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Imaging Burned Areas and Fire Severity in
Mediterranean Fragmented Ecosystems Using
Sentinel-1 and Sentinel-2: The Case Study of

Tortoli–Ogliastra Fire (Sardinia)
Rosa Lasaponara , Carmen Fattore, and Giuseppe Modica

Abstract— The study aims to explore the added value of the
joint use of Sentinel-1 (S1) and Sentinel-2 (S2) data for assessing
burn severity in heterogeneous, fragmented ecosystems. The
importance of this aim lies in the fact that for both S2 and
S1 (as for all the synthetic aperture radar (SAR) C-bands),
the impact of fire was found to cause ambiguous effects in
complex and fragmented ecosystems. For our investigation, the
effectiveness of S1 and S2 fire metrics was first statistically
analyzed using ISODATA coupled with field surveys conducted
for a fire that occurred on 13 July 2019 in Sardinia. Later,
to automatically map burn areas and categorize fire severity,
S1 and S2 fire metrics were integrated through a multilevel
classification performed at a pixel and feature level. Results
were successful (accuracy higher than 94%) compared with
independent data sets and in situ investigations.

Index Terms— Burned area, fire severity, Mediterranean
shrubs, multilevel classification, spatial autocorrelation, synthetic
aperture radar (SAR), wildfires.

I. INTRODUCTION

WILDFIRES are one of the most important causes of
environmental degradation, with an increasing impact

on a global scale driven and exacerbated by climate change,
which induces prolonged drought and increasing temperatures
[1], [2], [3], [4].

To contrast wildfire and limit fire incidence, current and
future challenges deal with enhancing social and ecological
resilience and improving timely and reliable information on
the fire occurrence and caused damage.

Earth observation (EO) technologies, particularly the Coper-
nicus program and Sentinel missions [5], [6], [7] can
effectively support new fire monitoring applications from a
local up to global scale, from pre-fire risk assessment to fire
detection, from the mapping of burned areas (as binary identifi-
cation to discriminate fire affected from fire unaffected pixels)
to the estimation of burn/fire severity (categorization of the
degree of consumption of vegetation and surface soil organic
matter [8]) considered one of the most critical information
needed immediately after the fire to set damage-mitigation
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strategies. Fire severity metrics are directly proportional to
the degree of burn and, in turn, to the level of damage.
In contrast, the mapping of burned areas is generally referred
to as their fire perimeter. Severity metrics (including satellite-
derived ones) are typically based on empirical fixed thresholds
directly linked to the fire effects observed in the field within
the fire perimeter.

Over the years, satellite optical data were widely used to
map burned areas and fire severity, providing good accuracy
(except in heterogeneous ecosystems) [see, for example [9],
[10] and reference therein quoted]. In contrast, synthetic aper-
ture radar (SAR) sensors have been less used due to the less
availability of free data (before the launch of S1) and the major
complexity of data processing, even if SAR systems provide
helpful data for discriminating changes and disturbances in
vegetation. Even if, recently, SAR-based fire analyses are
increasing [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27]. SAR systems offer
incoherent (amplitude) and coherent data to perform change
detection (CD) compared to optical data. In coherent CD
(CCD), the radar images are compared in amplitude and phase,
whereas InCoherent CD (ICCD) is based only on amplitude
analyses. ICCD was recently carried out by Mastro et al. [12]
for obtaining burned area mapping as a binary discrimination
of burned from unburnt areas. Obviously, this binary approach
[12] is unsuitable for fire severity estimation that requires
mandatory categorization of the degrees of fire effect generally
approached using incoherent CD. This is mainly due to the fact
that scattering variations occur after a fire event due to the
loss in vegetation cover, and these variations are directly pro-
portional to the degree of burn. ICCDs for fire investigations
are mainly based on metrics based on fixed thresholds linked
to the fire effects observed in the field, as successfully made
[14] for the SAR L-band to quantify fire damage levels in
different continents, environments, ecosystems, and vegetation
types. Whereas, up to now, for the SAR C-band, the impact
of fire on the backscattering coefficient was actually found to
cause ambiguous effects [10] (as shown in Table I) in different
ecosystems because it is influenced by forest structure, which
is the main factor influencing the backscatter.

