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Leveraging Activation Maximization and Generative
Adversarial Training to Recognize and Explain
Patterns in Natural Areas in Satellite Imagery
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Abstract— Natural protected areas are vital for biodiversity,
climate change mitigation, and supporting ecological processes.
Despite their significance, comprehensive mapping is hindered
by a lack of understanding of their characteristics and a missing
land-cover class definition. This letter aims to advance the
explanation of the designating patterns forming protected and
wild areas. To this end, we propose a novel framework that
uses activation maximization and a generative adversarial model.
With this, we aim to generate satellite images that, in combination
with domain knowledge, are capable of offering complete and
valid explanations for the spatial and spectral patterns that
define the natural authenticity of these regions. Our proposed
framework produces more precise attribution maps pinpointing
the designating patterns forming the natural authenticity of
protected areas. Our approach fosters our understanding of
the ecological integrity of the protected natural areas and may
contribute to future monitoring and preservation efforts.

Index Terms— Activation maximization, explainable machine
learning, generative models, patterns discovery.

I. INTRODUCTION

NATURAL areas with minimum human influence refer
to regions on Earth that remain largely untouched by

human activities, such as urbanization, agriculture, logging,
and other forms of development. These areas are characterized
by high levels of biodiversity and provide a wealth of ecolog-
ical integrity benefits; for example, these areas offer unique
access to understanding nearly undisrupted natural ecosystem
processes, such as water and pollination cycles. Therefore,
comprehensive mapping and monitoring of highly protected
natural areas are crucial to understanding the geoecological
patterns essential for these areas to thrive [1]. With this in
mind, it is not surprising that the monitoring and understanding
of natural areas have gained significant attention in recent
years within the remote sensing and ecological research com-
munities.
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Satellite imagery presents an effective approach for con-
tinuously monitoring vast protected natural areas that are
challenging for humans to access. By utilizing this technology,
efficient and cost-effective data collection becomes possi-
ble while minimizing disturbances to sensitive ecosystems.
Leveraging large satellite imagery datasets, machine learning
models, such as deep convolutional neural networks (CNNs),
can accurately differentiate natural areas. For instance, in a
study conducted by Ekim et al. [2], a dataset and a baseline
CNN model were developed to precisely identify and classify
protected natural areas.

Although these models can effectively detect specific pat-
terns that characterize such areas, the patterns are mostly not
inheritably accessible or interpretable by humans. Therefore,
explainable machine learning techniques are utilized to explain
the designating patterns that drive the model’s decision-
making process. In the context of analyzing natural areas,
Stomberg et al. [3] used an inheritable explainable classifi-
cation network that produces attribution maps that localize
patterns characterizing protected natural areas in satellite
imagery. Standard explainable machine learning techniques,
such as occlusion sensitivity maps [4], gradient-based class
activation maps [5], and deep learning important features
(DeepLIFT) [6], can identify influential pixels within the
image and their significance in deriving the machine learning
model’s decision. While these methods can provide partial
explanations, they lack the capacity to generate complete
and valid explanations that accurately characterize natural
areas with minimal human interference. For attributions to be
considered valid and complete, they must assign high values to
the class-discriminative patterns and be consistent with expert
opinions [7], [8].

Our contribution introduces a novel approach that leverages
activation maximization [9] and draws inspiration from cycle
consistent generative adversarial networks (Cycle GANs) [10].
Our framework, when combined with domain knowledge,
offers complete and valid explanations for the patterns that
define natural areas with modern human impact. Activation
maximization is an explainable machine learning technique
that modifies an input image to maximize its classification
score produced by CNN. By extending this idea, we uti-
lize activation maximization in our proposed modified Cycle
GAN’s objective function to generate two images that max-
imize and minimize the classification score produced by
a CNN. By optimizing the Cycle GAN for maximizing
and minimizing the classification score, the two generated
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Fig. 1. Flowchart of the proposed approach. (Left) Input image displays the class of interest, and it has a classification score of 0.91 from the classification
network. (Top middle) Pattern enhancement—Cycle GAN consists of the pattern-maximizer sub-GAN that generates an image with enhanced patterns of
the specific class and the pattern-minimizer sub-GAN that generates an image of the same size but with suppressed characteristics. The synthesized images
have the classification scores of 0.96 and 0.84, respectively. (Bottom middle) Pattern learning—trained classifier for the class of interest being fed with the
generated images from the pattern enhancement part, giving feedback to both generators in the Cycle GAN [10] to maximize and minimize the characteristics
in both sub-GANs, respectively. (Right) Attribution mapping—showing the contribution of each pixel to the class of interest. To generate the attribution map,
we subtract each pixel value in the generated image from the input image and calculate the average difference over all channels. We overlayed the original
image with the average absolute difference. We have designed a novel framework that modifies the Cycle GAN’s objective to generate both maximized and
minimized naturalness patterns, enabling us to create more precise attribution maps. To the best of our knowledge, we are pioneering this framework for
explaining naturalness patterns in protected areas.

