perspective of information theory, and the image blurring
level from the perspective of sharpness, respectively. It is
worth mentioning that these three features (entropy, AG, and
contrast) were calculated from each band of HSIs and then
averaged.

a) Signal-to-noise ratio: The SNR of RS images is a key
index for evaluating the quality of the data obtained by RS
sensors. There are various methods for calculating the SNR,
and the PPESDC method proposed by Tian et al. [10] was
used to calculate the SNR in this study.

b) Information entropy (Entropy): Entropy is a random
measure for the amount of information in an image, which
reflects the degree of nonuniformity and complexity of the
texture in the image. The calculation formula shows as follows:

Entropy = −

N∑
i=1

pi log2 pi (1)

where pi is the probability of gray level i appearing in the
image and N is the total number of pixels in the image.

c) Average gradient: Average gradient (AG) is the degree
of gray change in a fixed direction of an image, which reflects
the ability of the image to express details. The higher the
gradient in the fixed direction, the more pronounced the gray
change, which means that the image has better hierarchy and
clarity. For a discrete image x(i, j), the first-order derivative can
be expressed by a first-order difference approximation. Thus,
the horizontal and vertical gradients at (i , j) are expressed as

g′

i = x(i, j+1) − x(i, j), g′

j = x(i+1, j) − x(i, j). (2)
The AG is a vector whose value is

AG(i, j) =
1

(w − 1)(h − 1)
×

w−1∑
i=1

h−1∑
j=1

√
g′2

i + g′2
j

2
. (3)

d) Contrast: The contrast reflects the clarity of the image
and degree of texture of the groove depth. The clearer the
texture, the richer the light and dark transition layers of the RS
image, and the greater the contrast. There are various methods
for calculating the contrast. In this study, the contrast was
calculated using a gray-level co-occurrence matrix (GLCM)
using the following formula:

Contrast =

∑
i=1

∑
j=1

(i − j)2 P(i, j) (4)

where P(i , j) is the co-occurrence probability at position (i ,
j) in GLCM. In this study, the gray level was 16 and the step
size was 1. We calculated the contrast in four directions: 0◦,
45◦, 90◦, and 135◦, and then calculated the average value.

2) Spatial Features: Modulation transfer function (MTF),
MTF 0.5, and ground sampling distance (GSD) are the three
spatial features used in this study to evaluate the quality
of UAV-HSIs. The MTF is one of the most practical and
commonly used metrics for the RS IQA. Because UAV-HSIs
have a high spatial resolution and the knife-edge region is
easier to extract, MTF is a good choice for evaluating the
quality of UAV-HSIs. In addition, considering the different
image resolutions obtained by the UAV at different heights,
we added a GSD feature.

a) Modulation transfer function: We adopted the
knife-edge method to calculate the MTF of the UAV-HSI. The
procedure is shown in Fig. 1. First, a knife-edge region was
manually selected from the UAV-HSI. Given that the contrast
and inclination angle of the chosen image knife edge have
an impact on the MTF and that diffuse reflectance plates

Fig. 1. MTF calculation process.

are typically needed for reflectance correction in UAV-HSIs,
we chose a knife edge consisting of 3% and 48% diffuse
reflectance plates for this study and maintained an inclination
angle of 5◦ for the calculation. The edge spread function (ESF)
was then obtained using the least-squares fitting technique
to fit all edge points. Next, the derivative of ESF yields the
line spread function (LSF). Finally, the LSF was intercepted
at a certain length, Fourier transformed, and normalized to
obtain the MTF curve. In this study, the MTF feature is the
MTF value at a normalized frequency of 0.5. In addition,
we extracted the frequency value at an MTF of 0.5, that is,
the MTF 0.5 feature, which reflects the contrast in the target
image and is associated with the visual low-frequency part.

b) Ground sampling distance: The GSD in RS images is
also called the image resolution or ground resolution. This is
the distance between two consecutive pixel centers measured
on the ground. While evaluating the quality of RS images with
different resolutions, the GSD is a critical factor.

