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Radar Polarimetry: Classical Versus
Quad-Pol Methodologies

R. K. Raney , Life Fellow, IEEE

Abstract— In the synthetic aperture radar (SAR) context,
“fully polarized” has two conflicting meanings: measurement
of the scattering matrix, or an output image product that is
a complete polarimetric characterization of an observed scene.
Modern quadrature-polarimetric (quad-pol) SARs focus on the
scattering matrix, while the typical user’s objective is a fully
polarimetric output product. Conventional quad-pol polarimetric
retrieval processing relies on matrix decomposition, which leads
to output products that are not fully polarimetric. The Stokes
parameters from classical radar architectures are fully polarimet-
ric, thus meeting users’ objectives. A quad-pol SAR will produce
fully polarimetric output products if and only if it is polarization-
conserving, via the Mueller matrix for example. On this path,
decomposition algorithms are not needed. Approximations and
models are not needed. Classical full-polarimetry—which has
no use for the scattering matrix—achieves the same goal by
transmitting circular polarization and receiving two orthogonal
polarizations, sufficient to evaluate the Stokes vector. Circular
polarization (either L or R) coupled with a dual-polarized
receiver are required. Both classical and user-oriented quad-pol
approaches are founded on fundamental principles from classical
optics, the Stokes parameters. These provide a full polarimetric
portrait of the incoming electromagnetic field, including polar-
ized and unpolarized constituents. Both the approaches share
a requirement for circularly polarized transmissions, actually
realized in the classical precedent, but virtually emulated in a
quad-pol radar only when polarization-conserving methods are
used.

Index Terms— Full polarization, Mueller matrix, quad-pol,
radar polarimeter, stokes, synthetic aperture radar (SAR).

I. INTRODUCTION

CLASSICAL optics [1] includes the fundamental principle
that a quasi-monochromatic partially polarized electro-

magnetic (EM) field may be completely characterized by any
pair of orthogonally polarized constituents. It follows that
four thoughtfully chosen real numbers—the Stokes parameters
for example [2], [3], [4]—fully characterize the polarimetric
properties of a partially polarized EM field. Consequently,
a dual-polarized receiving system is sufficient to support fully
polarized data collections [5].

These classical principles apply equally to a dual-pol
microwave radiometer or to an active system [6], [7], [8], such
as the Arecibo Radio Telescope [6] (Fig. 1).
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Fig. 1. Arecibo Radio Telescope (1963–2020) operated as a radiometer or
a radar. It transmitted circular polarization in its radar mode.

The Stokes parameters are evaluated from data collected
by the receiver through applicable formulas according to the
orthogonal polarization pair used by the observing system [1],
[7]. The measured values of the Stokes parameters do not
depend on the specific polarimetric pair with which the EM
field is observed [2]. Hence any pair will suffice. (In prac-
tice, that enables receiver polarization selection to be guided
by implementation optimization [3], [4].) Radio and radar
astronomy usually use L and R circularly polarized reception
channels [10], but alternatives such as the linearly polarized
H and V channels work just well [5].

The analytic Poincaré parameters may be calculated [4],
[11] from the Stokes parameters. These consist of two pow-
ers (total and polarized), and two angles (that, respectively,
describe the shape and orientation of the observed EM field’s
polarimetric ellipse) [3]. The Poincaré parameters have the
advantage that they are canonical, unlike the Stokes parameters
each of which reflect the value of two or three independent
variables.

In the classic configuration, the polarimetric information
collected by the receiver is preserved—through its collection
by an antenna, passage through the receiver, and subsequent
processing stages—then presented to the user, as a Stokes
vector in traditional practice. End-to-end polarimetric conser-
vation is a top-level requirement for most users.

The Stokes parameters are an example of “full polarimetry”
in the classic meaning [7]. In contrast, “full polarimetry” since
1985 [12] has taken on a different and narrower meaning in
the context of quadrature-polarimetric (quad-pol or full-pol)
synthetic aperture radar (SAR). The resulting dichotomy has
led to considerable misunderstanding and controversy over
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Fig. 2. Users, especially those in operational agencies responsible for large-s-
cale information retrieval and classification tasks, expect that a polarimeter
measures and then reports an accurate and complete characterization of the
observed scene.

the past several decades. Section II of this letter highlights
the classical case, while Section III reviews the quad-pol
SAR environment. Those two discussions set up the full-pol
dichotomy. Section IV offers an explanation and resolution of
the conflict. The letter closes with Section V, Conclusion.

II. CLASSICAL FULLY POLARIZED RADAR

The classical meaning of “full polarization” (Fig. 2) is that,
as a polarimeter, the device must do what is promised by
its name, to measure observed data, and then report to the
user what had been measured. Users expect to see an accurate
and complete characterization of the polarimetric EM field
observed by the instrument.

