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Abstract— This letter proposes a novel synthetic aperture radar
(SAR) time series analysis method based on the scattering power
decomposition algorithm with a reasonable ensemble average in
both temporal and spatial domains. We reveal that the ensemble
average is effective not only in the spatial domain but also in the
temporal–spatial domains in the scattering power decomposition.
That is, if we extend the ensemble average window in the
temporal domain, the proposed method can accurately achieve
volume scattering power with a higher spatial resolution than
conventional approaches. The precise volume scattering power
serves accurate forest monitoring. As an application, we per-
formed forest disturbance detection in the Amazon rainforest
using Sentinel-1 time series data. The proposed method detected
the disturbances earlier, in less than 2 months, compared to other
methods that take about 3 months.

Index Terms— Dual polarization, forest disturbance detection,
scattering power decomposition, Sentinel-1, time series analysis,
tropical forests.

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (SAR) data pre-
serve the dielectric properties and structures of scatterers,

and they can be analyzed using various scattering power
decomposition algorithms [1], [2]. However, these decom-
position algorithms have limited applications owing to the
infrequent acquisition of polarimetric SAR data. Thus, the
scattering power decomposition algorithm has been extended
to apply to dual-polarization data [3]. Since dual-polarization
data are acquired more frequently than full-polarimetric SAR
data, the analysis using time series data can be applied to land-
use and land-cover classification, object change detection, and
so on.

Most studies of changes in the tropical rainforests have
focused on the causes and effects of deforestation. About 38%
of the remaining forests in the Amazon are estimated to be
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degraded [4]. Thus, the detection of disturbances with less-
intensity change in rainforest plays a crucial role in mitigating
greenhouse gas emissions. Even though several deforestation
detection systems have been applied operationally, detecting
forest disturbances with less-intensity change remains a chal-
lenging task. For example, the conventional method using
PALSAR-2 ScanSAR time series data, which is applied to the
deforestation detection system, failed to detect disturbances
with a logging intensity of about 20 m3ha−1 in Saraca region
of Brazil [5]. In the forest disturbance alert system using
Sentinel-1 time series data, called radar for detecting defor-
estation (RADD) [6], it takes time to detect disturbances that
appear similar to undisturbed forest on the radar image due
to remaining woody debris. Furthermore, other methods using
Sentinel-1 time series data took about 3 months to detect forest
disturbances with a logging intensity of ∼30 m3ha−1 or where
trees remain after logging [7], [8].

In this study, to obtain the volume scattering power with the
accurate and high spatial resolution, we propose a novel time
series scattering power decomposition algorithm that extends
the ensemble average window in both temporal and spatial
domains. We then apply the method to Sentinel-1 C-band time
series data for disturbance detection in the Amazon rainforest.
With respect to the disturbance in this study, we define two
levels. One is namely moderate disturbance with less-intensity
change, such as the area where trees and/or undergrowth
remain after logging, as shown in Fig. 1. In these areas,
the intensity changes in the C-band SAR data are less than
the range of the annual variability. The other is the high
disturbance, defined as clear cutting such as deforestation.

The remaining sections of this letter are structured as fol-
lows. The proposed method is described in detail in Section II.
The dataset and approach using the proposed method for
forest disturbance detection are described in Section III. The
experimental validation results are detailed in Section IV. The
proposed method is compared with other time series analysis
methods in Section V. Section VI presents the conclusion.

II. TIME SERIES SCATTERING POWER DECOMPOSITION

The scattering power decomposition algorithms offer supe-
rior target recognition, and many researchers have applied
these algorithms to forest monitoring [9], [10], [11]. Recently,
the application of these algorithms has been extended to dual-
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Fig. 1. Moderate disturbance at (a) and (b) site A1 and (c) and (d) site
A2. (a) and (c) Mosaic images acquired by Planet/Dove in December 2021.
(b) and (d) Drone image of the sites acquired in February 2022.

polarization data, so that they can be applied to more SAR
data, as shown in the following [3]:
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where ⟨[C2]⟩ denotes a 2 × 2 scattering covariance matrix
with an ensemble average, and ∗ denotes complex conjugation.
Pg , Pv , and Ph denote ground scattering, volume scattering,
and helix scattering powers, respectively.

