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Abstract— Classifying remotely sensed hyperspectral images
(HSIs) became a computationally demanding task given the
extensive information contained throughout the spectral dimen-
sion. Furthermore, burgeoning data volumes compound inher-
ent computational and storage challenges for data processing
and classification purposes. Given their distributed process-
ing capabilities, cloud environments have emerged as feasible
solutions to handle these hurdles. This encourages the devel-
opment of innovative distributed classification algorithms that
take full advantage of the processing capabilities of such envi-
ronments. Recently, computational-efficient methods have been
implemented to boost network convergence by reducing the
required training calculations. This letter develops a novel
cloud-based distributed implementation of the extreme learning
machine (CC-ELM) algorithm for efficient HSI classification. The
proposal implements a fault-tolerant and scalable computing
design while avoiding traditional batch-based backpropagation.
CC-ELM has been evaluated over state-of-the-art HSI classi-
fication benchmarks, yielding promising results and proving
the feasibility of cloud environments for large remote sens-
ing and HSI data volumes processing. The code available at
https://github.com/mhaut/scalable-ELM-HSI.

Index Terms— Cloud computing, distributed computing,
hyperspectral imaging, machine learning.

I. INTRODUCTION

TECHNOLOGICAL advances in remote sensing (RS)
have enabled a burgeoning collection of high-quality
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hyperspectral images (HSIs). These are captured by imaging
spectrometers and radiometers, which record an assemblage
of light-reflection and electromagnetic-radiation measurements
from the Earth’s surface [1]. Collected scenes are represented
as 3-D data cubes, generally with hundreds of spectral chan-
nels (continuous correlated bands), where each pixel defines
a spectral signature that identifies the materials inside the
observed region [2]. This spectral information based on visible,
near-infrared, and short-wave infrared spectral range is used
for a wide range of applications, including agriculture [3],
urban planning, and forest management [4].

RS data are a sophisticated data form given its high vari-
ability and dimensionality. Consequently, HSI is characterized
by complex data structures and features, compounding com-
puting hurdles and posing new challenges to analyze and
interpret such massive collections. These challenges exacer-
bate the data requirements caused by the significant scarcity
of available training data when compared to natural scenes.
In this regard, factors, such as limited sensor imaging and
the obstacle in labeling, play a crucial role. For instance,
in machine learning (ML) algorithms, a sufficient number of
labeled samples are required for supervised training. To tackle
this issue, the concept of few-shot learning has been pro-
posed in [5]. On the other hand, scalability needs to be
ensured when facing with such large spectral features, sub-
stantial volumes of ever-expanding data, and computational
requirements [6], [7]. In this context, parallel and distributed
approaches are considered the most interesting solutions, high-
lighting high-performance computing (HPC) [8] and cloud
computing (CC) technologies [9]. CC, in particular, pro-
vides services via an online platform consisting of processing
and storage equipment situated in remote clusters. Its main
advantages are: 1) flexibility to scale resources without the
need to deploy physical computing infrastructures; 2) robust
backup and protection procedures to ensure data security
and preservation; 3) efficient economic investment to prevent
computing overbuilding and overprovisioning; and 4) capacity
for better collaboration and availability of better access to the
resources needed for a computation. Among others, Amazon
Web Services (AWS) and Microsoft Azure have lowered the
cost of accessing and using such technologies [10].

Cloud approaches rely on efficient distributed programming
implementations and are designed on popular frameworks such
as Apache Hadoop [11] or Spark [12], where the MapReduce
model [13] is widely used to handle data management. Its
operation is straightforward and intuitive. Two functions are
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performed using the datasets organized as key–value pairs.
First, the map function generates a set of key–value pairs
for a particular task and splits it into parallel subtasks. The
reduce function then collects all of the results from the parallel
subtasks for a specified key. Furthermore, and related to
Apache Hadoop framework, Apache Pig [14] has emerged
as a compelling platform for abstracting the operation of
MapReduce at a high level. Based on data flow instructions,
it uses the high-level, easy-to-use Pig Latin language, which
incorporates multiquery support for user-defined functions
(UDFs).

Progress in CC has enabled the deployment of ML methods
for big data processing, reaping the benefits of the data par-
allelization and distribution capabilities provided by Apache
Hadoop, Spark, and Apache Pig. ML methods identify trends
and patterns in large volumes of data to solve complex
problems, yielding predictions that support better decision-
making [15]. ML approaches are widely used in various
applications for the analysis of remotely sensed HSI data. Due
to its fast convergence and easy design, the extreme learning
machine (ELM) [16] is a very popular solution, as it was
designed for training single hidden layer feedforward neural
networks (SLFNs) to avoid the iterative process of traditional
artificial neural networks (ANNs). Several alternatives have
been developed based on the fundamental principles of ELM
for applications in image processing [17]. Notwithstanding
the promising results, improving predictions requires large
amounts of data, which compounds the mathematical com-
plexity of their operation (in relation to the inverse matrix
calculation) and imposes considerable challenges. In this
respect, CC approaches offer viable solutions to overcome
such problems. Nevertheless, these technologies have not been
adequately exploited for HSI processing purposes.

