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An Automatic Algorithm to Extract Nearshore
Bathymetric Photons Using Pre-Pruning Quadtree

Isolation for ICESat-2 Data
Guoping Zhang , Shuai Xing, Qing Xu , Fubing Zhang, Mofan Dai, and Dandi Wang

Abstract— The Ice, Cloud, and Land Elevation Satellite-2
(ICESat-2) equips with a novel photon-counting LiDAR sys-
tem, which can generate underwater reflections in nearshore
environments. However, due to the water reflection, scattering,
and absorption, the distribution of bathymetric photons in the
nearshore data varies with depth. The existing bathymetric
photon extraction algorithms need more adaptability to seafloor
topography. The changing density of bathymetric photons and
the fluctuation of underwater topography make the noise removal
of nearshore data full of challenges. This study proposed a bathy-
metric photon extraction algorithm using pre-pruning quadtree
isolation (PQI). First, the pre-pruning step judges whether to stop
the growth of quadtree in advance during quadtree isolation (QI)
to avoid excessive division of noise photons. Second, the maximum
inter-class variance algorithm (also called the Otsu method)
obtains the best threshold of isolation depth (ID) and extracts
bathymetric photons. The algorithm was tested on the Florida
coast. The results show that the PQI algorithm can wholly and
accurately extract bathymetric photons with different acquisition
times from the data. The F1-score of the extracted results is
93.96%. This study provides an intelligent solution to processing
bathymetric data in nearshore environments worldwide.

Index Terms— Ice, Cloud, and Land Elevation Satellite-2
(ICESat-2), nearshore environment, photon-counting LiDAR,
pre-pruning quadtree isolation (PQI), signal extraction.

I. INTRODUCTION

INFULENCED by natural and human activities, accurately
measuring the underwater topography in a nearshore envi-

ronment is challenging. Multi band images can retrieve the
relative depth according to the radiation transmission equation
but depend on the in situ measurement data to provide the
absolute water depth, which is blank on many islands and
reefs [1]. LiDAR uses a blue-green laser pulse, which can
penetrate the water and map underwater spatial structures
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directly with sub-meter precision [2]. Besides synthetic aper-
ture radar (SAR) and sonar, it is an effective way to survey
an area with a depth of less than 5 m using LiDAR [3].
However, the limitations of the airborne laser system (ALS)
in spatial-temporal resolution restrict the further application of
this technology.

In 2018, the National Aeronautics and Space Administration
(NASA) launched the new generation LiDAR satellite, which
is named the Ice, Cloud, and Land Elevation Satellite-2
(ICESat-2) [4]. Its photon-counting LiDAR called Advanced
Topographic Laser Altimeter System (ATLAS), equips with
three pairs of laser beams (including one strong beam and
one weak beam), which can emit laser pulses of 532 nm. The
laser footprint obtained by ICESat-2 is 13 m in diameter, and
the footprint interval is only 0.7 m [5], which is much higher
than the previous LiDAR satellite missions. The researchers
unexpectedly found that ICESat-2 can record the reflected
signals from underwater up to 40 m [6]. This new data
provides a rich opportunity for satellite-derived bathymetry
(SDB) in global nearshore environments.

The high sensitivity of ATLAS cannot prevent noise photons
from flooding the raw data. In the nearshore environment,
the laser pulse is reflected, scattered, and absorbed by water
during transmission, which makes the spatial characteristics
of the photons different from other types [7]. Specifically,
bathymetric photons are composed of sea surface photons
and seafloor photons. The spatial density of seafloor photons
decreases with depth and is also affected by water turbidity.
At present, the bathymetric photon extraction algorithm fits
the sea surface by using the wave spectrum [8] and filters
underwater noises by clustering the density of seafloor photons
through the neighborhood with adaptive size and density
threshold [9], [10]. The algorithms have been tested, but
the horizontally placed elliptical neighborhood makes them
theoretically unable to adapt to the underwater terrain. Fur-
thermore, with the increased water depth, the noise photons
would lead to potentially wrong extraction.

Zhang et al. [11] proposed a noise removal algorithm based
on quadtree isolation (QI), which isolated each photon through
quad-spatial division and extracted the signal photon according
to the isolation depth (ID). It works without input parameters
and has strong adaptability to different topographies. Unfor-
tunately, this algorithm is not designed for nearshore data and
cannot identify noise photons near the seafloor.
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Fig. 1. Study site in Florida. The green lines show the ICESat-2 data tracks.

