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Uncertainties in MODIS-Derived Ulva Prolifera
Amounts in the Yellow Sea: A Systematic
Evaluation Using Sentinel-2/MSI Observations

Lin Qi*, Menghua Wang™~, and Chuanmin Hu

Abstract— Uncertainties are an integral part of remote sensing
data products in order to quantify changes, yet due to patchiness
and spatial heterogeneity, it is difficult to use field measurements
to estimate uncertainties in the satellite-derived Ulva prolifera
(U. prolifera, also called green tides) amounts in the Yellow Sea.
This is perhaps why such estimates are missing in nearly all
remote sensing literature on U. prolifera mapping. Here, by com-
paring all available data collected by the Moderate Resolution
Imaging Spectroradiometer (MODIS) on the Terra/Aqua satel-
lites and the MultiSpectral Instrument (MSI) on the Sentinel-2A/
2B satellites for the period of 2015-2022, we evaluate uncertain-
ties in the MODIS-derived U. prolifera amounts. The relative
uncertainties are found to decrease with increasing Ulva amounts
in individual images, ranging from 58.8 % for Ulva areal coverage
(after pixel unmixing) of <50 km? to 8.7% for Ulva areal cov-
erage of >200 km?. Such uncertainties decrease in the monthly
composite data products because of the increased number of
observations, reducing to 3% in the total Ulva amount during
the peak months. Such uncertainty estimates, in relative terms,
are expected to serve as a reference when interpreting temporal
changes in long-term Ulva estimates derived from satellite data.

Index Terms— Biomass, coverage, green tides, Moderate Res-
olution Imaging Spectroradiometer (MODIS), MultiSpectral
Instrument (MSI), remote sensing, Ulva prolifera (U. prolifera),
Visible Infrared Imaging Radiometer Suite (VIIRS), Yellow Sea.

I. INTRODUCTION

TARTING in the late 2000s, blooms of the green macroal-
S gae Ulva prolifera (U. prolifera, often called green tides)
began to occur every spring—summer in the western Yel-
low Sea (YS, Fig. 1) (see [1], [2]), and in certain years,
they represented the largest green macroalgae blooms around
the world (see [3], [4]). The blooms were mostly regarded
as a coastal nuisance because of their adverse impacts on
the coastal environments and local economy. For this rea-
son, governmental agencies have spent significant efforts
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and resources on green tide mitigation, including control of
U. prolifera sources, nutrient reductions, and physical removal
of U. prolifera at sea (e.g., [5], [6]). Meanwhile, numerous
studies have been published on their spatial/temporal patterns,
origins, and potential causes (e.g., [4], [7], [8], [9]).

Of the various methods to study the U. prolifera green
tides, satellite remote sensing is the most effective one to
reveal their spatial patterns and temporal changes from which
potential causes and consequences may be inferred. This is
because of the synoptic and frequent coverage from satellite
measurements, as well as the contributions of surface floating
U. prolifera to the satellite-detected signals. Between 2008 and
the present, more than 50 peer-reviewed papers have used
satellite remote sensing to estimate U. prolifera amounts (see
bibliography reviewed by Hu et al. [10]), some of which also
showed multiyear changes (e.g., [2], [4], [11], [12], [13]).

However, a critical component is missing in nearly all
these studies: uncertainty estimates. Although such estimates
are an integral part of any remote sensing data product,
they are missing mainly because of the difficulties in using
field measurements to evaluate satellite-derived U. prolifera
amounts. Such difficulties are due to the strong patchiness
and heterogeneity in U. prolifera distributions where most
satellite image pixels are only partially covered by U. prolifera,
which also drift with winds and currents. Unlike evaluations
of the traditional ocean color data products, it is essentially
impossible to find a “matching pair” to compare an image
pixel with the corresponding field measurement, and it is also
difficult to collect all U. prolifera within a large region and
then compare with colocated image pixels within the same
region.

