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PIRT: A Physics-Informed Red Tide Deep Learning
Forecast Model Considering Causal-Inferred

Predictors Selection
Bin Mu, Bo Qin , Shijin Yuan , Xin Wang, and Yuxuan Chen

Abstract— In this letter, a Physics-Informed Red Tide (PIRT)
forecast model considering causal-inferred predictors selection is
proposed. Specifically, the directed acyclic graph-graph neural
network (DAG-GNN) method is first applied to quantify the
causality among multiple ocean-atmosphere-biology variables for
selecting the most significant predictors of the red tides (or
other chlorophyll variations). Then, the encoder-decoder model
consisting of an Energy Attention Module (EAM) is built for
daily red tide forecasting. The multisourced multivariate dataset
during 2010–2020 covering the East China Sea serves to train
and evaluate PIRT. The experimental results demonstrate that
the predictors in the learned causal graph are closely related
to the occurrence and decay of red tides, which exhibits high
physical interpretability. PIRT has a superior forecasting skill, the
predictions of which are with highly consistent spatial patterns,
especially in extreme events. The seven-lead-day forecast errors
for chlorophyll are within 0.9 mg·m−3, which is much better than
the other models. This also indicates that PIRT can be used as
a reliable tool to study the ecology of the East China Sea.

Index Terms— Causal inference, multivariate forecast, physics-
informed neural network (PINN), red tide.

I. INTRODUCTION

RED tide is a disastrous natural phenomenon involving
harmful algal blooms, changing the sea color from nor-

mal to red or almost brown, which has a serious influence
on sea ecosystems, coastal economy, and human sustainabil-
ity [1]. Therefore, it is of great significance to accurately
predict red tides. In general, chlorophyll concentration is the
key indicator (red tides considered to occur when chlorophyll
concentration is more than 10 mg·m−3) for red tide forecast-
ing [2], which represents the phytoplankton biomass [3] and
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eutrophication in water bodies [4]. Consequently, chlorophyll
forecasting is considered as one of red tide warning techniques.

With the accumulation of marine ecological observation
data, more and more studies tend to use deep learning
techniques for red tide forecasting. However, existing deep
learning models usually suffer from the following four prob-
lems: 1) limiting to single-grid forecasts rather than spatial
oceans [5], [6], [7], [8]; 2) limiting to a single (or few)
predictors, ignoring important multivariate predictors related to
the complex ocean-atmosphere-biology coupled mechanisms
during red tide evolutions [9], [10], [11]; 3) limiting to the
fundamental and uncustomized model structures; and 4) the
low credibility of the model [12], hardly involving the causal
inference and physical interpretability among predictors [13].
These shortcomings confine performance improvement and
mechanism cognition in red tide.

To tackle the above challenges, we construct a red tide fore-
cast model for the East China Sea by thoroughly considering
the dynamic mechanism of red tide (see Section II-A). When
selecting predictors, we use directed acyclic graph-graph neu-
ral network (DAG-GNN) method [14] to quantify the causal
relationship between ocean-atmosphere-biology multivariables
and then select the most relevant predictors for red tide
forecasts (see Section II-B). When constructing the model,
we design a Physics-Informed Red Tide (PIRT) deep learning
forecast model, which contains independent encoders/decoders
for the chosen cause-and-effect predictors and our proposed
Energy Attention Module (EAM) to simulate energy interac-
tion between the causal chain to maintain the physical con-
sistency (see Section II-C). PIRT is an end-to-end model and
can predict the spatial-temporal distribution of these chosen
multivariables in the East China Sea region by seven lead
days, in which the CHL forecasting results can be used to
determine the occurrence of red tides. Meanwhile, PIRT is
based on the multisourced multivariate daily dataset of the
East China Sea (see Section II-D), the loss function of which is
MSE.

To the best of our knowledge, this is the first integration of
causal inference and physical guidance for red tide forecasting.
The main contributions of this letter are.