Conventionally, the ensemble average has been considered
only for the spatial domain as follows:

⟨[C2]⟩ =
1
Ns

Ns∑
i

[C2i ] (2)

where Ns denotes the number of samples in the spatial domain.
Assuming that the dielectric properties and structures of the
scatterers change little over time or that the changes in scatter-
ing due to events, such as deforestation or seasonal variations,
are consistent within the specific temporal window (i.e., the
vegetation will not recover for months, resulting in a consistent
scattering mechanism in most of the postlogging images), the
ensemble average for the abundant dual-polarization data is
extended to the temporal domain. A temporal intensity filter
has been proposed to preserve strong scatterers in an image
window [12], but it is not suitable for the scattering power
decomposition and cannot handle complex correlations. Since
the ensemble average in the scattering power decomposition
serves to extract the statistical properties of the scatterers in
an image window, we extend the ensemble average in the

TABLE I
COMPONENTS OF THE COVARIANCE MATRIX USING (3) WITH Ns = 20

AND Nt = 1 OR 8 USING SENTINEL-1 TIME SERIES DATA IN THE
SAN FRANCISCO ON JANUARY 21–APRIL 27, 2019. U: URBAN

AREAS, B: BARE GROUND, AND TU: URBAN AREAS TILTED
WITH RESPECT TO THE RADAR ILLUMINATION

temporal–spatial domains as follows:
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where Nt denotes the number of samples in the temporal
domain, i.e., the number of images. Sco−pol and Sx−pol indi-
cate the co- and cross-pol (SHH and SHV or SVV and SVH)

components of the scattering matrix. The diagonal components
in (3) represent the averaged power of the co- and cross-
polarization, respectively. Also, the off-diagonal component
in (3) represents the averaged complex correlation between the
co- and cross-polarization. Table I shows an example of typical
polarimetric features and their dependence on Nt derived from
Sentinel-1 data in San Francisco, USA. In the urban area and
the bare ground where the co-polarization scattering occurs,
there is less change in the covariance matrix even when the
ensemble average includes the temporal domain. The results
suggest that in the C-band SAR data, the relationship between
co- and cross-polarization of these scatterers is stable over
temporal variations, such as rainfall. On the other hand, both
cross-polarization scattering and complex correlation occur in
the natural distributed objects and in the urban areas tilted
with respect to the radar illumination. Scattering in the latter
area is stable and unaffected by the time series ensemble
average. For the natural distributed objects, such as natural
vegetation, the complex correlation is close to zero when
using a larger window in the spatial domain due to the phase
from randomly distributed scatterers in the vegetation, i.e.,
⟨SH H S∗

H V ⟩ ≃ 0 and ⟨SV V S∗
V H ⟩ ≃ 0. Such properties are called

the reflection symmetry condition and lead to obtaining the
covariance matrix of the volume scattering model [10]. If the
ensemble-averaged samples can be obtained in both temporal
and spatial domains, Ns can be smaller than that for the
spatial domain only. Thus, the volume scattering power can be
analyzed with a higher spatial resolution under the reflection
symmetry condition. Although there are several factors that
cause the temporal variation in natural vegetation, the random-
ness of the scatterer distribution cannot be altered, and natural
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Fig. 2. Box plots of the components of the covariance matrix generated
from grassland in Altamira using (a) (2) with different Ns and (b) (3) with
different Nt and Ns = 20.

vegetation would be assumed to be a natural distributed object
even in the temporal domain. For example, wind conditions
change from moment to moment, causing the branches and
leaves to sway randomly to the SAR sensor. Even with
rainfall, the distribution of branches and leaves also remains
random.

