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Abstract— An interpretable deep learning framework for land
use and land cover (LULC) classification in remote sensing using
Shapley additive explanations (SHAPs) is introduced. It utilizes
a compact convolutional neural network (CNN) model for the
classification of satellite images and then feeds the results to a
SHAP deep explainer so as to strengthen the classification results.
The proposed framework is applied to Sentinel-2 satellite images
containing 27 000 images of pixel size 64 × 64 and operates on
three-band combinations, reducing the model’s input data by
77% considering that 13 channels are available, while at the
same time investigating on how different spectrum bands affect
predictions on the dataset’s classes. Experimental results on the
EuroSAT dataset demonstrate the CNN’s accurate classification
with an overall accuracy of 94.72%, whereas the classification
accuracy on three-band combinations on each of the dataset’s
classes highlights its improvement when compared to standard
approaches with larger number of trainable parameters. The
SHAP explainable results of the proposed framework shield the
network’s predictions by showing correlation values that are rel-
evant to the predicted class, thereby improving the classifications
occurring in urban and rural areas with different land uses in
the same scene.

Index Terms— Convolutional neural network (CNN), EuroSAT,
explainable AI (XAI), land cover, land use, remote sensing,
Shapley additive explanation (SHAP).

I. INTRODUCTION

KNOWLEDGE of land use and land cover (LULC) is
important for the conceptual design of infrastructure

projects in urban and rural areas [1]. The acquisition of
such knowledge can be difficult, due to the complexity of
urban/rural areas; in remote sensing and specifically in high-
resolution Sentinel-2 satellite images, one pixel corresponds
to 10 m on ground, meaning that a very small image, e.g.,
of size 64 × 64, covers a huge area, which is approximately
42 km2. Therefore, the ground sampling distance in such
images may contain many land uses, for instance, crops with
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roads and factories. Traditional methods, such as land sur-
veying, provide accurate results, but are both time-consuming
and cost-dependent. On the other hand, with Earth observation
(EO) data, the task of classifying LULC is accelerated [2],
as wide areas of interest are investigated and analyzed with a
“birds-eye-view.”

Geographic information systems (GISs) provide robust solu-
tions for annotating fast and accurate LULC from EO data [3].
To improve their annotation, deep neural networks (DNNs)
with an emphasis on convolutional neural networks (CNNs)
for image classification are considered [4]. They are com-
pelling for object detection in remote sensing data, covering
several applications, including building extraction [5], defor-
estation [6], land cover change [7], and others.

In remote sensing, data can be very complex, as different
objects belonging to the same category appear in the same
scene [8], for instance, permanent crops, herbaceous vegeta-
tion, and forest areas, all belong to the vegetation category.
DNNs, on the other hand, classify the output image, without
further interpreting the results corresponding to a scene [9],
[10]. Therefore, the establishment of techniques for black-box
procedures to be more transparent and understandable has
critical importance in remote sensing.

Explainable AI (XAI) is a technique for interpreting
machine learning algorithms and DNNs models, making them
more understandable to humans [10], [11]. Focusing on remote
sensing data, XAI methods on images, DeepLIFT [12] and
Grad-CAM [13], as well as on both images and features,
local interpretable model-agnostic explanation (LIME) [14],
have been used in the literature to provide insight into how
a model is making decisions about LULC classification.
In detail, in [9], a CNN is applied to SEN12MS [15] and to
BigEarthNet [16] datasets along with selected XAI methods,
such as LIME [14], DeepLIFT [12], Grad-CAM [13], Guided
Grad-CAM [13], and others in [9] to show the correlations
among the classes. In [17], a CNN is applied to EuroSAT [18],
while LIME [14] is used to extract the correlations. However,
the experimental results in [17] are limited to red green
blue (RGB), and in addition, the CNN is trained using these
channels only.

All the above methods discussed are constrained to local
explanations, meaning that they may not be able to correctly
capture information existing in the whole dataset used. Fur-
thermore, the explanations in some cases are limited to specific
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Fig. 1. Proposed explainable deep learning framework. Multichannel images
and a trained deep CNN architecture are fed to an SHAP deep explainer.

channels, meaning that important information from other ones
and their impact on the explanations are not investigated.