TABLE I
ACQUISITION DATE AND TIME OF ICESAT-2 ATL03 DATASETS

Considering the spatial characteristics of bathymetric pho-
tons, pre-pruning QI (PQI) was developed. Different from the
traditional QI, pre-pruning decides whether to stop the growth
of quadtree in advance by judging whether photons are isolated
before and after each space division, thus enhancing the
recognition ability of noise photons. The maximum inter-class
variance algorithm (also called the Otsu method) is used
to automatically determine the threshold of ID and extract
bathymetric photons from the raw data as well as possible.

II. STUDY AREA AND DATA

A. Study Site

The study site is on the coast between Destin and
Panama (86◦01′W–86◦31′W, 30◦15′N–30◦24′N), Northern
West Florida. The water body is clear, which enables ICESat-
2 to record the bathymetric topography with a depth of more
than 15 m within several hundred meters along the track. The
east-west rocky coastline makes the ICESat-2 data easy to
collect, and the water’s backscattering effect on laser pulses
makes the data contain massive noise photons, which poses a
challenge.

B. Test Data

The longitude, latitude, and elevation of photons acquired
by ATLAS are recorded in ICESat-2 ATL03 data according to
laser beams (numbered gt1r, gt1l, gt2r, gt2l, gt3r, and gt3l).
In this study, six pieces of data that passed through the study
site in 2019 were collected, in which the strong beams were
used for verification. Two-thirds of the data were acquired in
the daytime, and the rest were acquired at night. These data
were cut into ∼1 km segments in advance, as shown in Fig. 1,
and the data details are shown in Table I.

III. ALGORITHMS

A. Pre-Pruning QI

The spatial distribution of signal photons is denser than
noise photons due to the difference in reflectivity, so the

Fig. 2. Examples illustrating bathymetric scenario of ICESat-2 data: (a) error
caused by traditional QI, (b) quadtree generated by traditional QI where the
purple diamonds represent the tree nodes, (c) result generated by PQI, and
(d) quadtree generated by PQI.

noises can be removed by describing the spatial distribution
of photons. Unlike the algorithm based on density clustering,
traditional QI regards the noise removal process as photon
isolation. The photons are separated from the surrounding
photons by recursive spatial divisions. The method of photon
isolation corresponds to a quadtree, and each isolated photon
is in a different layer of the quadtree. The layer of quadtree
where each photon locates is called ID. Since isolating signal
photons needs more times of space division than separating
noise photons, the ID of signal photons is also greater.
Therefore, signal photons can be extracted from the raw data
by setting the threshold of ID through manual testing of binary
classification algorithms.

Although traditional QI has achieved ideal results on dif-
ferent land surfaces [12], it may also lead to potential errors
during the processing of nearshore data. In the coastal environ-
ment, bathymetric photons comprise sea surface and seafloor
photons. Due to the reflection of the sea surface, the spatial
distribution of sea surface photons is often more compact than
that of the seafloor photons. The signal-to-noise ratio (SNR)
underwater is lower than that of the above-water environment
due to water scattering and the absorption of laser pulses. With
the increased water depth, the SNR will be further reduced,
and the noise photons will become challenging to distinguish,
resulting in the errors of traditional QI.

A typical example is shown in Fig. 2(a), where the blue dots
represent noise photons, green dots represent signal photons,
and the dotted pink lines highlight the analyzed photons.
Although the noise photon in the figure is far from the seafloor
photon, to isolate it from the nearest photon (which is also a
noise photon), both the noise photon and the sea floor photon
were isolated after four times division. As shown in Fig. 2(b),
they are all at the fourth level of the quadtree and cannot be
distinguished by ID. The traditional QI performed two times
of weak division (the second and third division) because these
two times of division failed to isolate the noise photon from its
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nearest neighbor. The traditional algorithm only separates the
noise photon from the nearest photon in the fourth division
leading to the overestimation of the noise photon. With the
increase of water depth, the noise photons caused by water
scattering and the increasingly reduced seafloor photons make
this kind of situation not uncommon.

The traditional QI divides photons according to the position
of the nearest neighbor photon. Space division ignores the
position of noise photons in the whole nearshore environment,
thus overestimating the spatial density of underwater noise
photons. Therefore, pre-pruning is introduced to improve this
situation [13]. The core idea of pre-pruning is to judge whether
there are noise photons near bathymetric photons before and
after the spatial division is further divided before each time of
quadtree growth. The pre-pruning step will be considered if
the photons are not further divided into sub-regions. To avoid
excessive division of noise photons, the growth of the isolated
quadtree will be stopped in advance, and no spatial division
will be carried out. Therefore, when using a pre-pruning
quadtree to extract bathymetric photons, the conditions for
stopping spatial division are as follows:

1) The number of photons contained in the space before the
division is the same as that in a subspace after division, which
means the photons are not further divided.