1) The learned causal graph identifies the predictors as
NO3, PO4, SiO3, SST, LH, OC, NPPV, Density, Wind,
and CHL (more details in Table I). These variables
are closely related to the occurrence and decay of red
tide [15], [16], [17], providing guarantees of accurate red
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TABLE I
TRAINING DATASET WITH SELECTED MULTIPLE

VARIABLES RELATED TO RED TIDE

tide forecasting and effective latent mechanism explor-
ing by PIRT.

2) PIRT has a very high forecasting skill, the seven-lead-
day forecast errors within 0.9 mg·m−3 for CHL, and
do not exceed 10% of the observed values for other
variables as well, which is much better than the existing
models.

II. METHODOLOGY

A. Problem Formalization

Compared with the traditional single-predictor-based series
forecast model which can be formulated as x̂ t+1 = F(x∞:t )

(where x∞:t is the series observation by time t , x̂ t+1 is the
prediction at time t + 1, and F(·) is the forecast system),
our multivariate red tide forecast model can be formalized as
follows:

P̂ t+1 = F(P1:t ) (1)

where Pτ = {p1
τ , . . . , pM

τ } (τ = 1, 2, . . .) is the input of
selected predictors pm

τ (m = 1 :M) at time step τ . For better
forecasting skills and physical interpretability, we focus on
physics-related predictors selection in pm

τ and model structure
customization in F(·). We take advantage of causal inference
and physics-informed neural network (PINN) [18] in the
modeling.

B. Causal-Inferred Predictors Selection

We use DAG-GNN [14] as the causal inference model to
quantitatively mine ocean–atmosphere–biology relationships

related to red tides, which are usually represented by a
DAG [19] from the data to identify dominant predictors and
filter irrelevant variables. Specifically, the DAG-GNN [right
side of (2)] extends the linear structural equation model [SEM,
left side of (2)], where A ∈ RM×M is the weighted adjacency
matrix of DAG, X ∈ RM×N is the joint distribution of
data samples and Z ∈ RM×N is the bias, M, N denote
the nodes in DAG and the number of samples. DAG-GNN
performs nonlinear transformations of X and Z by introducing
reversible f (·) and g(·) operators to tap nonlinear causality,
respectively,

X = AT X + Z ⇐⇒ f (X) = AT f (X) + g(Z). (2)

Equation (2) can be further disassembled into an
autoencoder-based model via a special graph convolution
operator I − AT as shown in (3). This model can be trained
by variational inference [20] for matching the actual scenes
better {

encoder: Z = g−1
((

I − AT )
f (X)

)
decoder: X = f −1

((
I − AT )−1

g(Z)

)
.

(3)

Besides, to filter irrelevant variables, we set the weights in
A to 0 when they are less than 0.03 (an effective threshold
confirmed by repeated experiments) to ignore their effects.

C. PIRT Forecast Model

We propose the PIRT Forecast Model for predicting the
spatial-temporal distribution of multiple variables closely
related to red tides as shown in Fig. 1. Structurally, it can
be divided into three parts: encoder, EAM, and decoder.

According to the learned DAG, the key variable CHL will
be affected by some related variables (denoted as cause) and
act on some others (denoted as effect) as energy transfer of
cause → CHL → effect. Thus, we first divide the input of
PIRT into three groups (P t

cause, P t
CHL, P t

effect), which represent
the cause variables, CHL, and effect variables, respectively.
Then the three groups of variables (each stacked along chan-
nel) are separately fed into their individual encoders and
mapped to hidden states (ht

cause, ht
CHL, ht

effect). Finally, the
hidden states perform energy transfers in EAM [as shown in
blue boxes of Fig. 1(a)] and are decoded separately to (P t+1

cause,
P t+1

CHL, P t+1
effect), which is the prediction of the next time step.