For an active system, the observed field’s polarization prop-
erties depend on the polarization of the transmitted field [12].
When the objective is to capture a scene’s polarimetric por-
trait [13], the transmitted field must be balanced so that
all the linearly polarized backscatter constituents have equal
opportunity to shine. Circularly polarized transmissions from
a radar (or a navigation satellite) satisfy that requirement with
only one transmitted polarization.

Note that the classical approach does not depend on evalua-
tion of the scattering matrix; dual-polarized data are sufficient
to evaluate the Stokes parameters.

III. MODERN QUAD-POL RADAR

The quad-pol definition of full polarimetry is restricted to a
specific class of radars, usually SARs, and hence, it has a much
narrower meaning than the classical precedent. The objective
of “full polarization” in the quad-pol context is to measure the
four (complex) elements that comprise the Sinclair (scattering)
matrix (Fig. 3) that characterizes an observed scene [14], [15].
Full-pol succeeds at that stage, but when followed by polari-
metric matrix decomposition schemes [16], it falls short from
a user’s point of view. As stated above, users expect to see
an accurate and complete characterization of the polarimetric
EM field observed by the instrument. One major cause for
that shortcoming is that popular decomposition methods do
not include the uncorrelated (randomly polarized) constituents.

Fig. 3. Conventional (modern) quad-pol radars preserve a scene’s complete
(full) polarization properties in the 2 × 2 Sinclair scattering matrix, but the
following decomposition algorithms do not conserve an accurate nor complete
version of the scene’s polarimetrics in the resulting data product.

Consequently, these methods cannot satisfy an SAR’s simple
basic conservation of energy principle. It is unlikely ever
to be proven that the users’ quad-pol product, following
decomposition, is an accurate and complete characterization
of the polarimetric properties of the observed EM field.

The conventional linearly polarized quad-pol architecture
takes advantage of the classical two-orthogonal-polarization
principle as it uses a sequence of two interleaved orthogo-
nal polarizations (usually implemented with H and V ) [17]
transmitted toward the scene. The quad-pol approach achieves
polarimetric balance of the illuminating EM field, but at the
cost of doubling the rate of transmission pulse repetition
frequency (prf) with its attendant disadvantages [14], [15].
The prf must be doubled for two reasons, to respect the
Nyquist lower sampling bound for each channel and to assure
coherence between the respective cross-polarized backscatter
constituents. Quad-pol’s principal user disincentives include
major restrictions on potential area coverage, the impossibility
to implement ScanSAR, limited span of radar incident angles,
and doubled data burden per pixel [18], [19].

One advantage of quad-pol is that its complete scattering
matrix supports generation of polarimetric signatures [17],
based on a transfer function relationship in the Stokes (aver-
aged power) domain. The governing expression ([16, eq. (2)]
for example) states that a scene’s Mueller matrix [M] postmul-
tiplied by the Stokes vector of a transmitted EM field yields the
Stokes vector of the backscattered field in response to that par-
ticular transmission. Polarimetric signatures of a given object
(or scene) are generated by cycling through all the polarization
states in the transmission Stokes vector and displaying the
corresponding like- and cross-polarized output Stokes vectors.
(This feature when demonstrated with a video presentation
during the 1985 IGARSS at the University of Massachusetts
caused somewhat of a sensation.) Like its scattering matrix
heritage, the Stokes operator is fully polarimetric.

IV. BACK TO BASICS

In the special case of a circularly polarized transmission
Stokes vector1 driving the Mueller matrix, the output Stokes

1The (power-normalized) Stokes vector for circular polarization is (SC) =

(1,0,0, ±1)T where the sign of the fourth parameter depends on the L- or
R-handedness of the circularity.
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Fig. 4. Classical radar polarimeter (upper signal flow) produces the
scene’s polarimetric portrait in response to circularly polarized transmissions.
A quad-pol radar (lower signal flow) satisfies conservation from the complete
scattering polarization matrix. The scene’s polarimetric portrait follows from
virtual representation of circular polarization.

vector is the polarimetric portrait [13] of the observed scene,
exactly the result desired by users. This result is reached by
a well-defined objective closed-form methodology founded on
well-established classical physical optics principles. When this
method is adopted, there is no need for matrix decomposition
strategies.

Appendix A (page 124) of Jakob van Zyl’s PhD the-
sis [20] expands on the Stokes operator—variously known as
the closely-related Mueller or Kennaugh matrices [16], [21].
As portrayed in Fig. 4, [M] maps the four (complex amplitude
domain) scattering matrix elements into 16 real numbers
(power domain), [20, eqs. (2)–(17)]. Being fully polarimetric,
the Stokes operator has the great advantage—in favorable
contrast to the usual quad-pol decomposition methods that
rely on coherence or covariance matrices [16]—of preserving
the unpolarized along with the polarized constituents of the
observed EM field [7], [8], [20]. That property is important,
because the backscatter may include as much as 50% or more
of unpolarized constituents [22] that are evident in polarization
signatures as the pedestal base above which the polarized
constituents appear [17].