images will exhibit slight variations in their color and texture.
By comparing these images, an attribution map with com-
plete and valid explanations can be derived that depicts the
characteristic patterns of protected natural areas with minimal
human interference. Katzmann et al. [11] used a comparable
approach for explaining medical decisions made by machine
learning models. To the best of our knowledge, this work is
the first that integrates activation maximization in the Cycle
GAN objective function and incorporates domain knowledge
to interpret designating patterns contributing to the concept of
naturalness in protected natural areas.

II. PROPOSED APPROACH

Our approach involves three consecutive phases (see Fig. 1)
and is used to analyze and interpret designating patterns of
protected natural areas.

A. Pattern Learning

In the pattern learning phase, we train a single-class clas-
sifier to learn the characteristic and distinctive patterns of a
class of interest. To enable this, we use a network that has
a single output, which can be defined either in the style of a
regression network as a score in the range [0, 1], as proposed
in [3] or as a binary decision classifier.

B. Pattern Enhancement

The pattern enhancement phase is conducted after com-
pleting the training process of the classifier in the pattern
learning phase. Here, we integrate the concept of activation

maximization in our modified cyclic consistency GAN’s objec-
tive function to generate two images with pattern-maximized
and pattern-minimized image characteristics. In contrast to
commonly used GANs, as the ones proposed by Zhu et al. [10]
and Katzmann et al. [11] that are primarily designed for
performing domain transfer from one image domain to another
image domain, our approach has only a single input domain,
and the generated outputs would be of the same domain
as the input’s domain with minimum changes pinpointing
the important patterns in the input image influencing the
classifier’s decisions.

1) Architecture: We modify the original Cycle GAN’s
architecture and the objective function, as presented in [10],
to generate two images based on the input image with mini-
mum changes while keeping the input image’s main structures
unchanged. These changes lead to the maximization or min-
imization of the classification score of the generated images.
Our Cycle GAN consists of two sub-GANs, namely, the
pattern maximizer and the pattern minimizer. Each sub-GAN
consists of two neural networks, a generator w and a dis-
criminator d. Both generators are ResNet-based CNNs [12]
with 12 residual blocks. Each generator produces two modified
versions of the input image of the same size as the input image.
The generator’s architecture is illustrated in Fig. 2.

2) Loss Function: The discriminators in both sub-GANs are
trained using binary cross entropy

LCE
(
h, ĥ

)
= h · log

(
ĥ
)

+ (1 − h) · log
(
1 − ĥ

)
. (1)

The scalar h is a binary variable indicating whether a sample
is real or generated, and ĥ is the discriminator’s prediction.
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Fig. 2. Generator’s architecture used in both sub-GANs in the pattern
enhancement phase.

The overall generator’s loss function in both sub-GANs
consists of four terms. The similarity loss term enforces the
similarity between the generated images and the original input
image

Lsim
(
X , X̂

)
=

∣∣∣∣X − X̂
∣∣∣∣

F
(2)

where X is the input image and X̂ is the generated
pattern-maximized or pattern-minimized output image. The
cycle consistency loss term enforces that successive mapping
through both generators leads to a reconstruction close to the
original input image

Lcyc
(

w−, w+, X
)

=

∣∣∣∣X −
(

w+
(

w−(X )
))∣∣∣∣ (3)

where w+ is the pattern-maximizing sub-GAN generator and
w− is the pattern-minimizing sub-GAN generator. Moreover,
the cycle consistency loss enforces the similarity between the
two generated images and the input image. The adversarial
training loss guides the generator w to generate realistic
images following the guidance of the discriminator d :

Ladv(d, w, X ) = (d (w (X )) − 1)
2 . (4)

The activation maximization loss term, as proposed in [11]
and [13], compels the generator to add features to the gener-
ated images that will increase and decrease its classification
score for both the pattern-maximizer and pattern-minimizer
generators, respectively,

LAM(y, w, X ) = LCE(y, w (X )) (5)

where y is the label, which is 1 for the pattern maximizer and
0 for the pattern minimizer, with LCE computed using (1). For
both similarity and cycle consistency loss terms, we use the
L1 loss function. We use the binary cross-entropy loss function
for the adversarial and activation maximization loss.