3) Spectral Features: SAM and spectral information diver-
gence (SID) are the two spectral features used in this study to
evaluate the quality of UAV-HSIs. These two features evaluate
the differences between the image and reference spectra in
terms of the cumulative differences and overall similarity,
respectively. The reference spectra for the images of various
ground objects taken by the UAV hyperspectral must be
located in the spectral database, and for some ground objects,
it is challenging to locate the corresponding spectra accurately.
Given that UAV-HSIs generally require diffuse reflectance
plates for reflectance correction, standard diffuse reflectance
plate spectra were selected as reference spectra. In this study,
we used the spectra of the 3%, 22%, 48%, and 64% diffuse
reflectance plates as reference spectra.

a) Spectral angle distance: The spectral angle distance
SAD considers two spectral curves as 2-D space vectors,
and their differences are characterized by calculating their
generalized angles. The calculation formula is as follows:

SA(x, y) = arccos
∑N

i=1 xi yi√∑N
i=1 x2

i

√∑N
i=1 y2

i

(5)

where x and y are two spectral curves, x = (x1, x2, x3, . . . ,
xn), y = (y1, y2, y3, . . . , yn), and N is the total number of
bands.

b) Spectral information divergence: The probability vec-
tors of the two spectra of x and y are a = (a1, a2, . . . , aN )

and b = (b1, b2, . . . , bN ), respectively, where ai = xi
∑N

i=1 xi

and bi = yi/
∑N

i=1 yi . Based on the information theory, the
self-information of x and y can be obtained as Ii (x) = − lg ai
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and Ii (y) = − lg bi . From this, the relative entropy of y and
x can be obtained as

D(x ||y) =

N∑
i=1

ai Di (x ||y) =

N∑
i=1

ai (Ii (y) − Ii (x))

=

N∑
i=1

ai lg(ai/bi ). (6)

Similarly, the relative entropy with respect to x and y can
be obtained as

D(y||x) =

N∑
i=1

bi lg(bi/ai ). (7)

Thus, the SID of x and y is
SI D(x, y) = D(x ||y) + D(y||x). (8)

B. FCE Method

In the FCE, it is necessary to first establish the indicator
set U = {u1, u2, u3, . . . , um} and the comment set V =

{v1, v2, v3, . . . , vn}. In this study, U was constructed using the
nine features described in Section II, and V was constructed
using five assessment grades, namely, very bad (v1), poor (v2),
fair (v3), good (v4), and excellent (v5). Then, the fuzzy matrix
R is constructed, whose formula is

R =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

...
rm1 rm2 · · · rmn

 (9)

where ri, j denotes the membership degree of image quality
belonging to the assessment grade n in the evaluation of m
features.

The shapes of the membership functions used to calculate
the membership degree have various forms, and the common
shapes include triangle, trapezium, and Gaussian distributions.
Because the comment set had more assessment grades and the
feature value resembled a fuzzy range in this study, we chose
a trapezium distribution.

The comprehensive evaluation formula is as follows:
B = W ◦ R (10)

where B is the membership degree of the image belonging
to each quality grade, W is the fuzzy weight vector of each
evaluation factor, and ◦ is a fuzzy synthesis operation.

The synthetic operation typically includes the main factor
determination, main factor highlighting, and weighted average
type, among others. The weighted average type considers all
factors and can fully reflect the role of each feature. Therefore,
in this study, a weighted average synthetic algorithm was used.
Finally, we assign values by 1, 2, 3, 4, and 5 quality scores
to obtain the comprehensive evaluation quality scores.

In addition, it is worth noting that weight is an important
parameter in the FCE. To determine the appropriate weights,
objective, subjective, and combined weights were used. The
objective weight was calculated using the entropy method
(entropy weight) [11], the subjective weight was calculated
using the analytic hierarchy process (AHP weight) [12], and
the combined weight was constructed based on the objective
and subjective weights as follows:

w′

i = αwi + (1 − α)vi (11)
where w′

i is the combined weight of the i th feature, w is
the subjective weight, v is the objective weight, and α is the
proportion coefficient of the subjective and objective weights.