One alternative way to estimate uncertainties is through
cross-sensor comparison and specifically to use high spa-
tial resolution satellite data to evaluate uncertainties from
coarse-resolution satellite data. This is because the two mea-
surements have different sensor characteristics (spectral bands,
signal-to-noise ratios (SNRs), and solar-sensor viewing geom-
etry) that can be regarded as being independent. Indeed,
Hu et al. [11], Lu et al. [14], and Wang et al. [15] used such
a cross-sensor comparison method to estimate relative uncer-
tainties in the U. prolifera amounts derived from individual
coarse-resolution images. However, these results were based
on a limited number of images, making it difficult to have
statistically meaningful conclusions.
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Fig. 1. Comparison of coverage and U. prolifera observations over the
study region of the western Yellow Sea (33-37°N, 119-123°E) between
(a) medium-resolution FRGB image of MODIS/Terra (250 m) and (b) high-
resolution FRGB image of MSI (10 m). The images were collected on
the same day within 21 minutes. Ulva rafts appear as greenish image
slicks, and black indicates no data coverage. Two small regions (outlined
in red rectangles) are shown in (c) and (d), respectively, whose histogram
distributions of AFAI are shown in the inset panel (a). The MSI coverage
frequency within a month is shown in the inset panel (b), where the vertical-
and horizontal-colored lines indicate overlapping areas of adjacent MSI tiles.

The objective of this letter is to systematically evaluate
relative uncertainties in the U. prolifera amounts derived from
the Moderate Resolution Imaging Spectroradiometer (MODIS)
images. MODIS is used here due to its long-term coverage
because most published long-term change studies are based
on MODIS measurements (see [10]). In the end, we hope
to address the question that if a certain year shows more U.
prolifera than another year, whether the difference is within
the uncertainties (therefore, the two years may be regarded as
similar) or well beyond the uncertainties.

II. DATA AND METHOD
A. MODIS Data and Processing

MODIS data were obtained from the NASA OB. DAAC
(https://oceancolor.gsfc.nasa.gov) to: 1) generate false-color
red—green-blue (FRGB) images (R: 645 nm; G: 859 nm;
B: 469 nm) for visual inspection of image features that
are deemed to be U. prolifera; 2) extract U. prolifera
pixels and estimate subpixel U. prolifera factional cover
(i.e., areal density in %) from alternative floating algae
index (AFAI) [16], [17]; 3) find colocated and concurrent
MODIS and MultiSpectral Instrument (MSI) image pairs for
cross-sensor evaluation and for estimating uncertainties; and
4) generate monthly composites to estimate the monthly mean
U. prolifera amount, from which long-term time series was
generated.

All of the above steps were based on the Rayleigh-corrected
reflectance (R,.(A), dimensionless) generated using MODIS
Level-1B data and the SeaDAS software (version 8.0). The
use of the FRGB images was to facilitate visual inspection of
various image features. In such images, U. prolifera features
appear greenish because of the enhanced reflectance at the
near-infrared (NIR) 859-nm band. An example is shown in
Fig. 1(a).

Cloud masking was based on the magnitude and spectral
shape of R..(A) in each pixel (see [13])

Cloud-Masking = where(R,.(488) > a N R,.(547)
> a N R,.(667) > a). (D)

Here, for MODIS R..(A), a = 0.06. Then, delineation U.
prolifera features and estimating subpixel fractional cover
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were based on the R,.(A)-derived AFAI (see [2])
A=A
AFAL = Ry, — |Ry + 52— x (Riy — Ry))| @
A3 — A

where A; = 667 nm, A, = 748 nm, and A3 = 869 nm. The
subpixel fractional cover (x from 0% to 100%) was estimated
through linear unmixing using lower bound threshold (AFAI,,
corresponding to 0% U. prolifera within a pixel) and upper
bound threshold (AFAI,, corresponding to 100% U. prolifera
within a pixel) (see [10])

AFAI; — AFAI,
" AFAI, — AFAJ,

Here, the subscript i refers to the ith valid pixel. The original
images were converted into 4-km grids, where mean U.
prolifera areal density in each 4-km grid was calculated as

| &
f= EZX:‘ “4)

i=1

Xi x 100%. 3)

where N, is the number of valid pixels in the grid. Similar to
Xi» f also ranges between 0% and 100%. In practice, because
most of the valid pixels have low x; values due to the large
pixel size, f is often lower than a few percent. The above
processes are shown in Fig. 2 (top row), where additional cloud
masking from the colocated and concurrent MSI image was
also used to show the commonly valid pixels. Integration of
f over all grids, after accounting for the grid size, led to the
estimate of the total U. prolifera coverage (km?) from the
image. Then, the coverage was converted to biomass using
a calibration constant of 1.94 kg m~2 (see [18]). Note that
such coverage or biomass estimates from individual images
are independent of the grid size (either 1- or 4-km), but the use
of the 4-km grid can facilitate visualization of image features
in limited space.