Therefore, Tanase et al. [14] suggested using additional
information on forest structures to improve the SAR-based
burn estimation. Moreover, SAR backscattering tends to
exhibit temporal decorrelation, making identifying fire features
complex. On the other hand, in fragmented ecosystems, the
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TABLE I
ECOSYSTEMS/GEOGRAPHICAL AREAS WHERE AMBIGUOUS EFFECTS

HAVE BEEN OBSERVED IN THE C-BAND BACKSCATTERING
COEFFICIENT FOR FIRE-AFFECTED AREAS ADAPTED

FROM TANASE et al. [14]

fixed thresholds commonly used for S2 metrics to categorize
fire severity seem unsuitable.

To contribute to this issue, the effectiveness of several S1
and S2 fire severity metrics was assessed in a fragmented
ecosystem of Sardinia (Italy). Finally, S1 and S2 fire metrics
were integrated through a multilevel classification to map
burned areas and fire severity automatically.

II. STUDY AREA AND DATA SETS

The fire event that occurred in Sardinia on 13 July 2019 near
Tortoli, in Ogliastra, was selected as a test case. The fire
affected around 800 hectares of Mediterranean shrubs (mainly
brush, bush, and pasture) classified in the Copernicus EFFIS
system [1] as chaparral fuel, i.e., vegetation primarily consist-
ing of tangled shrubs and thorny bushes. For the purpose of our
investigation, for both S1 and S2, the most common indices
were adopted; in particular, for S2, the normalized burn ratio
(NBR) index [12] was computed using the following equation:

NBR = (B8 − B12)/(B8 + B12). (1)

NBR is particularly sensitive to the changes in the amount
of live green vegetation, moisture content, and some soil
conditions that may occur after a fire, such as ash, the
reduced transpiration of vegetation, and the increased surface
temperature due to the loss of vegetation cover. All these
effects increase the reflectance in mid-infrared [22] and reduce
surface reflectance in near-infrared and are better reflected
considering the pre/post-burn NBR index difference (dNBR)
in the following equation:

dNBR = NBRpre-fire − NBRpost-fire. (2)

For S1, we adopted the radar burn ratio (RBR) computed as in
(3), the radar burn difference (RBD) as in (4), and the Radar
Forest Degradation Index (RFDI) computed as in (5)

RBRxy

= Post-fire_av_backscatterxy
/

Pre-fire_av_backscatterxy (3)
RBDxy

= Post-fire_av_backscatterxy − Pre-fire_av_backscatterxy
(4)

RFDI
= (VV − VH)

/
(VH + VV). (5)

Fig. 1. General flowchart of the proposed data processing.

Both RBR and RBD are calculated for a specific polarization
[18], averaging several pre- and post-fire scenes acquired in
dry conditions as in [15] to reduce SAR noise and preserve
spatial detail. The selection of the number of SAR images
to average is based on the meteorological conditions to avoid
misclassification due to precipitations and soil moisture.

The RFDI was analyzed [see (6)] as the difference between
pre and post-fire maps

dRFDI = RFDIpre-fire − RFDIpost-fire. (6)

III. METHOD

A. Analyses of S1 and S2 Fire Severity Metrics
The analyses of the effectiveness of fire severity metrics for

both S1 and S2 were carried out using ISODATA unsupervised
classification (Fig. 1) in order to overcome the issue linked
to the ambiguous effects observed in S2 [9], [10] and S1
[16] fire metric in a heterogeneous, fragmented ecosystem.
The use of a cluster-based classification (as ISODATA or
other similar approaches) maintains the clear and immediate
physical meaning of the investigated fire metrics. It makes
the interpretation easier without using fixed thresholds that
the local and geographical conditions can obviously limit.
ISODATA was also adopted to limit the human intervention in
setting up the algorithm parameters as much as possible. The
importance of applying unsupervised classification is that: 1) it
is an automatic process, which requires only a minimal amount
of initial input compared with supervised data processing;
2) classes do not have to be defined a priori; and 3) unknown
feature classes may be discovered. Several unsupervised clas-
sification algorithms are commonly used in remote sensing,
including: 1) K-means clustering and 2) ISODATA, which are
pretty similar. In both, the user has only to indicate: 1) the
number of predefined classes (clusters) and 2) the number of
iterations to be carried out.