A. Fundamentals of ELM

ELM is designed to train an SLFN classifier by avoiding
the traditional iterative procedure. Thus, ELM provides a
fast learning speed. Its operation is similar to ANN-based
approaches, where parameters (weights and biases) are ini-
tialized randomly and adjusted by training. Nevertheless,
parameters do not require fine-tuning by backpropagation
iterating.

Considering the data X ∈ RM×S , with M = H · W and S
spatial and spectral dimensions, respectively (i.e., M training
samples), the ELM takes the spectral features of the mth
sample xm = [xm,1, . . . , xm,S] ∈ RS as inputs nodes and
produces the corresponding output om = [om,1, . . . , om,Z ] ∈

RZ , by applying the SLFNN transformation given in (1),
where δ(·) denotes the activation function, ω ∈ RS×N and
β ∈ RN×Z are the hidden and output weights, respectively,
and b ∈ RN is the hidden vector bias

om,t =

n∑
i=1

βi,tδ

bi +

s∑
j=1

ω j,i xm, j

 ∀t ∈ [1, z]. (1)

Considering the M training samples, this is reformulated as

f (X) = O = H(X, ω, b)β (2)

Algorithm 1 ELM-UDF Structure
1: Require: Initialization settings and Xk .
2: Configure ELM.
3: Buffer Xk in local memory (S3 −→ EC2).
4: ▷ Training step:
5: Compute Hk and H†k .
6: Calculate output weights βk .
7: Average global output weights β.
8: return β.
9: ▷ Validation step:

10: Process validation Xk .
11: return ELM classification accuracy (%).

where H ∈ RM×N
= δ(b + X · ω) is the invertible hidden

layer output matrix. The ELM adjusts the set of β to minimize
the cost function minβ ||Hβ − Õ||

2, with Õ the target output.
The optimal solution is determined by β = H†Õ, where H†

is the Moore–Penrose pseudoinverse. This prevents iterative
parameter tuning, reducing computational time. As a result,
with enough hidden nodes N , the ELM can approximate any
function f : RS

→ RZ .
Focusing on H†, singular value decomposition (SVD) is

used to conduct the pseudoinverse of nonsquare matrices by
orthogonal transformations

U, 6, V T
= SVD(H) (3a)

H†
= DT

·
(

DDT )−1
·
(
CT C

)−1
· CT (3b)

where U = HHT and V = HTH are the orthogonal matrices
of eigenvectors, 6 contains the diagonal squared eigenvalues,
and C = U (6)1/2 and D = (6)1/2V T are the respective
factorization.

Although this method avoids costly optimization proce-
dures, it becomes memory-intensive when dealing with large
data volumes. Nevertheless, the fast convergence of ELM
during training provides remarkable performance for classi-
fication, clustering, or regression tasks, encouraging further
work on its stability, performance, and accuracy. Recent
research [18] has identified fluctuation issues in classification,
providing alternative methods such as automated modification
of the number of nodes in the hidden layer, set learning,
or voting procedures, among others. Also, imbalanced data
scenarios negatively affect the performance, particularly due
to the influence of minority classes. To address this challenge,
the use of weighting averaging methods has been employed as
a mitigation strategy [19]. Finally, pseudoinverse optimization
has also been investigated, and efforts to improve computa-
tional performance have been highlighted. However, the issue
of scalability has not been addressed.

B. Contributions and Limitations of This Work
To afford the scalability problem, this work presents a

new CC-based implementation of the ELM for massive HSI
classification. This approach, called cloud-based distributed
implementation of the ELM (CC-ELM), provides a solution for
processing the increasing amounts of existing HSI data, as well
as for the inherent complexity of HSI. The advantages of using
CC as a distributed platform are combined with the versatility
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Fig. 1. Apache Pig execution pipeline for the training step. Different colors represent the K machines. The implementation of the ELM in Java is provided
through UDF. Each pixel is represented as m ∈ [1, M]. The number of S3 nodes is represented as P . The kth worker processes its local data subset Xk .

offered by Apache Pig to create new UDF functions, enabling
the development of new functions in an accessible and cost-
effective deployment. Accordingly, high levels of scalability
are ensured while maintaining classification accuracy. Further-
more, this work demonstrates that, given small amounts of
data, classification is affected by the randomness introduced
in the selection of the training samples. This randomness has a
large impact as the training is performed in a single iteration.
In this regard, the proposal is intended to handle large amounts
of data.