Equation (4) was also used to generate monthly composite
images, where in each 4-km grid of the composite image, N,
is the number of valid pixels in the grid within the month.
In this way, f is regarded as the mean U. prolifera areal
density during the month, and integration of f over all grids
led to the estimate of the mean U. prolifera coverage (km?)
during the month, which was then converted to the mean U.
prolifera biomass. This process follows the protocol used by
NASA to generate monthly data products at 4-km resolution
using 1-km data.

B. MSI Data and Processing

MSI top-of-atmosphere (TOA) reflectance data at multiple
spectral bands were downloaded from the European
Space Agency (ESA) through Google Earth engine
(https://developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_S2_HARMONIZED). The spectral bands
used in this study include 490 nm (B2), 555 nm (B3), 665 nm
(B4), 740 nm (B6), and 865 nm (B8A). Both Sentinel-2A
(2015-present) and Sentinel-2B (2017—-present) were used,
which provided a combined five-day revisit frequency at
a local time of ~10:30 A.M. The MSI images have a
nominal resolution of 10 and 20 m for most bands. Between
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Fig. 2. Tllustration of how to obtain a matching pair between MODIS (top
row) and MSI (middle row) from the two images shown in Fig. 1. From left
to right: (a) AFAI images after masking clouds and other invalid data (white)
from sensor-specific data, (b) AFAI images after masking clouds and other
invalid data (white) from both images (i.e., combination of the two masks),
and (c) Ulva density in each 4-km grid where the invalid data are masked as
black. Land is shown in gray in (a)—(f). The two images in (c) and (f) over
their common valid pixels (white and greenish colors) are considered an image
pair. The lack of features in the MSI images [(d) and (e)] is due to the visual
illusion effect in presenting high-resolution images in a limited space. At full
resolution, these image features appear much clearer as shown in (g-1)—(g-3).
Use of the 4-km grid does not affect the estimation of total algae coverage
from individual images (see Section II-A) but can improve visualization.

2015 and 2021, a total of 4907 MSI tiles covering the study
region during the months of June and July, including the
peak season of U. prolifera outbreaks (see [2], [13]), were
mosaiced into 218 images.

The processing steps of MSI images were similar to those
of MODIS, except that the last step of generating monthly
composite images was omitted due to the low revisit frequency.
The MSI FRGB images were generated using the bands of
red: 665 nm (B4), green: 865 nm (B8A), and blue: 555 nm
(B3). In fact, the MSI AFAI images were produced using the
same method (1) with A; = 665 nm (B4), A, = 740 nm (B6),
and A3 = 865 nm (B8A). Cloud masking was carried out
through analysis of spectral shape and magnitude at 490 nm
(B2), 555 nm (B3), and 665 nm (B4) bands, same as (1) but
with a = 0.2. Delineation of U. prolifera image features was
through a deep learning approach with an overall accuracy of
>85%, which was detailed in [19]. The processing steps are
shown in Fig. 2 (bottom row), where additional mask from the
paired MODIS image was also used to show the commonly
valid pixels.

C. Statistics of Paired MODIS and MSI Images

Although MODIS has daily coverage of the study region,
MSI only provides images every five days. After removing
images with significant cloud cover, the number of image pairs
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Fig. 3. (a) Comparison between MODIS- and MSI-derived Ulva coverage

from 113 image pairs collected between 2016 and 2022. The image acquisition
date is color coded, while the symbol size indicates the average sensor-zenith
angle (3°-70°) from all valid MODIS pixels used in the Ulva estimates. The
dashed line is the 1:1 line, while the solid line is the best fit between the
two datasets. The three dashed ellipses outline the data groups of <50 km?,
50-200 km?, and >200 km?2, where relative uncertainties in MODIS estimates
decrease with increasing coverage as shown in (b).

has been reduced to 113 for the period of 2015-2022 (see
Fig. 3). In each image pair, the U. prolifera coverage from
their commonly valid pixels was estimated from each image
and compared. The comparison was performed over all image
pairs with statistics generated.