Considering that the EFFIS system and Copernicus EMS
Rapid Mapping utilize five and three classes of fire severity,
respectively, wherein the number of the predefined classes
(clusters) was set at 6 and 4 to make comparable the S1 and S2
outputs with the Copernicus products. This enabled us to have
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Fig. 2. Images show satellite-based fire severity metrics: (on the left) S2
dNBR and (on the right) S1 RBD. Brighter pixels are related to the fire event
that occurred in Sardinia on 13 July 2019 near Tortoli, in Ogliastra.

TABLE II
DETAIL OF DATA USED FOR THIS STUDY: DATES OF THE SATELLITE
ACQUIRED BEFORE AND AFTER THE FIRE IN A DESCENDING PASS,
BY SENSOR S1-A AND S1-B, IN THE VV, VH POLARIZATION WITH

AN INCIDENCE ANGLE RANGING FROM 30.6◦ TO 46.3◦ AND
RESOLUTION AT 20 × 22 m (IN RANGE × AZIMUTH). THE

TYPE OF PRODUCT USED IS GRDH. THE DATA WERE
ACQUIRED AROUND 05 A.M. (DESCENDING).

S1 AND S2 WERE RESAMPLED AT
10 m THROUGH THE BILINEAR

INTERPOLATION METHOD

five and three classes for fire severity categorization potentially
and one for other targets (unburnt areas, such as water, remains
of cloud contamination, etc.). Of course, the six or four classes
set in advance are the maximum that can be identified; the
number actually found depends on the image statistics.

Fig. 2 shows S2 dNBR and S1 RBD maps where pixels
brighter than the context are related to fire-affected areas.
Table II lists S1 and S2 data (both resampled at 10 m) used for
this study. Fig. 3 shows the ISODATA results from S2 dNBR
(on the top) and S1 RBD (on the bottom). The ISODATA
outputs from the S1-RBD classification show that this fire
metric categorizes a large portion of the image as fire-damaged
(mainly yellow and orange classes). Similar behavior has been
observed for all the other S1-based fire severity metrics. The
ISODATA outputs from the traditional S2-based metric well
capture the burned areas (identified in the red and orange
classes) with some commission errors that are clearly lower
than those obtained from SAR. Therefore, the question is:
are C SAR sensors suitable, and to what extent, reliable for

Fig. 3. Images show the ISODATA results from (on the top) S2 dNBR and
(on the bottom) S1 RBD.

discriminating fire severity levels? An effort to answer this
question is provided in this letter.

B. Fire Severity Categorization

The approach devised to map burned areas and assess fire
severity is based on results previously obtained by the same
author group using LISA coupled with ISODATA to process
S2 [9] in a fragmented ecosystem or S1 [16] in a homoge-
neous area. In both of these studies, using LISA enabled the
enhancement of fire-induced changes, made more evident by
enhancing texture variations and/or by the presence of edges
and clusters. In this study, ISODATA has been selected to
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Fig. 4. On the top: joint classification of Moran of S1 RBR and S2 dNBR
(herein denoted as feature level classification) 10 m spatial resolution. On the
bottom right, ISODATA classification from the joint use of S1 RBR and S2
dNBR at the pixel (10 m spatial resolution) level at 1:100 000 spatial scale.
On the bottom left, the Burned area (pixel at 2 m) from the EMS Rapid
Mapping [27].

“manipulate” fire metrics, “preserving” their physical meaning
linked to the geophysical parameters under investigation.

To exploit the complementarity of S1 and S2 sensors, a data
fusion approach was adopted at pixel and feature levels. Both
S1 and S2 fire metrics were stacked together to be reclassified
at pixel and feature levels.

The classification at the pixel level is obtained from the
joint processing of the together stacked S1 and S2 fire severity
metrics (all resampled at 10 m of pixel resolution). As a whole,
three different classifications were run obtained based on the
joint use of: 1) S2 dNBR and S1 RBD [(2) and (3)]; 2) S2
dNBR and S1 RBR [(2) and (4)]; and 3) S2 dNBR and S1
difference of the RFDI obtained from the difference of pre
and post-fire maps [(2) and (6)].