II. CC-ELM: EFFICIENT DISTRIBUTED APPROACH

This section describes the novel distributed procedure of
the ELM (CC-ELM), implemented in a primary/secondary
approach to work in a multinode environment. In this
approach, the Apache Pig platform (high-level programming
language for processing large data sets) has been adopted
as the processing model and the Apache Hadoop framework
(open-source software used for efficient and scalable dis-
tributed computing) as the distributed programming model.

A. Distributed-Parallel Architecture

Apache Pig is built on top of Apache Hadoop and translates
MapReduce instructions into efficient execution tasks within
a distributed environment. In this regard, Pig Latin extends
language capabilities by creating UDFs [20], while Apache
Hadoop enables the parallel processing of large volumes of
data and provides an optimized storage system, the Hadoop
Distributed File System (HDFS). HFDS includes fault-tolerant
capabilities and high availability through data replication over
deployed machines, enhancing the processing speed when
using parallelization techniques.

B. Overview of the Proposal Operation

The ELM obtains the Moore–Penrose pseudoinverse
through SVD. The proposed implementation manages the
high-computing requirements of this calculation for HSI clas-
sification in four steps.

1) Configuration Step: The input data are split into random
partitions (subsets) of M̃ < M samples, Xk

∈ RM̃×S
=

[x1, . . . , xM̃ ]
T , and distributed among the K workers.

2) Moore–Penrose Step: Each worker implements a copy
of the SLFN architecture. Random initialization of input
weights and bias is conducted using the same seed among
the secondary, ensuring that the CC-ELM initial trained model
is the same for all workers. Then, each worker performs
the SLFN transformation to obtain its Hk and computes its
Moore–Penrose pseudoinverse H†k locally.

3) Beta Step: This step represents the most computationally
intensive process of the approach, involving workers comput-
ing its output weights through βk

= H†kOk . Obtained weights
are collected and reduced to obtain the final output weights β,
which are stored in an Amazon Simple Storage Service (S3)
repository.

4) Validation Step: Once the final β is available, each
worker validates the model during the test.

The implementation of the distributed CC-ELM algorithm
is built as a UDF to be processed through Apache Pig. In this
context, Algorithm 1 describes the ELM-UDF structure. Its
design follows the previous steps in an orderly manner. As a
requirement, the initialization settings for the ELM model and
the HSI subset are provided as a set of tuples. Then, each
data subset Xk is loaded in the corresponding worker to be
used in the training of the ELM. Also, the ELM is configured
with the provided settings, such as the number of nodes of
the different layers and seeds for the parameters initialization,
among others. For the training step, no additional configura-
tion is required, following the procedure of the algorithm in
Section I-A. Finally, during the validation step, each worker
retrieves back β to provide the corresponding classification
on its Xk local subset. Fig. 1 shows the training procedure of
the proposal. The ELM-UDF is defined and implemented via
a Pig Latin script that abstracts data distribution and oversees
the entire classification process of the proposed method. Fig. 1
shows the training steps performed by the Pig Latin script.
The execution encompasses six steps. The REGISTER step
ensures the inclusion of all requisite libraries. Subsequently,
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the LOAD steps retrieve the global HSI X dataset from S3.
The FOREACH step facilitates the distributed execution of
the ELM-UDF at each worker node and GENERATE the
outputs βk . Finally, the REDUCE and STORE instructions
combine the outputs βk and store in S3 the resulting β. This
procedure simplifies the complexity of MapReduce program-
ming into intuitive lines of code.

III. EXPERIMENTS

The experiments have been conducted by the AWS
resources provided by Elastic Compute Cloud (EC2). Amazon
S3 is used to store the data, while Amazon Elastic MapReduce
(EMR) service is used as the managed cluster platform for
data processing with Hadoop (2.10.1) + Pig (0.17.0). Several
experiment configurations have been launched in the dis-
tributed environment, concretely, for two, four, eight, 16, 32,
and 64 nodes. The computing nodes used are the m5.xlarge1

instances, comprising an Intel Xeon Platinum 8175 3.1-GHz
CPU and 16-GB RAM each one. In addition, the ELM baseline
method (named L) is executed locally.

A. Dataset Description

The classification is performed for the Big Indian Pines
(BIP) dataset. This complex dataset was collected by the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor,
capturing the land surface of the Northern Indiana Pines and
gathering the solar reflected spectrum from 400 to 2500 nm.
The image size is 2678 × 614 pixels with 224 spectral bands
that contain the information about 58 classes. For scaling
purposes and addressing the scarcity of training samples,
experiments have been launched with different sizes: 1) 5%;
2) 10%; 3) 20%; 4) 40%; 5) 60%; and 6) 80% of training
samples.