TABLE I
FUZZY EVALUATION THRESHOLD TABLE (THE VALUES IN THE TABLE ARE

THE INTERMEDIATE VALUES OF EACH TRAPEZOIDAL
MEMBERSHIP FUNCTION)

III. DATA

There are 23 UAV-HSIs were used in this study, which
were acquired using a Rikola hyperspectral imager equipped
with a DJI M600Pro UAV at different heights. The ground
object types of these images included road, water, bare soil,
jujube trees, cotton, wheat, and Zucchini of different growth
periods. All images contained four diffuse plates with standard
reflectance. Preprocessing of these images includes dark cur-
rent correction, format conversion, band registration, image
mosaic, and reflectance correction [13]. Besides, the pixel
values of the reflectance images were scaled from 0–100 to
0–255 before extracting the feature values. The final image
was cropped to 1800 × 1100 pixels.

IV. EXPERIMENTS AND DISCUSSION

A. Establishing Fuzzy Evaluation Threshold Table
The fuzzy evaluation threshold table must be determined

in advance, and it is a key component in constructing a
fuzzy relationship matrix. By statistical analysis of the feature
values extracted from the 23 UAV-HSIs, the fuzzy evaluation
threshold table was obtained (Table I). Compared the fuzzy
evaluation threshold table of satellite images [9], the feature
thresholds of UAV-HSI are significantly different from those
of satellite images. This indicates the necessity of establishing
a fuzzy threshold table for the UAV-HSI.

B. Feature Weights Test Experiment
First, based on the fuzzy evaluation threshold table, the

entropy weight was calculated. Second, based on the subjec-
tively designed fuzzy judgment matrix

Z =



1 3 3 3 1 2 5 2 2
1/3 1 1 1 1 1 2 1 1
1/3 1 1 1 1 1 1 1 1
1/3 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 2

1/2 1 1 1 1/2 1 1 1 1
1/5 1/2 1 1 1/2 1 1 1 1
1/2 1 1 1 1/2 1 1 1 1
1/2 1 1 1 1/2 1 1 1 1


the AHP weight was calculated. Finally, according to for-
mula (11), the combined weight was calculated using α =

0.5. The constructed four types of feature weights are listed
in Table II.

To determine the optimal feature weights, we selected
nine images from 23 UAV-HSIs. Because the main types
of distortion in UAV-HSIs are noise and blur [13] and five
assessment grades were designed in Section II, the distortion
processes included four degrees of Gaussian noise and four
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TABLE II
FEATURE WEIGHT SET

Fig. 2. Example images of a five-grade teat sets of UAV-HSIs.

Fig. 3. FCE results of the UAV-HSI datasets with different quality grades.
(a)Evaluation result for the nine original HSIs belonging to the excellent
quality grade. (b)–(e) Evaluation results for the HSIs with noise addition and
blurring belonging to the four grades of good, medium, poor, and very bad,
respectively; the odd and even numbers of the test samples represent noise and
blurred images, respectively. (f) Total graph for comparing the FCE results of
different grades of HSIs.

degrees of blur. Gaussian noise with a mean of 0 and vari-
ances of 0.05, 0.5, 2.5, and 5 was added to obtain noisy
images. Gaussian filters with blurred pixels of 0.5, 2, 3.5,
and 5 were used to create blurry images. These nine original
HSIs and 72 HSIs with different degrees of noise and blurring
ultimately constitute a test set of five quality grades. Example
images of the test set are shown in Fig. 2.

Fig. 3 shows the results of the FCE of the test set using
four types of feature weights. Overall, the evaluation results
of the average weight were significantly different from those
of the other three weights, and the quality scores assessed
for the images of grades 1 and 5 using the average weight

Fig. 4. UAV-HSIs of different situations in the same scene. (a) Original image
(80 m height). (b) Noisy image (noise with 2.5). (c) Blurred image (blur with
2). (d) Overexposed image. (e) 150-m-height image. (f) 200-m-height image.

Fig. 5. Quality score (bar chart) and membership degree (pie chart) of the
FCE of the six HSIs. (a)–(f) Six HSIs described in Fig. 4, respectively.

were closer to middle. Additionally, comparing the test images
in Fig. 3(a), the subjective scores of sample 2 were almost
the same as those of samples 5, 7, and 8 and were higher
than those of samples 1, 2, 4, and 5. However, the quality
scores of sample 2 obtained using the average weights were
significantly lower than those of samples 7 and 8. As a result,
the average weight was lower than the other three weights in
terms of distinguishing quality grades and evaluating accuracy.
As shown in [9], feature weights affect the results of the IQA.
Therefore, it is necessary to determine the feature weights
rather than simply using the average weight.