Feature-level data are generally adopted for decision
analysis, and fusion results are expected to provide new
features more suitable for decision analysis. The feature-level
classification is obtained from the feature-level data fusion
approach, based on the joint use of fire features obtained from

TABLE III
RESULTS OBTAINED FROM THE PIXEL-LEVEL CLASSIFICATION OF S1

RBR AND S2 DNBR (BOTTOM RIGHT IN FIG. 4) WERE
COMPARED WITH THE DAMAGE ASSESSMENT PROVIDED BY

THE COPERNICUS EMS RAPID MAPPING [25] FOR THE TWO
CLASSES DENOTED AS DESTROYED AND DAMAGED.
IN CONTRAST, THE CLASS DENOTED AS PROBABLY

DAMAGED WAS NOT CONSIDERED BECAUSE OF
ITS UNCLEAR PHYSICAL MEANING

the classification of each metric obtained from each sensor.
So, as in the case of the pixel-level classification, the final
products are three.

IV. RESULTS

Outputs from all the classifications were overlapped on
Google Earth and compared with the Very High-Resolution
optical satellite Pléiades S1A/B imagery acquired on 18 July
2019, immediately after the fire occurrence and used by
Copernicus EMS [28] for mapping burned areas and fire
severity. The Copernicus EMS provides support (if institu-
tional authorities request) immediately following a disaster.
In the current case, the service was requested and activated on
17 July. It provided the mapping of burned areas and different
levels of fire damage as obtained using Pléiades S1A/B (see
Fig. 4). EMS estimated that the area affected by the fire was
around 665.5 ha and identified the diverse levels of fire damage
categorized as destroyed (in red), damaged (in orange), and
possibly damaged (in yellow).

Results from our analysis pointed out that as follows.
1) The use of LISA enabled a better identification and

delineation of the fire-affected pixels, not only for S2
(thus confirming the already published output [12]) but
also for S1-based fire metrics.

2) For the mapping of burned areas (fire perimeter), the
best performance was obtained from the classification
of Moran applied to RBR in the VH polarization.
Fig. 4 shows (on the top) the zoom of the results from
the joint classification of Moran of S2 dNBR and S1
RBD VH polarization (herein indicated as feature-level
classification).

3) For the fire severity categorization, the best performance
was obtained from the classification of Moran applied to
RBR in the VH polarization performed at the pixel level.
As a whole, the satellite sentinel-based results (at 10 m
of spatial resolution) were successfully compared with
the independent fire map provided by the Copernicus
EMS (from Pléiades S1A/B data at 2 m of spatial
resolution) (Table III) [27].

V. DISCUSSION AND CONCLUSION

The study illustrates the potential of the synergic use of
S1 and S2 for speditive and effective fire severity mapping,
exploiting the complementarity of the two sensors.

The satellite sentinel-based results (at 10 m of spatial
resolution) were successfully compared with the independent
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fire map provided by the Copernicus EMS (from Pléiades
S1A/B data at 2 m of spatial resolution) [28]. The comparison
clearly showed the excellent match of the burned areas and fire
damage mapped from the Copernicus EMS Rapid Mapping
map based on Pléiades S1A/B and the classification obtained
from S1 and S2. These results are highly satisfactory consider-
ing that the whole area is sparsely vegetated and characterized
by a dominant presence of Mediterranean shrubs (mainly
brush, bush, and pasture) classified as chaparral fuel [1].
As a whole, results from our analyses clearly pointed out
that both of the two proposed approaches (i.e., the joint
ISODATA classification of S1 RBD of VH polarization and S2
at pixel and feature level) can be used to detect burned areas
and estimate fire severity providing a speditive and accurate
characterization with the diverse degrees of fire damage.

Future efforts will be addressed to refine the classification
further using the enhancement of fire features (herein obtained
by LISA) and artificial intelligence (AI) approaches, which
require a significantly large data set to obtain successful
results.
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