B. Experimental Results

The experiments are divided into two different branches.
The first one is the analysis of the HSI classification accu-
racy. The second one analyzes the scaling properties of the
distributed approach. The results of the former are detailed in
Table I. It should be noted that the more nodes, the less mem-
ory limitations, so from 16 nodes upward, larger training sets
can be tested. This also reveals two important facts. The first
one is determined by the limited training samples, where the
randomness introduced in the selection of data in the smaller
proportions of the BIP dataset (10%) significantly impairs the
accuracy obtained by the classifier. The utilization of such
small portions of data, primarily composed of background
pixels, leads to a constrained representation of other land-
cover classes. Nevertheless, this shortcoming is overcome for
larger amounts of data, where the accuracy reaches similar
values to the baseline algorithm, i.e., the local implementation.
In this regard, the proposed CC-ELM classification is success-
ful when dealing with large amounts of data. In addition, the
second observable point is the positive trend toward increasing
accuracy as the training size increases. As a matter of fact,

1Details for EC2 in https://aws.amazon.com/es/ec2/instance-types/m5/

Fig. 2. Classification maps using K = 64 workers for different data sizes.
The accuracy is displayed within parentheses. (a) GT. (b) 10% (44.43%).
(c) 20% (47.56%). (d) 40% (51.58%). (e) 60% (51.56%). (f) 80% (51.46%).

increasing the number of workers K has no negative influence
on the accuracy attained compared with the local L coun-
terpart results. This is a significant strength of the proposal,
as the larger the data distribution, the lower the accuracy
attained, which is hampered by the limited number of training
data available in each worker node. As regards the study
of accuracy, the experiments with 5% have been considered
irrelevant due to the low amount of training data. Achieving
high classifier performance is particularly complex due to the
spectral mixing of the BIP scene. Also, this dataset causes
overfitting given the large amount of background samples and
pixel similarity. This is clearly shown in Fig. 2, which depicts
a clear trend: as the data size increases, a significant reduction
in the misclassification of background pixels is achieved. The
classification algorithm shows improved accuracy in correctly
identifying and assigning landscape classes to these pixels.

The second experiment focuses on the evaluation of the
scaling of the proposal. It should be noted that the number
of training samples has been adjusted to the number of nodes
due to memory constraints. Thus, training with 5% of the data
is feasible in environments with two, four, eight, 16, 32, and
64 nodes, whilst training with 80% of the data is only feasible
in environments with 32 and 64 nodes. Fig. 3(a) shows that the
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TABLE I
SUMMARY OF DIFFERENT ACCURACY RESULTS OBTAINED FOR THE FIRST

EXPERIMENT. COLUMNS CORRESPONDING TO THE AMOUNT OF DATA.
K IS THE NUMBER OF WORKERS AND L IS THE LOCAL EXECUTION

Fig. 3. Scaling experiments are represented in time at the left and speedup at
the right. The baseline for each data distribution is given by the first execution.
(a) Runtime. (b) SpeedUp.

execution time decreases as the number of workers increases.
In this context, the workers train disjoint data portions and
successfully share the computational load. Therefore, the run
time increases with data size and reduces with the number
of workers, as expected. The speedup in Fig. 3(b) has been
calculated for each training percentage experiment with a
different number of nodes (considering memory limitations):
for 5% of data, the slowest time (i.e., the base case) is provided
with two nodes; for 10%, the base case is four nodes; for
20%, the base case is eight nodes; for 40% and 16%, the base
case is 16 nodes; and for 80%, the slowest time is provided
by 32. Fig. 3(b) shows a remarkable improvement in the
obtained speedup, in particular with 40%, 60%, and 80% of
training samples. The speedup assessment employs a baseline
speedup, determined by the initial node configuration, for each
dataset size. The findings reveal a consistent upward trend in
speedup across all experiments until the maximum scaling is
attained.

IV. CONCLUSION

In this letter, a novel CC approach is presented to improve
the computational efficiency of a popular ML algorithm,
known as ELM. The key point of the proposed methodol-
ogy is the distribution and parallel processing of large data
volumes for classification purposes. In this regard, the pixel
classification of remotely sensed imagery, i.e., HSI, becomes
especially challenging given the complexity of the spatial
and spectral information. This fact is accentuated in ELM,
where the entire data are processed in one single training step.
Consequently, the memory of the hardware devices suffers
overloads. To this end, this letter proposes a methodology
to address this problem. Our distributed ELM implemen-
tation offers good performance for both classification and

scaling purposes. The proposal offers an optimal solution
using available and easily manageable commercial hardware
through AWS. The methodology is versatile and flexible to
develop future functions to address computationally expensive
operations or high memory requirements. We found that CC
offers good computational performance for scaling purposes.
As future work, we intend to apply this procedure to complex
ML algorithms.
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