The scores using entropy, AHP, and combined weights
showed the same trend, and the scores of the combined weight
were between the entropy and AHP weights. As suggested
in [11] and [12], combining subjective and objective weights
to obtain combined weights solves the problem of weight
calculation errors caused by the interaction between features,
and the constructed feature weights are more robust in FCE.
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TABLE III
FEATURE VALUES OF THE SIX HSIS IN FIG. 4

C. UAV-HSIs Quality Comprehensive Evaluation Experiment

To further test the robustness and accuracy of the proposed
comprehensive evaluation algorithm, we used six UAV-HSIs
(shown in Fig. 4) in the same scene, including original, noisy,
fuzzy, and overexposed HSIs at an 80-m flight height and
two original HSIs at 150- and 200-m flight height. Among
these, Fig. 4(a) was acquired at noon (first flight, time: 13:45),
Fig. 4(d) was acquired on the second flight (time: 14:33), and
Fig. 4(e) and (f) was acquired on the third and fourth flights
(time: 16:17 and 16:34, respectively). The feature values
extracted from these six images are listed in Table III. The
examination of each individual evaluation criterion can provide
an understanding of the quality of a particular aspect of the
image; however, it is difficult to comprehensively assess the
image quality even in the same scene. Therefore, it is necessary
to synthesize these evaluation features using the FCE criteria.

Based on the test results of the weights in Section IV-B,
we selected the combined weight. The quality scores of the
six HSIs using the FCE method are shown in the bar chart
in Fig. 5. In this figure, Fig. 5(a) has the highest quality
score and best image quality. Fig. 5(e) and (f) has lower quality
scores than Fig. 5(a), and the visual observation of Fig. 5(a)
is also better than Fig. 5(e) and (f). This quality score is
consistent with the subjective assessment. In addition, Fig. 5(a)
was acquired at noon, with the best light intensity and imaging
conditions. In contrast, Fig. 5(e) and (f) was acquired when the
light intensity decreased, solar altitude angle decreased, and
imaging conditions worsened. Therefore, this quality score is
consistent with objective facts. Additionally, Fig. 5(e) and (f)
has essentially the same quality score, and visual assessment
cannot accurately determine who is better. Comparing the three
image features of a, e, and f in Table III, the main variance is
the spatial feature GSD values due to the difference in flight
height; therefore, the GSD used in this study is necessary to
balance the radiometric and spectral features. b and c have
significantly lower quality scores than a, with quality scores
of Qa > Qc > Qb, which is consistent with the different types
of designed distortion levels. Furthermore, there is a significant
spectral distortion in d. The quality score of d is significantly
lower than that of a, and there are also significant differences
in the spectral and radiometric features of d. Therefore, the
FCE based on the above nine features can also be used for
the quality assessment of overexposed HSIs.

The membership degrees of the six HSIs obtained using
the FCE method are shown in the pie chart in Fig. 5.
Fig. 5(a) and (c)–(f) obtained quality grades based on the
maximum membership principle (quality grades 5, 4, 3, 4,
and 4, respectively), which are consistent with the assigned
quality scores. However, the quality grade (quality grade 2)
assessed by the maximum membership principle of Fig. 5(b)
is different from the assigned quality score (2.833). Therefore,

this study cannot use the principle of maximum membership
degree to obtain the quality grade of UAV-HSIs as in [12]
and [14]. In contrast, the quality score obtained using the
weighted average synthesis operation [15] and the assigned
value operation considers all factors and reflects the role of
each index more fully, and the quality assessment is more
accurate.

V. CONCLUSION

In this letter, a no-reference and comprehensive IQA method
is proposed for UAV-HSIs using radiant, spatial, and spectral
features based on the FCE method. The evaluation results
demonstrated that the method can distinguish between differ-
ent quality grades of UAV-HSIs with noise, blur, overexposure,
and different heights. In the fuzzy comprehensive assessment,
the quality score obtained using the weighted average synthesis
operation and the assigned value operation more accurately
represents the quality of the UAV-HSIs. Additionally, the
results of the weight tests showed that objective and subjective
combined weights can help produce a more reliable fuzzy
comprehensive quality assessment. Therefore, we recommend
using the combined weight.
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