The training of both sub-GANs is performed in two steps.
In the pretraining phase, we use the loss term without activa-
tion maximization loss term to initialize the weights of both
sub-GANs and to ensure that both generators can reconstruct
the input image. The main training was performed using the
complete generator loss function, which is defined as follows
for the pattern maximizer:

Lmax
(
X , y, w+, w−, d+

)
= Lsim

(
X , X̂

)
+ Lcyc

(
w−, w+, X

)
Ladv

(
d+, w+, X

)
+ λLAM

(
y, w+, X

)
(6)

Fig. 3. Generated outputs from the sub-GANs. (a) Original image. (b) Output
of the pattern maximizer sub-GAN. (c) Output of the pattern minimizer
sub-GAN.

where λ is the weighting factor assigned to the activation maxi-
mization loss term, w− being the pattern-minimizing generator,
and d− its respective discriminator. The loss function is applied
accordingly to the pattern-minimizer generator w− by inverting
(·)+ and (·)− and setting y = 0.

C. Attribution Mapping

To produce the attribution maps of the characterizing pat-
terns, we calculate the average absolute difference between the
generated images for each image band. Higher attributions are
assigned to the areas with a higher average absolute difference,
because these areas are related to the designating patterns of
the class of interest.

III. EXPERIMENTS, RESULTS, AND DISCUSSION

In our use case, we aim to deepen our understanding of the
most influential characteristics in the protected natural areas in
Fennoscandia (Norway, Sweden, and Finland) by interpreting
and explaining the designating patterns that contribute to the
naturalness authenticity of this region.

A. Dataset and Experimental Setup

1) AnthroProtect Dataset: We use the AnthroProtect
dataset [3] consisting of approximately 24 000 multispectral
Sentinel-2 images of size 256 × 256 pixels, showing pro-
tected or anthropogenic areas in Fennoscandia. The protected
natural areas are chosen based on the World Database on
Protected Areas (WDPA) [14]. The protected natural areas
are located within the categories “strict nature reserve” (Ia),
“wilderness” (Ib), and “national park” (II). The anthropogenic
areas are within or close to areas dominated by the CORINE
land-cover classes “artificial surfaces” and “agricultural areas,”
while the CORINE dataset represents that domain knowl-
edge [15]. The AnthroProtect dataset, thus, contains images
that lie somewhere at the extremes of the unspecific, con-
tinuous wilderness scale within Fennoscandia. To minimize
the computational cost, we restrict ourselves to using the
red, green, and blue bands; however, our proposed framework
is flexible regarding the dimensionality of the input. The
AnthroProtect dataset has been published with a proposed
data split (training, validation, and test), which we adopt
accordingly.

In the pattern learning phase, any classification neural
network can be employed to learn the designating patterns of
naturalness-protected areas. We opted for a modified version
of the classification network from [3], with only three input
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Fig. 4. Comparison of attribution maps from different explainable machine learning methods. (a) Segmentation mask showing the wetlands pattern in yellow
and green representing heavy vegetation. (b) Attribution map from DeepLIFT. (c) Occlusion sensitivity map. (d) GradCAM. (e) Attribution map from our
proposed method. The scale describes plots in the dashed rectangle and assesses the contribution of pixels to the authenticity of protected natural areas.
A score of 1 signifies the highest possible contribution. A score of 0 signifies no contribution to the naturalness of protected areas.

channels instead of the ten channels as the network in [3]
to conserve computational resources. The use of fewer input
channels led to a minor decrease in the classification accuracy
but did not have a negative effect on the performance of the
pattern enhancement phase. The training, validation, and test
set accuracies for the classification network are 98.7%, 97.3%,
and 99.3%, respectively.

During the network’s training phase, we adopted the
one-cycle learning schedule strategy [16] with a maximum
learning rate set at 0.01. To optimize the model’s parameters,
we employed gradient descent, incorporating a weight decay
of 0.0001. Our training data used a batch size of 32, and to
ensure consistency, the pixel values of Sentinel-2 images were
normalized to a range between 0 and 1 by dividing them by
10 000.

We incorporated CutMix [17] during training. This tech-
nique allowed us to create synthetic images by mixing
portions of areas with human influence and regions devoid
of anthropogenic impact. This augmentation aids the classifier
in evaluating the naturalness integrity of an image, with a
minimum value of 0 representing full anthropogenic influence
and a maximum value of 1 denoting completely untouched
natural areas.