IITI. RESULTS

For the study region shown in Fig. 1(a), MSI cannot
cover the entire region due to its relatively narrow swath of
290 km [see Fig. 1(b)] compared with MODIS’s 2330 km. This
narrower swath led to less frequent coverage (see Fig. 1(b)
inset), which is also the reason why it is impractical to generate
monthly composite MSI images. Nevertheless, the much finer
resolution (10-20 m) led to much sharper image features [see
Fig. 1(d)] than those enabled by MODIS [see Fig. 1(c)], which
is the reason why MSI serves as an excellent independent
data source to evaluate uncertainties in the MODIS-derived
U. prolifera amounts. This is despite the fact that their AFAI
distributions are different (see Fig. 1(a) inset) due to their
differences in spectral bands and bandwidths. Such differences
were taken care of by their sensor-specific delineating and
unmixing algorithms, as shown in Fig. 2.

As an example, Fig. 2 shows the comparison of AFAI and
U. prolifera density maps derived from the paired MODIS
and MSI images, with their original FRGB images presented
in Fig. 1. In this example, U. prolifera image features are
revealed clearly in both MODIS and MSI AFAI images. The
reason why the latter appear less clear is due to the MSI
high resolution that makes the features appear much smaller
in the icon images of Fig. 2(d) and (e). When the images are
displayed at full resolution [a subregion is shown in Fig. 2(g)],
these image features become much clearer, similar to the
contrasting effect shown in Fig. 1(c) and (d). Indeed, after
aggregating all pixels into the 4-km grids, the distribution
patterns of U. prolifera density appear very similar between
MODIS and MSI [see Fig. 2(c) and (f)].
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Similar observations were made for each image pair, with
a total of 113 pairs obtained between 2015 and 2022 [see
Fig. 3(a)]. Overall, although there appears a slight systematic
positive bias in MODIS data (i.e., the fitting line is slightly
above the 1:1 line), strong agreement was found between
MODIS- and MSI-derived U. prolifera amounts, with R =
0.93 and unbiased root-mean-square difference (URMSD) of
54.1%. Here, uRMSD is defined as

1 Y — X; 2
uRMSD = \/N 2 <0.5 < (Y + X,-)) )

where Y; and X; represent MODIS- and MSI-derived
U. prolifera amount from an image pair, respectively. The
uRMSD value decreases with increasing U. prolifera amount,
from 58.7% for <50 km?, 46.3% for 50-200 km?, to 22.3%
for >200 km?.

The summary results in Fig. 3(a) form the basis to estimate
uncertainties in the MODIS-derived U. prolifera amounts.
Ideally, uncertainties should be evaluated against the ground
“truth” [20]. In practice, however, the truth is often unknown
because even field measurements are not error-free. Here, the
reference is from MSI measurements that are also subject to
large uncertainties. The fitting line in Fig. 3(a) is regarded as
the “truth,” where uncertainties were estimated as the uRMSD
difference between MODIS data and the fitting line. Such
estimated uncertainties are 52.2% for the entire data range,
and 58.8%, 37.6%, and 8.7% for the three subranges [see
Fig. 3(b)].

The uncertainties estimated above are for U. prolifera
amounts estimated from individual images. In the monthly
composite images, because of the multiple measurements
at each location, the uncertainties are expected to decrease
following the 1/(N)'/? rule. This is because the relative
difference between MODIS and the fitting line appears to be
normally distributed. The number of valid 1-km pixels used
in calculating the monthly composites generally falls in the
range of 80-200 for each 4-km grid, equivalent to about nine
cloud-free observations in a typical 1-km location. Therefore,
at the monthly scale, uncertainties are expected to be reduced
by a factor of 3 from daily images (Fig. 3(b), dark green bars).
For the peak months with U. prolifera amount > 200 km?, this
suggests a relative uncertainty of 8.7%/3 ~ 3%.