For specific structures of PIRT, we use ConvLSTM [21]
as the skeleton structure of encoder and decoder. At each
time step t , ConvLSTM cells first compute the interactive
feature among current input, historical memory (ct−1

cause, ct−1
CHL,

ct−1
effect) and hidden state (ht−1

cause, ht−1
CHL, ht−1

effect) by convolution
operation, and then use these feature information to conduct
“forget” and “obtain” operation under gating mechanism.
Subsequently, these cells output the updated (ct

cause, ct
CHL,

ct
effect) and (ht

cause, ht
CHL, ht

effect) for the subsequent network
layers. Between encoder and decoder, we propose EAM to
simulate real-world multivariate energy transfer in red tide as
introducing inductive biases in PINN [22]. In detail, EAM
incorporates two vanilla attention modules, one is E t

cause→CHL
which represents the energy transferred by process cause →

CHL and the other is E t
CHL→effect which represents the energy
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Fig. 1. (a) Model architecture of our proposed PIRT, which contains the individual encoders and decoders (green boxes) for the cause variables, CHL, and
effect variables. The designed EAM, (blue boxes) between encoder and decoder is used to simulate the flow of energy interaction by cause → CHL → effect.
The encoder and decoder in each time step adopt the ConvLSTM structure as shown in the time step t . (b) Detailed structure of our proposed EAM, which
is composed of two attention modules. (Best viewed when zoomed in-view.)

in CHL → effect part. Quantitatively, we use these three
parallel hidden states to calculate the energy flux of the above
two processes respectively as shown as follows:{

E t
cause→CHL

= softmax
(

W Q
CHLht

CHL · W K
causeht

cause

)
· W V

causeht
cause

(4){
E t

CHL→effect

= softmax
(

W Q
effecth

t
effect · W K

CHLht
CHL

)
· W V

CHLht
CHL

(5)

where W Q
CHL, W K

cause, W V
cause, W Q

effect, W K
CHL, and W V

CHL are all
the trainable transformation matrixes (Q, K , V are the impli-
cations of query, key, and value similar in the original attention
mechanism, respectively) used to unify the dimensions of the
three hidden states. The final hidden states after energy transfer
are calculated by (6) using the extracted energy above and then
passed to the decoder. This process is detailed in Fig. 1(b)

ht ′

cause = ht
cause − E t

cause→CHL

ht ′

CHL = ht
CHL + E t

cause→CHL − E t
CHL→effect

ht ′

effect = ht
effect + E t

CHL→effect.

(6)

The detailed hyperparameter setting including training strat-
egy of PIRT is shown in Table II.

D. Dataset and Loss Function

In this study, we use the ocean-atmosphere-biology daily
dataset from 2010 to 2020 to train and evaluate PIRT, pro-
vided by CMEMS (https://www.copernicus.eu), which con-
tains remote sensing data (atmospheric variables), reanalysis
data (oceanic variables), and hindcast data (biological vari-
ables). We select 15 variables (see Table I), and determine the
training set (2010–2016), validation set (2017), and testing set
(2018–2020) by 7 : 1 : 3. The spatial resolution of all variables
is 0.25◦

× 0.25◦ in (120◦
− 125◦E, 25◦

− 35
◦

N), completely
covering the high incidence area of red tide in the East China
Sea. We use mean square errors (MSE) as the loss function
of PIRT.

TABLE II
DETAILED HYPERPARAMETER SETTING OF PIRT

III. EXPERIMENT RESULTS AND ANALYSES

A. Determinations of Predictors and Optimal
Warm-Up Length

We infer the causal graph based on DAG-GNN to select
the predictors (as shown in Fig. 2(a), where we filter out
Height, Salinity, and O2 with weak causalities. Among the
variables pointing to CHL, NO3, PO4, and SiO3 are essential
nutrients for phytoplankton growth during red tide occurrences
and maintain positive correlations. The increased nutrients
in the sea will inevitably reduce phytoplankton foraging
competition pressure and cause increased CHL [15]. Wind
affects upwelling, which brings nutrients from the seafloor to
the surface and causes an increase in phytoplankton growth,
thereby increasing CHL [16]. LH is negatively correlated
with CHL. When its value is low, less heat is supplied to
the atmosphere through evaporation over the sea surface and
more heat is retained by seawater, which is beneficial to the
growth of phytoplankton. The SST and CHL are negatively
correlated in the East China Sea. The higher the SST, the
higher the stratification of seawater, the weaker the mixing of
the upper and lower layers of seawater, leading to the lack of
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Fig. 2. (a) Learned causal graph, where the arrows indicate the direction of causality, red/blue arrows indicate positive/negative feedback relationships
between connected variables, and the thickness of the arrows represents the strength of quantified causality. Gray/Orange shades mean the causal relationships
are majorly modulated during the occurrence/decay phase of red tides. (b) Contains the seasonal-average autocorrelation tests for daily CHL observations,
where the horizontal axis represents the lagged days and the vertical axis represents the autocorrelation coefficient. The blue shade is the 95% confidence
interval. When the autocorrelation coefficient exceeds/does not exceed the confidence interval, it indicates that there is a strong/weak relationship.