B. Our Modified Cycle GAN

We use the PatchGAN [18] for both discriminators. Their
goal is to classify overlapping 70 × 70 image patches as either
generated or real and to provide feedback to the generator to
produce a realistic output. This architecture pushes the dis-
criminator not to focus solely on the artifacts in the generated
image but on the general quality of the generated image, which
leads to beneficiary feedback to the generator during the Cycle
GAN’s training process [10]. We set λAM = 0.3, resulting in
high-resolution outputs with minimum artifacts. We used the
Adam optimizer [19] to train the generative model with the
decay of first-order momentum of gradients β1 = 0.5 and
β2 = 0.999.

C. Results and Discussion

Figs. 1 and 3 show the example images generated by
the pattern-maximizer and the pattern-minimizer sub-GANs.
The pattern maximizer produces images with higher pixel
values in the green channel compared with the original image,
whereas the pattern minimizer produces the same effect on
the blue channel. Including environmental domain knowledge

Fig. 5. (Top) Original input images. (Bottom) Corresponding attribution
maps produced by our approach.

and information from the existing land-cover products, we can
see that brighter wetlands areas were produced in the pattern-
maximized images, and the borders of wetlands and the
surroundings of water bodies are highlighted with vibrant
green color by the pattern minimizer.

We also depict attribution maps showing the importance of
each pixel in the input image, contributing to the naturalness
integrity and its influence on the classifier’s decision; see
Fig. 4. By incorporating our method’s attribution map with the
correspondent segmentation mask from the CORINE dataset,
we can conclude that our method assigns high importance to
wetlands and the small water bodies (bonds) in the middle of
the image and lower attributions to the nondiscriminative vege-
tation areas between the characterizing features. The occlusion
sensitivity map [20] assigns high attribution to the same
features with a lower accuracy but assigns high attributions to
nondiscriminative vegetation areas between the discriminative
patterns. The attribute map produced by the DeepLIFT [6]
does not assign comparable attribution for the wetlands in the
middle of the image but can detect them near its borders.
Gradient-weighted class activation mapping (Grad-CAM) [5]
applied to the last convolution layer assigns high attribution
only to the image’s top-middle part with low vegetation.
Integrating our approach with domain knowledge enables
our approach to explain the designating patterns contributing
to the concept of wilderness. Attribution maps shown in
Figs. 4 and 5 prioritize bare lands, wetlands, and moun-
tain peaks’ glaciers, aligning with naturalness characteristics
in protected areas in Fennoscandia [21]. This integration
provides a more comprehensive explanation of the classi-
fication network’s decision-making in the pattern learning
phase. In addition, intersection over union (IoU) results shown
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TABLE I
AVERAGE IOU FOR THE PIXELS WITH HIGH ATTRIBUTIONS

WITH WETLANDS AND BARE LANDS CLASSES

in Table I for high attribution pixels, including naturalness
patterns, such as bare lands and wetlands, further validate the
effectiveness of our integrated approach.

A combination of wetlands and bare lands have a unique
combination of water, soil, and vegetation, given the fact that
they are characterized by the presence of waterlogged soils,
which are saturated or flooded for most of the year, which hin-
ders the accessibility to the area and minimizes anthropogenic
impact. These patterns are recognized in domain knowledge
as strongly associated with the naturalness of protected areas
in Fennoscandia [21]. We can conclude that our method,
combined with domain knowledge, produces complete and
valid explanations that align with the expert’s opinions.

Although our approach introduces two challenges, namely,
the high computational cost and the possibility of generating
artifacts in the generated images [22], our approach provides
valid and complete explanations by consistently assigning high
attributions to characterize geoecological patterns, such as
wetlands.

IV. CONCLUSION

We proposed a novel, explainable machine learning
approach to suppress and enhance image patterns and produce
attribution maps incorporated with domain knowledge to pro-
duce valid and complete explanations. We utilize the concept
of activation maximization and integrate it into a Cycle GAN’s
objective function to maximize the characterizing patterns of a
specific class. We utilized our approach to analyze patterns in
satellite imagery to better understand natural protected areas.
We could show that our approach is more suitable to explain
the patterns corresponding to the naturalness integrity of the
protected natural areas in Fennoscandia. Our proposed method
can produce complete, valid explanations of the designating
geoecological patterns that uphold the ecological authenticity
of the protected areas more than other methods. Since our
approach can be extended to multiclass classifications and
various applications, we consider it a promising direction in
the Earth sciences.
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