Fig. 2 shows the components of the covariance matrix
generated from grassland using (2) and (3). Here, we used
ten Sentinel-1 data acquired at Altamira in Brazil between
May 6 and August 22, 2021. The Ns values of 5, 20, 45,
and 80, which correspond to the spatial window sizes of 1
× 5, 2 × 10, 3 × 15, and 4 × 20 pixels in the azimuth
and range directions, respectively, are used in (2). In (3), Nt

is used from 1 to 10, while Ns is fixed at 20. As shown
in (1), the theoretical values of ⟨C11⟩, ⟨C22⟩, and |⟨C12⟩| in
the volume scattering model are derived to be 75%, 25%, and
0% of total power, respectively. The larger Ns achieves the
ratio of components close to theoretical values, as shown in
Fig. 2(a). For example, ⟨C11⟩, ⟨C22⟩, and |⟨C12⟩| with Ns = 80
indicate an average and standard deviation of 77.9% ± 4.86%,
22.1% ± 4.86%, and 6.89% ± 3.53%, respectively. The
difference from the theoretical values in (1) can be attributed
to the short wavelength; C-band SAR cannot penetrate deeply
into the vegetation due to their short wavelength and the
volume scattering power generated from the vegetation is not
dominant component [13]. As shown in Fig. 2(b), increasing
Nt and increasing Ns have similar effects. When using (3) with
Ns = 20, ⟨C11⟩, ⟨C22⟩, and |⟨C12⟩| start from 77.1% ± 8.73%,
22.9% ± 8.73%, and 12.3% ± 6.18% with Nt = 1. Then, they
show 78.2% ± 4.38%, 21.8% ± 4.38%, and 6.38% ± 3.29%
with Nt = 4, which are equivalent to those obtained using (2)
with Ns = 80. Therefore, in natural vegetation, time series
ensemble average with small Ns can realize the reflection
symmetry condition with specific Nt and analyze the volume
scattering power with an accurate and high spatial resolution.
The components of the covariance matrix finally converge to
78.7% ± 3.20%, 21.3% ± 3.20%, and 4.52% ± 2.35% with
Nt = 8. This property also holds true for the covariance matrix
of forests as well.

The time series scattering power decomposition, i.e., apply-
ing the covariance matrix in (3) to the scattering power
decomposition algorithm in (1), yields three scattering powers
with high spatial resolution. Since the time series scattering

power decomposition is frequency-independent, it is applicable
to abundant SAR data with a few weeks repeat cycle, such
as Sentinel-1 (C-band SAR), NISAR (L-/S-band SAR), and
ALOS-4 (L-band SAR) data.

III. APPLICATION TO FOREST DISTURBANCE DETECTION
USING SENTINEL-1 DATA

A. Dataset

In this study, two time series of Sentinel-1A single look
complex data are used. One is the data acquired between
March and December 2021 covering moderate disturbance
sites, as shown in Fig. 1, namely, site A1 at 51.8 W and
2.6 S and site A2 at 51.7 W and 2.9 S. The other is the
data acquired between April and November 2022 covering
51.0–52.0 W and 2.0–3.0 S. The moderate disturbance sites,
where are included in the 2021 time series data, are located
in Altamira, Brazil, and were confirmed by optical satellite
images to have begun in September 2021. A field survey
was conducted there by the Japan International Cooperation
Agency (JICA) in February 2022. These data, along with
forest and nonforest samples from around the site, were used
to study the change in scattering power with disturbance.
For the time series data in 2022, the reference data were
created by visual interpretation using the Planet biannual base
map from the Norway’s International Climate and Forests
Initiative satellite data program. The reference data consist
of 504 polygons representing the moderate (231 polygons)
and high (273 polygons) disturbances detected in August and
September 2022. They were used to validate the accuracy of
forest disturbance detection.