This work proposes an XAI framework for remote sensing
data utilizing Shapley additive explanations (SHAPs) [19].
Compared with the existing XAI approaches, the use of
SHAP enables both local and global explanations, allowing
for information between different spectral bands in a dataset to
contribute toward the explanations. Compared with the exist-
ing approaches being limited to RGB channels, the proposed
approach considers different band combinations for the classi-
fication and the explanation of their results so as to highlight
the interference of information from different wavelengths
of the spectrum affecting the classes. This improves both
the classification accuracy of each individual class and the
explanations’ interpretability, leading to a better estimation of
the channels’ contribution to the final prediction.

II. PROPOSED DEEP SHAP FRAMEWORK

The high-level model capturing the operation of the pro-
posed deep SHAP framework is shown in Fig. 1. Initially,
a deep CNN is trained using a dataset containing LULC
images, and once trained, it classifies any multichannel image
in one of its classes. The classification’s result along with
the image are then fed to the SHAP explainer, which out-
puts the pixels’ positive or negative correlation for each one
of the K existing classes. The positive or negative correlation
corresponds to what extend each feature contributes to each
class, allowing for a better interpretation and understanding
of the following: 1) many different objects existing within an
input image and 2) which image spectral band combinations
responded better in the LULC classification. In Sections II-A
and II-B, the CNN architecture and the deep SHAP model
used are explained.

A. CNN Architecture
The CNN architecture utilized by the proposed deep SHAP

framework is illustrated in Fig. 2. The input image is of size

Fig. 2. CNN architecture used in the framework of Fig. 1.

k × l × c, where k and l are the number of rows and columns,
respectively, and c is the number of the image’s channels.
It consists of five convolution–convolution–max-pooling layers
connected sequentially, where each one downsamples the input
image by increasing powers of 2, having the number of
filters doubled in each layer. The convolution–convolution–
max-pooling layers are then followed by three fully connected
(FC) layers, where each one has 512, 256, 128 neurons,
respectively. The activation function used here in all layers
is the Gaussian error linear units (GeLUs) [20], defined as
follows:

GeLU(y) = y P(Y ≤ y) = y8(y) (1)

where 8(y) is the standard normal cumulative distribution
function, Y ∼ N (0, 1), and y is the input to the activation
function. The difference of GeLU over the rectifier linear unit
(ReLU) originates from the stochasticity of the former; GeLU
samples from the standard normal distribution according to
(1), thus introducing a natural dropout regularization, which
is not feasible with ReLU [20].

B. Deep SHAPs
The SHAP is a method for interpreting machine learning

models, introduced in [19]. It maps inputs, x ′, to the original
ones, x , through a mapping function x = hx (x ′) so as to
explain a prediction f (x). The simplified inputs allow for the
interpretable model to ensure that for any feature z′

∈ R and
whenever z′

≈ x ′, then g(z′) ≈ f (hx (z′)).
The SHAP’s additive feature attribution method is based on

a linear function of binary values as follows:

g(z′) = φ0 +

N∑
n=1

φnz′

n (2)

where N is the number of input features, n = 1, 2, . . . , N is
the feature index, the values of φn ∈ R are the model’s coef-
ficients and the values of z′

n ∈ {0, 1}
N denote the observation

of a feature. Note that each z′
n refers to a feature of z′.

To explain the derivation of the coefficients φn , we proceed
with some definitions. Let NS be a feature subset, such that
NS ⊆ N , where N is the set of all features with cardinality
|N |. Assuming that xNS represents the values of the input
features existing in NS and n is a feature, the model fx (NS)

used for the calculation of the SHAP values is defined as
fx (NS) = E[ f (x)|xNS ]. The model is trained two times; one
including the feature n, i.e., fNS∪{n}(xNS∪{n}), and one exclud-
ing it, i.e., fNS (xNS ). Predictions are then derived from their
comparison fNS∪{n}(xNS∪{n}) − fNS (xNS ), while the procedure
is repeated for every possible subset, such that NS ⊆ N .
Combining the above equations, the coefficients φn from (2)
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are derived as follows:

φn =

∑
NS⊆N \{n}

|NS|!(|N | − |NS| − 1)!

|N |!