IV. DISCUSSION

The difficulty in validating the remotely estimated amounts
of floating matters is not restricted to U. prolifera but also
applied to oil slicks and all other types of floating matters such
as Sargassum sp. and marine debris. The use of cross-sensor
comparison as a consistency measure to estimate relative
uncertainties is not new (e.g., [11], [14], [15]), but it is difficult
to draw statistically meaningful conclusions with just a number
of limited images. In this regard, the systematic evaluation
here using all available MODIS and MSI image pairs, which
are collected under different measurement conditions (e.g.,
solar- and/or sensor-zenith angles) in different U. prolifera
growing phases, led to uncertainty estimates that may serve as
a reference to better interpret temporal changes. For example,
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Fig. 4. Monthly mean biomass (in metric tons) of U. prolifera derived from
MODIS monthly composite images between 2008 and 2022 for the month of
(a) June and (b) July. Vertical bars represent uncertainties after multiplying
the relative uncertainties in (b) by the monthly amount.

in the 2008-2022 monthly time series of U. prolifera amount
(see Fig. 4), although annual fluctuation patterns are clear, it is
difficult to know whether the difference between certain years
is statistically significant. With the knowledge of uncertainties
(black vertical bars in Fig. 4), the interpretation becomes
straightforward. For example, there is no statistical difference
between 2015 and 2016 in either June or July. In contrast,
while the result in 2019 shows no statistical difference from
that in 2021 in June because their difference is within two
times the uncertainties, a statistical difference is found in July
because their difference between 2019 and 2021 is > two
times the uncertainties.

The summary results in Fig. 3(a) may appear puzzling,
as one would expect higher estimates from MSI than those
from MODIS. This expectation is due to the much-improved
spatial resolution (10-20 m) that would enable the detection
of the otherwise undetectable small U. prolifera mats, leading
to more U. prolifera detection from MSI images. However,
what was observed is against this intuition, as all data points
are rather equally spaced around the 1:1 line with MODIS
even showing a slight positive bias. Such a puzzling result is
due to several reasons. First, as shown in [11] and [14], the
NIR reflectance of a U. prolifera mat can exceed the selected
upper-bound threshold. For MODIS, such an “overflow” is
interpreted as coming from nearby water within the same pixel,
causing higher estimates from the pixel. Second, MSI images
are very noisy due to the sensor’s relatively low SNRs over
water (e.g., ~33 at the 740-nm band [19], [21]). The noisy
data led to many weak features that are undetectable in the
MSI images. However, such weak features can be detected
more easily if the 10-m resolution pixels are aggregated to
form coarser-resolution images with much higher SNRs (see
[22, Fig. 10]). Both effects can lead to higher estimates from
MODIS images than those from MSI images, but they appear
to be compensated by additional U. prolifera mats detected
only from MSI images, thus leading to the scattered results in
Fig. 3(a). Such scattered results can also explain why the use
of just a few images in cross-sensor evaluations can lead to
results that are not statistically meaningful.

Needless to say, the uncertainties estimated here are in
relative terms, representing a measure of self-consistency.
However, because studies of temporal changes are also on a
relative scale, a measure of self-consistency is sufficient to
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quantify the changes as well as to investigate the causes and
consequences of such changes. In this regard, the estimated
uncertainties in Fig. 4 are expected to serve as a reference
when interpreting temporal changes in future time series
analysis.

Finally, the uncertainty estimates are for MODIS mea-
surements because of their long-term data availability. Other
coarse-resolution multiband sensors, such as the Visible
Infrared Imaging Radiometer Suite (VIIRS, from 2011 to
present), have shown consistent performance in detecting
and quantifying floating macroalgae (see [23]) and there-
fore are expected to have similar uncertainties as presented
here.