B. Disturbance Detection

Unlike in deforestation, in moderate disturbances, the
remaining trees and undergrowth contribute to the backscatter,
resulting in less variability in the backscatter before and after
the event. Thus, it is difficult to detect moderate disturbances
from the change in the scattering power. By using the pro-
posed method, the total scattering power image generated
from Sentinel-1A time series data showed forest textures
with spatial patterns similar to the canopy structure and also
reduced the contrast of both sites A1 and A2 compared to
that of the forest. Therefore, the proposed method can extract
the texture difference between forest and moderate disturbance
due to its high spatial resolution, and the following condition
can be used to detect the moderate disturbance

Texturepre−event > α ∩ Texturepostevent ≤ α (4)

where “pre-event” and “postevent” denote before and after
the forest disturbance, respectively. α denotes an empirical
threshold and is determined by analyzing the texture at both
sites A1 and A2. In this study, the contrast of the gray-
level co-occurrence matrix is used as texture. Other textures,
such as correlation, homogeneity, and dissimilarity, may also
contribute to disturbance detection. The combining textures
for disturbance detection will be considered in future work.

To determine the threshold α in (4), disturbances initiated
in September 2021 at both sites A1 and A2 were analyzed
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using the combination of Ns , Nt , and texture window. In this
analysis, Ns of 20, 45, and 80, and the texture windows of
3 × 3, 5 × 5, 7 × 7, and 9 × 9 were used. We also used
Nt = 8, i.e., eight images each in the pre- and postevent
periods, and the following four image periods in 2021 were
used: P1 is March 19–June 11 (pre-event) and June 23–
September 27 (postevent); P2 is April 12–July 5 and July
17–October 21; P3 is May 18–August 10 and August 22–
November 26; and P4 is June 11–September 3 and September
27–December 20. For each of the 48 combinations of Ns ,
Nt , and texture window, the threshold α was increased from
0.1 to 30 in 0.1 increments to determine the optimal value for
disturbance detection.

We demonstrated the proposed approach with the reference
data as follows. First, the scattering powers were calculated
separately before and after the event using (1) and (3) with
Sentinel-1A time series data stacked on a common grid, and
the contrast of total scattering power was derived using the
texture window. Then, the vegetation pixels satisfying (4)
with optimal α were detected as disturbances. Note that the
pixels with a volume scattering power greater than 0.05 in
the pre-event were considered as vegetation pixels. Finally,
the disturbance map was geocoded for comparison with the
reference data. For this comparison, Nt was set to eight images
for the image period abbreviated as P5, April 19–August
17 (pre-event) and August 29–November 21 (postevent) in
2022. In addition, we set Ns to 20 and texture windows
to 3 × 3, and the minimum detection size was set to 2.0 ha
as in [5].

IV. RESULTS

The α values of 7.5, 6.7, 5.0, and 5.4 for image periods
P1–P4 were found to be the optimal when using the Ns = 20
and 3 × 3 texture windows at site A1. When applying these
settings, the disturbance map in image period P3 is shown
in Fig. 3 and the disturbance detection accuracy is shown in
Fig. 4. As the number of images affected by the disturbance in
the postevent image increases, the texture of the disturbance
area decreases compared to the forest, and the number of
detected pixels increases. The number of detected pixels then
decreases as the number of such images in the pre-event
image increases. The RADD failed to detect disturbances in
both sites A1 and A2 even in December 2021. In contrast,
the proposed method detected 20% of the disturbances as of
October and about 40% within 2 months of their occurrence
in both sites. In terms of texture window, increasing it reduces
the omission error, while decreasing it reduces the commission
error. A smaller Ns reduces both errors.

For the comparison with the reference data, smaller Ns and
texture windows were used to demonstrate forest disturbance
detection with low commission error. No salt-and-pepper
noise was found in the detection result. Table II shows the
accuracy based on the reference data when using Ns = 20,
3 × 3 texture windows, and α of 6.7. The method can
detect the moderate disturbance with reasonable accuracy ∼2
months after its occurrence. When the high disturbance is
added to the reference data, UA of >70% achieves, and PA
decreases due to the failure to detect the small disturbance

Fig. 3. Disturbance map at site A1 in image period P3. Images of the
total scattering power in (a) pre-event and (b) postevent. The magenta arrow
indicates the disturbance area. (c) Disturbance map in red overlays on the
time series scattering power decomposition RGB images.