×
(

fNS∪{n}(xNS∪{n}) − fNS (xNS )
)
. (3)

Note that unique solutions within the class of additive feature
attribution methods exist if and only if the following three key
properties are satisfied [19]: 1) local accuracy; 2) missingness;
and 3) consistency.

The deep SHAP framework of Fig. 1 combines the Shapley
values calculated using (2), (3), and the DeepLIFT method.
DeepLIFT is a compositional approximation of the Shapley
values under the assumptions that the following hold: 1) the
deep model is linear and 2) the input features are uncorrelated
to one another. It is an additive feature attribution method that
satisfies local accuracy and missingness, two of the three key
properties for additive feature importance. Therefore, with the
inclusion of the Shapley values, the consistency of the model
is achieved [19].

III. LULC ON THREE-BAND COMBINATIONS:
CLASSIFICATION AND XAI RESULTS

A. Experimental Setup

The performance of the proposed framework is evaluated
using the EuroSAT dataset proposed in [18]. EuroSAT contains
LULC images taken from the Sentinel-2 satellite, covering
13 spectral bands and consisting of ten classes in total
with 27 000 labeled and geo-referenced images. Out of the
13 spectral bands, we consider only the use of red, green,
near infrared (NIR-Band 8), short-wave infrared (SWIR-Band
11), and the remote sensing normalized difference indexes
stemming from them, including vegetation index (NDVI),
buildup index (NDBI), and water index (NDWI).

In the experiments, the following different three-band com-
binations of the above selected bands are used, which are
the following: 1) SWIR-NIR-RED; 2) NIR-RED-GREEN; and
3) NDBI-NDVI-NDWI. These combinations capture informa-
tion existing in wavelengths that are able to identify vegetation,
water bodies, soil, and man-made constructions, as their per-
centage reflectance is higher compared with other bands [18].

All the experiments are conducted using Google Colab Pro,
Python 3, and TensorFlow. With respect to the training phase,
the dataset is split into 70/10/20 train/validation/test sets, while
the network is trained for approximately 70 epochs, using an
early stopping criterion with patience of ten epochs, monitored
using the validation loss. The batch size used is 64, the
learning rate is 10−3 and the seed value is 42. Moreover, the
selected optimizer is layer-wise adaptive moments optimizer
for batch training (LAMB) proposed in [27]. Compared with
adaptive moment estimation (ADAM), it applies adaptive
elementwise updating and layerwise learning rates on large
batches of input data, hence speeding-up the training when
large datasets are used.

B. Experimental Results

To compare the performance of the proposed framework,
we consider several deep NN architectures applied on the
EuroSAT dataset, including the following: 1) a Shallow

CNN [21]; 2) GoogleNet [22]; 3) DenseNet121 [23];
4) Inception V3 [24]; 5) ResNet50 [25]; 6) ResNet101
[25]; 7) VGG16 [26]; and 8) GeoSystemNet [21]. Note that
in [21], a fusion of the initial EuroSAT dataset along with
different-scaled imaged derived from MapBox application
programming interface (API) [21] is used. In the comparisons,
we use the following standard classification metrics:

Accuracy =
TP + TN

TP + FN + TN + FP

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score = 2 ×
Precision × Recall
Precision + Recall

(4)

where TP, TN, FP, and FN denote, respectively, the true
positive, true negative, false positive, and false negative values.
The results of the precision, recall, and F1 score are cited in
Table I, whereas the accuracy is cited in Table II. Note
that the accuracy reported in Table II is calculated using all
13 bands so as to have a fair comparison between the works.

It should be noted that among the classification metrics
in (4), precision and recall are the most important ones in
the LULC classification; precision reflects a model’s ability
in identifying correctly a single object among many, thereby
strengthening its reliability, whereas recall measures a model’s
ability in identifying correctly a single object regardless of the
rest, thereby strengthening its effectiveness. On the other hand,
accuracy measures the model’s overall performance without
considering that many classes have similar spectral signatures;
for instance, permanent crop and forests are different, but
belong to the vegetation category.