V. CONCLUSION

Despite the extensive use of satellite remote sensing in
mapping U. prolifera green tides in the Yellow Sea, uncertain-
ties in the satellite-derived U. prolifera amounts are generally
unknown due to technical difficulties in relating field and
satellite measurements. Through a systematic evaluation of
113 paired MODIS and MSI images (from 4907 MSI tiles)
for the period of 2015-2022, we quantified their relative
differences, which decreases with increasing U. prolifera
amounts. These differences form the basis to quantify uncer-
tainties in the MODIS-derived U. prolifera amounts from
both daily and monthly composite images, which are then
used to interpret the long-term U. prolifera changes. While
this study is restricted to U. prolifera in the Yellow Sea,
the approach is expected to be extendable to other floating
matters in other regions such as Sargassum horneri in the
East China Sea and Sargassum fluitans/natans in the Caribbean
Sea.

ACKNOWLEDGMENT

The authors thank two anonymous reviewers for their valu-
able comments. The scientific results and conclusions, as well
as any views or opinions expressed herein, are those of the
author(s) and do not necessarily reflect those of NOAA or the
Department of Commerce.

REFERENCES

[1] D. Liu, J. K. Keesing, Q. Xing, and P. Shi, “World’s largest macroalgal
bloom caused by expansion of seaweed aquaculture in China,” Mar
Pollut. Bull., vol. 58, no. 6, pp. 888-895, Jun. 2009.

[2] L. Qi et al., “Climate and anthropogenic controls of seaweed expansions
in the east China Sea and Yellow Sea,” Geophys. Res. Lett., vol. 49,
no. 19, Oct. 2022, doi: 10.1029/2022GL098185.

[3] X. Liu, Z. Wang, and X. Zhang, “A review of the green tides in
the Yellow Sea, China,” Mar. Environ. Res., vol. 119, pp. 189-196,
Aug. 2016.

[4] Q. Xing et al., “Monitoring seaweed aquaculture in the Yellow Sea
with multiple sensors for managing the disaster of macroalgal blooms,”
Remote Sens. Environ., vol. 231, Sep. 2019, Art. no. 111279.

1501805

[5]1 Z. Xu, W. Meng, S. Li, and J. Shan, “Residents’ preference for
the management of green tides and its determinants: The evidence
from Qingdao, China,” Ocean Coastal Manage., vol. 233, Feb. 2023,
Art. no. 106445.

[6] Y. Yang, J. Boncoeur, S. Liu, and P. Nyvall-Collen, “Economic assess-
ment and environmental management of green tides in the Chinese
Yellow Sea,” Ocean Coastal Manage., vol. 161, pp. 20-30, Jul. 2018.

[71 Y. Huo et al., “Green algae blooms caused by Ulva prolifera in the
southern Yellow Sea: Identification of the original bloom location and
evaluation of biological processes occurring during the early northward
floating period,” Limnol. Oceanogr., vol. 58, no. 6, pp. 2206-2218,
Nov. 2013.

[8] Y. B. Son, B.-J. Choi, Y. H. Kim, and Y.-G. Park, “Tracing floating
green algae Blooms in the Yellow Sea and the East China Sea using
GOCT satellite data and Lagrangian transport simulations,” Remote Sens.
Environ., vol. 156, pp. 21-33, Jan. 2015, doi: 10.1016/j.rse.2014.09.024.

[9] Y. Zhang et al., “Ulva prolifera green-tide outbreaks and their environ-
mental impact in the Yellow Sea, China,” Nat. Sci. Rev., vol. 6, no. 4,
pp. 825-838, Jul. 2019, doi: 10.1093/nsr/nwz026.

[10] C. Hu et al, “Mapping Ulva prolifera green tides from space:
A revisit on algorithm design and data products,” Int. J. Appl.
Earth Observ. Geoinf., vol. 116, Feb. 2023, Art. no. 103173, doi:
10.1016/j.jag.2022.103173.

[11] L. Hu, K. Zeng, C. Hu, and M.-X. He, “On the remote estimation of Ulva
prolifera areal coverage and biomass,” Remote Sens. Environ., vol. 223,
pp. 194-207, Mar. 2019, doi: 10.1016/j.rs¢.2019.01.014.

[12] Y. Xiao et al., “Remote sensing estimation of the biomass of floating
Ulva prolifera and analysis of the main factors driving the interannual
variability of the biomass in the Yellow Sea,” Mar. Pollut. Bull., vol. 140,
pp- 330-340, Mar. 2019.