2) The number of photons included in the divided subspace
is one or zero, which means the photons have been isolated.

When PQI isolates the same noise photon [see Fig. 2(c)],
it is found that the next time division cannot separate the
photons, so after the second space division, the quadtree is
cut off and stops growing. In the pre-pruning quadtree, the
noise photon is at the second layer while the signal photon
is still at the fourth layer. The pre-pruning step amplified the
difference between signal and noise.

B. Bathymetric Photon Extraction Using Otsu Method

Since the ID of bathymetric photons is always greater
than that of noise photons, the Otsu method can measure
the variance of ID [13], and the ID with the maximum
variance can be selected as the threshold value for extracting
bathymetric photons. Assuming that n is the photon number
and t is the number of potential signal photons, the Otsu
method is used to calculate according to the following:

σ 2
= ωb(t)(µb(t) − µ(t))2

+ ωn(t)(µn(t) − µ(t))2 (1)

where σ 2 is the interclass variance, ωb(t) is the proportion of
potential signal photons, ωn(t) is the proportion of potential
noise photons, µb(t) represents the average ID of signal
photons, µn(t) represents the average ID of potential noise
photons, and µ(t) represents the average ID of all photons,
as follows:

ωb(t) =
t
n

(2)

ωn(t) = 1 −
t
n

(3)

µb(t) =

∑t
i=1 IDi

t
(4)

Fig. 3. Results of ID. (a) and (b) are ID and its histogram of daytime data.
(c) and (d) are ID and its histogram of nighttime data.

µn(t) =

∑n
i=t+1 IDi

n − t
(5)

µ(t) = ωb(t)µb(t) + ωn(t)µn(t). (6)

By changing t , µb(t), and µn(t) are recalculated, and σ 2

is renewed. When σ 2 becomes the largest, the ID is selected
as the threshold, and the photons with an ID greater than the
threshold are extracted as bathymetric photons.

IV. RESULTS AND DISCUSSION

A. Verification of ID

When a pre-pruning quadtree is used to process the raw data,
photons are continuously divided until the number of photons
in the window before and after the division does not change.
Record the ID of each photon, which corresponds to the layer
in the quadtree. Due to the different spatial distribution, signal
photons’ ID is larger than noise photons. Fig. 3(a) and (c) show
the IDs of daytime and nighttime data, respectively, in which
the date, track number, and other details are marked in the
upper left corner. The greater the ID, the greener the photons,
the smaller the ID, and the bluer the photons.

From the results, it can be found that the bathymetric
photons are greener than noise photons. Specifically, the sea
surface photons are the greenest, indicating that the spatial
distribution of these photons is the closest. With the increase
of water depth, the color of seafloor photons gradually changes
from green to blue. Due to the absorption of laser energy and
the influence of water scattering, the SNR of nearshore data
is decreasing. In this way, when the elevation is less than
−40 m (at this time, the water depth is more than 10 m), the
photon distribution on the seafloor is sparse, and the ID of
seafloor photons at this time can hardly be distinguished from
that of noise photons. However, most seafloor photons were
accurately extracted. The IDs calculated by the PQI algorithm
can effectively distinguish bathymetric photons from noise
photons.
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Fig. 3 also shows the ID histogram and the thresholds
obtained by the Otsu method are marked (the ID threshold
of daytime data is 8, while that of nighttime data is 7). For
different acquisition times, the number of photons in daytime
data is more than that in nighttime data, which shows that
under the action of sunlight, more background noises and
backscattering noises are recorded, and the reflection effect
of water surface and underwater topography is more substan-
tial. Compare the ID value corresponding to the maximum
frequency in the histogram. When the ID value of daytime
data is 10, the maximum frequency is more than 1500, while
the maximum frequency of the nighttime histogram is less
than 1000 when the ID value is 9. Because the ID value is
only related to the number of times, the photon is divided.
The spatial photon distribution of daytime data is dense, so it
must go through more quad-space division when segmenting
it.

After calculating each photon’s ID, the ID threshold is
computed using by Otsu method. The extracted results are
shown in Fig. 4. The results show that the sea surface photons
are entirely and correctly extracted. Additionally, the Otsu
method extracted most seafloor photons in shallow water,
but there are some omissions while extracting the seafloor
photons in the deep water. In Fig. 3(c), the seafloor photons at
30.379◦N are not extracted because their spatial distribution is
sparse and their IDs are small, so they cannot be distinguished
from the noise photons in the data from the perspective of ID.
Since dozens of seafloor photons only account for a small part
of the nearshore environment, this does not mean that using the
Otsu method to calculate the threshold is invalid. The results
show that the isolated depth calculated by the Otsu method
can extract bathymetric photons from the raw data. However,
the spatial distribution of seafloor photons in deep water areas
challenges marking bathymetric photons.