According to Table I, the proposed framework yields the
highest precision value in all classes, except from pasture in
which GeoSystemNet is better. The recall values follow similar
behavior to those of the precision, with the main difference
being the forest class in which GeoSystemNet has lower value.
With respect to the F1 score, it is observed that our framework
results in the highest values except from the herbaceous and
permanent crop, which is expected, since it is the harmonic
mean of the precision and recall, hence affected by them.
Yet, considering all the 13 bands, the classification accuracy
can be improved. From the results cited in Table I, one can
conclude that reducing the number of channel bands improves
the classification accuracy of each class separately.

From Table I, it can be seen that the use of three channel
combinations greatly improves the classification of each class
separately. However, the classification accuracy reported in
Table II for the proposed framework is reduced compared
with the other models, which is reasonable given the number
of its trainable parameters. It should be mentioned though
that the SHAP by itself is the computationally expensive
XAI technique, as it calculates the Shapley values for various
features in a prediction instance [28]. Therefore, despite the
smaller number of trainable parameters of the CNN used by
the proposed framework, it results in faster (in time) extraction
of the explanations, as less features are fed to the SHAP
explainer.
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TABLE I
MODEL PERFORMANCE IN THE CLASSIFICATION METRICS PRECISION, RECALL, AND F1 SCORE EVALUATED USING THE EUROSAT DATASET

TABLE II
MODEL CLASSIFICATION ACCURACY USING THE EUROSAT DATASET

C. XAI Results

According to Fig. 1, the CNN model and an image to
be classified are fed to the SHAP deep explainer for the
derivation of the SHAP values. Once derived, the SHAP
image plot tool is used to visualize the positive (red) and
negative (blue) correlations in each pixel of each of its classes.
An example case of annual crop, river, and highway using the
three different band combinations is illustrated in Fig. 3.

In the NDBI-NDVI-NDWI case of Fig. 3, as expected, posi-
tive correlations exist in the annual crop class given the CNN’s
correct classification. In the second case, SWIR-NIR-RED,
positive correlations exist in the river class, while negative
correlations are denser in the annual crop class, implying that
it is less likely for annual crop to exist within the image.
Of important interest is the final case, NIR-RED-GREEN,
in which the positive correlations are intense in the area where
the highway is present. Apart from the local explanations

Fig. 3. SHAP image plot depicting the impact of each pixel on the
models predictions. SHAP image plots and classification from top to bottom.
First row: Annual crop using NDBI-NDVI-NDWI, Second row: river using
SWIR-NIR-RED, and Third row: highway using NIR-RED-GREEN. The red
pixels indicate strong correlation among the predicted classes, whereas the
blue ones indicate weak correlation.

shown in Fig. 3, the proposed framework can be used to
extract global explanations, as shown in Fig. 4. It can be seen
that the selected bands red, green NIR, and SWIR 1 result
in the highest average SHAP values for almost all classes,
meaning that they are critical in the explainability of the
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Fig. 4. SHAP global explanations on the spectral bands of Sentinel-2.

classification results. Note that the cirrus band (B10) is not
included in Fig. 4, as it does not contain surface reflectance
information [29].

IV. CONCLUSION

In this work, we presented a deep XAI framework based on
SHAP applied on satellite images of Sentinel-2. Experimental
results on different spectral band combinations of the EuroSAT
dataset demonstrated that the proposed framework improves
the classification accuracy of each individual class among the
existing ones, also shown with comparisons to the existing
CNN methods from the literature. The local explanation results
verified that the model predictions were correctly derived,
highlighting for each class which pixels had positive cor-
relation, whereas the global explanation results showed the
contribution of each individual band toward the explanations.
Therefore, using the proposed framework, the end user can
classify satellite images in an automatic and reliable way,
as the introduced qualitative visual pattern assists the quanti-
tative metric of the classification accuracy. This improves the
concept of multilabel LULC classification, especially when
multiple objects exist in the same scene.
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