[13] L. Qi, C. Hu, Q. Xing, and S. Shang, “Long-term trend of Ulva prolifera
blooms in the western Yellow Sea,” Harmful Algae, vol. 58, pp. 35-44,
Sep. 2016, doi: 10.1016/j.hal.2016.07.004.

[14] T. Lu, Y. Lu, L. Hu, J. Jiao, M. Zhang, and Y. Liu, “Uncertainty in the
optical remote estimation of the biomass of Ulva prolifera macroalgae
using MODIS imagery in the Yellow Sea,” Opt. Exp., vol. 27, no. 13,
pp. 18620-18627, 2019, doi: 10.1364/0OE.27.018620.

[15] X. Wang, Q. Xing, and D. An, “Effects of spatial resolution on the
satellite observation of floating macroalgae blooms,” Water, vol. 13,
no. 13, p. 1761, 2021.

[16] M. Wang and C. Hu, “Mapping and quantifying Sargassum distribu-
tion and coverage in the Central West Atlantic using MODIS obser-
vations,” Remote Sens. Environ., vol. 183, pp. 350-367, 2016, doi:
10.1016/j.rse.2016.04.019.

[17] C. Hu, “A novel ocean color index to detect floating algae in the global
oceans,” Remote Sens. Environ., vol. 113, no. 10, pp. 2118-2129, 2009.

[18] L. Hu, C. Hu, and H. Ming-Xia, “Remote estimation of biomass of
Ulva prolifera macroalgae in the Yellow Sea,” Remote Sens. Environ.,
vol. 192, pp. 217-227, Apr. 2017, doi: 10.1016/j.rs¢.2017.01.037.

[19] L. Qi and C. Hu, “To what extent can Ulva and Sargassum be detected
and separated in satellite imagery?” Harmful Algae, vol. 103, Mar. 2021,
Art. no. 102001, doi: 10.1016/j.hal.2021.102001.

[20] S. Dutkiewicz, Ed., “Synergy between ocean colour and biogeo-
chemical/ecosystem models,” Int. Ocean Colour Coordinationg Group,
Dartmouth, NS, Canada, IOCCG Rep. Ser. 19, 2020, doi: 10.25607/
OBP-711.

[21] L. Qi, M. Wang, C. Hu, and B. Holt, “On the capacity of Sentinel-1 syn-
thetic aperture radar in detecting floating macroalgae and other floating
matters,” Remote Sens. Environ., vol. 280, Oct. 2022, Art. no. 113188,
doi: 10.1016/j.rse.2022.113188.

[22] M. Wang and C. Hu, “Automatic extraction of Sargassum features from
Sentinel-2 MSI images,” IEEE Trans. Geosci. Remote Sens., vol. 59,
no. 3, pp. 2579-2597, Mar. 2021, doi: 10.1109/TGRS.2020.3002929.

[23] M. Wang and C. Hu, “On the continuity of quantifying floating
algae of the Central West Atlantic between MODIS and VIIRS,”
Int. J. Remote Sens., vol. 39, no. 12, pp. 3852-3869, 2018, doi:
10.1080/01431161.2018.1447161.


http://dx.doi.org/10.1029/2022GL098185
http://dx.doi.org/10.1016/j.rse.2014.09.024
http://dx.doi.org/10.1093/nsr/nwz026
http://dx.doi.org/10.1016/j.jag.2022.103173
http://dx.doi.org/10.1016/j.rse.2019.01.014
http://dx.doi.org/10.1016/j.hal.2016.07.004
http://dx.doi.org/10.1364/OE.27.018620
http://dx.doi.org/10.1016/j.rse.2016.04.019
http://dx.doi.org/10.1016/j.rse.2017.01.037
http://dx.doi.org/10.1016/j.hal.2021.102001
http://dx.doi.org/10.25607/OBP-711
http://dx.doi.org/10.25607/OBP-711
http://dx.doi.org/10.1016/j.rse.2022.113188
http://dx.doi.org/10.1109/TGRS.2020.3002929
http://dx.doi.org/10.1080/01431161.2018.1447161