Besides, because the isolated depth obtained by spatial divi-
sion measures the photon distribution and avoids the elliptical
density neighborhood used in [9] and [10], the PQI algorithm
is adaptable to seafloor topography. The results in Figs. 3 and
4 show that the changes in seafloor topography do not affect
the ID of photons, and the bathymetric photons under different
topography are extracted.

Compare the results obtained by PQI and QI in Fig. 4.
QI also removes noise from the air, but when processing
underwater data, some noise photons near the sea surface
and underwater terrain photons are not recognized. Although
the proportion of these noise photons in all photons is low,
their randomness in spatial position makes it challenging to
retrieve water depth from ATL03 data. These noise photons
are effectively identified and removed from the PQI results,
which shows that introducing the pre-pruning step gives quad
space segmentation the ability to actively identify small noise
clusters and ensure the accuracy of the extracted sounding
photons.

Quantitative verification is also made. Because ATL 03 does
not provide signal labels in the nearshore environment,
some studies choose in situ data to test the performance.
However, this cannot explain whether the photons are
fully extracted, so the reference bathymetric photons are

TABLE II
PERFORMANCE EVALUATION INDEXES FOR DATA WITH DIFFERENT

ACQUISITION TIME

available by visual interpretation (uploaded to the website,
https://drive.google.com/drive/folders/19WrWCsxYuRL5Jp2h
AqDkH1NbnC0F_eBd?usp=sharing). The results are
compared with the reference data, and precision P , recall
rate R, and F1-score F1 are calculated

P =
NTP

NTP + NFP
(7)

R =
NTP

NTP + NFN
(8)

F1 =
2P · R
P + R

(9)

where NTP indicates the number of correctly extracted photons,
NFP indicates the number of incorrectly extracted photons, and
NFN indicates the number of bathymetric photons that have
not been extracted. Therefore, P measures the reliability of
the extraction algorithm, R represents the completeness of the
results, and F1 measures the comprehensive performance of
the extraction algorithm.

Table II shows the evaluation indexes of the results. The P
is higher than 96%, indicating that the extraction algorithm
can extract most bathymetric photons. The R is close to 92%,
slightly lower than the P , showing that some of the bathymet-
ric photons are undetected. This finding is consistent with the
above qualitative analysis, and the ability to detect bathymetric
photons is slightly weaker than the ability to extract photons
correctly. The F1 is close to 94%, higher than the F1 of the QI
result, which indicates that the proposed algorithm can extract
wholly and correctly, and the experimental results are ideal.

B. Effect of Data Acquisition Times

The data acquired at different times have different SNRs.
We distinguish the data according to the acquisition time to
understand the effect of SNR on bathymetric photon extrac-
tion. Fig. 3 shows the daytime data and nighttime data IDs. The
maximum ID of data in the daytime is greater than that of data
in the nighttime. This result is because there are more noise
photons in daytime data, which requires more space division
to isolate the photons. Solar background noises and water
scattering noises caused by sunlight are all over the daytime
data, so it is more difficult to accurately extract the bathymetric
photons from the daytime data than from the nighttime data.

The indexes confirm this result in Table II. The extraction
results of nighttime data are better than those of daytime data
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Fig. 4. Results of bathymetric photon extraction: (a) PQI result of daytime data, (b) QI result of daytime data, (c) PQI result of nighttime data, and (d) QI
result of nighttime data.

in all indexes, which indicates that when the SNR of data
is lower, the bathymetric photon extraction results are better.
Further comparing the results of different acquisition times,
the difference of three indexes between daytime and nighttime
results is less than 2%, and the SNR has limited effect during
extraction. The proposed PQI is insensitive to the SNR.

V. CONCLUSION

ICESat-2 has excellent potential in global bathymetry and
has become an important data source for nearshore research.
To automatically extract the bathymetric photons in ICESat-2
bathymetric data, PQI is proposed. The spatial distribution of
photons is transformed into a pre-pruning quadtree, and the
position of photons corresponds to the IDs. The Otsu method
obtains the threshold and extracts the photons. Through qual-
itative and quantitative analysis, it is found that the PQI algo-
rithm can wholly and accurately extract bathymetric photons.
The influence of the acquisition times is minimal.

The PQI can be used to automatically process nearshore
data, thus significantly reducing the demand for human
resources. In the future, we will conduct studies in more
challenging areas and introduce rough noise removal and
post-processing steps into bathymetric photon extraction.
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