Use of this polarization-conserving matrix is a natural
means of achieving users’ full polarimetry from quad-pol
SAR data, through exploitation of quad-pol’s polarimetric
signature feature [17], [20] for the particular case of circularly
polarized transmissions. This method is appropriate for a wide
variety of applications, including especially scenes containing
different classes of backscatterers, as object-specific models
or approximations are not needed.

When a polarization-conserving bridge such as the Stokes
operator is used, there is only one functional difference
between classical and quad-pol radar architectures: actual
versus virtual means of providing circularly polarized trans-
missions. That difference has no impact on the polarimetric
portrait [13]. When reduced to basics, the key requirement on
both the approaches is to transmit circular polarization, either
actual (classical) or virtual (quad-pol).

A. Actual

The classical method actually transmits circular
polarization—H and V for example, simultaneously, 90◦

out of phase—from which backscatter is generated that
includes all the information required to evaluate the scene’s
Stokes vector. (Actual transmission of circular polarization
may be visualized as two orthogonal linear polarizations
transmitted simultaneously in parallel.) Measurement of the
four scattering matrix elements is not needed. The classical
architecture affords an efficient approach to realizing users’
fully polarimetric objective because it literally circumvents
scattering matrix evaluation, thus avoiding its inherent
disadvantages [18].

B. Virtual

The modern full-pol approach, which transmits sequentially
interleaved linear polarizations—H then V for example—
collects sufficient data to evaluate the four scattering matrix
elements. (Virtual transmission of circular polarization may be
visualized as two interleaved orthogonal linear polarizations
transmitted in series. The like-and cross-polarized transmitted
constituents must be closely spaced in time to preserve their
relative coherence, as noted by van Zyl [20].) From those data,
a mathematical representation of circular transmit polarization
may be invoked to derive the radar’s corresponding response.
In effect, this emulates the classical precedent. The approach
works in the complex amplitude domain (via Jones vectors)
[13] or in the power (Stokes operator) domain as recommended
by van Zyl [20]. When using polarization-conserving methods
such as these in the quad-pol environment, there is no need
for matrix decomposition.

V. CONCLUSION

It is known from classical optics that a partially polarized
quasi-monochromatic EM field may be fully characterized
by four real numbers, such as the Stokes parameters or
any two orthogonal polarizations. Classical fully polarimetric
radiometers are implemented with a dual-polarized receiver
followed by transformation of the observed complex two-
channel data into a Stokes vector that contains the complete
(full) polarimetric characterization of the incoming EM field.
A classical active system uses the same receiver arrangement,
but requires that the transmitted EM field to be circularly polar-
ized, hence providing polarimetrically balanced illumination
of the scene. Illumination circularity may be from either a
monostatic transmitter–receiver radar combination or an exter-
nal source such as a navigation satellite. For either the active or
passive classical arrangement, the output polarimetric portrait
completely and accurately conveys the observed polarimetric
information, exactly as required by users. Polarimetric por-
traits satisfy the end-to-end conservation of energy principle
that is applicable to imaging radars.

In contrast, full polarimetry for quad-pol enthusiasts
requires that the four (complex) Sinclair scattering matrix
elements must be fully evaluated, which the conventional
quad-pol radar architecture is designed to do. The scattering
matrix once populated is fully polarimetric. Starting with a
complete scattering matrix, subsequent retrievals may follow
one of two different paths, decomposition or polarimetric
conservation. Users expect that their end product should be a
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faithful measurement of the incoming EM field’s polarimetric
properties. Popular decomposition schemes fail to meet that
expectation. Decomposition methodologies have never been
proven to achieve the results required by users. In particular,
energy conservation from input signal to output polarimetric
information is not satisfied. Hence, the central user require-
ment that the polarimeter should report as its output product
an accurate and complete characterization of the observed EM
field is not met.

Quad-pol radars are capable of meeting users’ expectations
for a radar polarimeter, but if and only if a polarimetrically
conservative processing path is followed, rather than matrix
decomposition. The Mueller (Stokes operator) matrix guaran-
tees energy and polarimetric conservation. The key step in
that algorithm is postmultiplication of the Mueller matrix by
a circularly polarized Stokes vector of the transmitted EM
field, a singularly important case of quad-pol’s polarization
signature. That methodology is objective and reliable, having
closed form, and requires no models or approximations. It ren-
ders decomposition schemes to be irrelevant. It is end-to-end
energy conservative.

Quad-pol polarization-conserving paths lead to the same
Stokes vector as from classical dual-pol architecture, a faithful
polarimetric portrait of the observed scene. The key to that
result is that both the approaches rely on circularly polarized
transmissions, actual for the classical precedent, or virtual for
the quad-pol radar configuration.
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