Fig. 4. User’s and producer’s accuracy (UA and PA) at site A1 using the
optimal α, Ns = 20, and 3 × 3 texture windows.

TABLE II
UA AND PA BASED ON THE REFERENCE DATA USING THE OPTIMAL α,

Ns = 20, AND 3 × 3 TEXTURE WINDOWS

(∼10 ha). In addition, about 30% of the commission error
may not be a detection error because it includes the detection
of changes from moderate to high disturbance and of the
moderate disturbance that occurred after September.

V. DISCUSSION

The time series analysis method of the scattering power
decomposition algorithm was applied to detect forest distur-
bance using Sentinel-1A time series data. In [3] and [10],
the moderate disturbance could not be detected because the
L-band SAR data used were acquired less frequently than the
Sentinel-1 data and only the ensemble average in the spatial
domain was available. Using the ensemble average window
in the temporal–spatial domains, the scattering power with
accurate and high spatial resolution could detect even moderate
disturbances ∼2 months after their occurrence. In this regard,
a previous study proposed a change detection algorithm using
temporally stacked interferometric coherence (TSIC) with a
small spatial window [14]. TSIC detects the building damage
by using the coherence between pre- and postevents, assuming
that in multiple interferometric pairs, the scatterers as targets
are stable over temporal decorrelation. In C-band SAR data,
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TSIC cannot be applied to forest disturbance detection because
the vegetation is affected by temporal decorrelation. In con-
trast, the proposed method can be applied to forest monitoring
using C-band SAR time series data because the method does
not require such an assumption.

Another study proposed a time-averaged method to clas-
sify forest species, and this method averages the scatter-
ing powers generated from multitemporal quad-polarization
data [11]. Since the time-averaged method does not consider
the correlation between co- and cross-polarization data in the
temporal domain, it requires a large spatial window size to
drive the reflection symmetry condition, whereas the proposed
method can obtain the scattering powers with accurate and
high spatial resolution by considering the correlation in the
temporal domain. The texture of intensity change in SAR
data was available for the forest disturbance detection in [15]
and [16]. In areas containing both unlogged and logged
forest pixels, the intensity changes exhibit light and dark
tonal textures. However, if trees and undergrowth remain,
as shown in Fig. 1, the C-band radio waves cannot pene-
trate to the ground, so no significant intensity changes are
expected to appear. Because the proposed method can show
the difference between forest and grassland textures with
high spatial resolution, it is useful for detecting moderate
disturbances.

The proposed decomposition method is suitable for SAR
imagery acquired at various frequency bands, such as L/C,
but its meaningfulness depends on observing scattering sta-
bility over the chosen temporal window. Future work will
address how long this assumption holds. A crucial limitation
arises when a significant change in the scattering mechanism
occurs within the temporal window. In this situation, the co-
and cross-polarization components are somewhat meaningful
because they represent the averaged power, but the aver-
aged complex correlation makes little sense. For the volume
scattering objects (e.g., natural vegetation and sea ice), the
volume scattering power may be overestimated if the reflection
symmetry condition is not properly satisfied. The averaged
power of the co- and cross-polarization can be one of the
useful indicators to assess if the scattering mechanism remains
relatively constant over time.

VI. CONCLUSION

In this letter, we proposed a time series scattering
power decomposition using the ensemble average in the
temporal–spatial domains. The proposed method extracts accu-
rate volume scattering power and forest texture due to its
high spatial resolution. As a result, the proposed method
can detect the moderate disturbance in the rainforest with
UA of >70% in less than 2 months, whereas other methods
require about 3 months. Here, only Sentinel-1A data with
12-day repeat cycles were used. Time series SAR data with
different wavelengths will be available in future. The use of
these data may further reduce the time lag in detecting forest
disturbances.
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