Fig. 3. Prediction results of CHL (unit: mg·m−3) with seven forecast lead days for (a)–(f) six typical red tide events in the East China Sea during the testing
period by PIRT. The first row is the ground truths (G.T.), the second row is predictions, and the third row represents the prediction errors. (Best viewed when
zoomed in-view.)

nutrients and thus lower chlorophyll values [23]. During the
decay of red tides, OC causes the migration and dispersal of
phytoplankton to new seawater environments where nutrients
are reduced, making CHL decrease. Moreover, NPPV and
Density are significantly correlated with CHL. Chlorophyll,
the main pigment in phytoplankton cells, converts inorganic
matter into organic matter using solar energy. When CHL
increases, phytoplankton aggregation and photosynthetic rate
both increase, so NPPV and density subsequently increase.
According to the above analyses, the variables in Fig. 2(a)
are chosen for red tide forecasts, the physical significance of
which can be comprehensively tracked.

Furthermore, we use a seasonal-average autocorrelation
test [24] for all chosen variables to determine the optimal
warm-up length of the model. Fig. 2(b) shows that the autocor-
relation coefficients of CHL for 1–3 lagged days are all outside
or at the edge of the blue shade for all seasons, which implies

the strong relationships within historical three days. Other
predictors have the same characteristics. Therefore, we choose
three as the optimal warm-up length for predicting the next
seven days, which covers the whole process of red tide from
occurrence to decay.

B. Evaluations of Red Tide Forecast Skill
We evaluate PIRT during the testing period. Fig. 3 exhibits

the forecast results (and errors) of six extreme red tides
(usually from June to August each year) in the East China Sea.
The prediction of PIRT has quite consistent numerical values
with highly similar spatial patterns, and the systematic forecast
errors are stably controlled within 0.9 mg·m−3. Numerically,
these results fully reflect the outstanding performance of PIRT
in red tide forecasting. It is worth noting that PIRT tends to
slightly underestimate the intensity of red tides. We think this
is due to our data processing (filling 0 on land grids) and
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TABLE III
FORECAST SKILL COMPARISONS WITH OTHER

METHODS (VALUES ARE ALL MSE)

imbalance of training set (fewer red tide samples). Meanwhile,
this is also because the vertical distributions of oceanic and
biological variables are non-homogeneous. PIRT covers lim-
ited ocean depth, which ignores the rise of surface nutrient
concentrations caused by upwelling ocean waves, resulting in
an underestimation.

Additionally, to further demonstrate the superiority of PIRT,
we compare the performance of PIRT with universal advanced
spatial-temporal sequence prediction models in Table III,
including 1) purely convolutional model (CNN); 2) FC-LSTM
model [25]; 3) ConvLSTM [21]; 4) PredRNN [26]; and
5) PhyDNet [27]. All these models use the same training set
and loss function, and we tune them to their optimal respec-
tively. PIRT is obviously superior to other models, especially
in long-term (seven days) predictions. Besides, the prediction
errors of all other variables of PIRT are also less than 10% of
the observation, indicating that PIRT can be used as a reliable
tool for ecological prediction in the East China Sea.

IV. CONCLUSION

Red tide is of significant influence on coastal economic
development and human sustainability, indicating that more
accurate red tide forecasting is always the pursuit for the sake
of formulating ecological protection measures and disaster pre-
vention policies in advance. In this letter, we construct a PIRT
multivariate deep learning forecast model for the East China
Sea by thoroughly considering its dynamic mechanisms. The
experiments show that PIRT can accurately forecast red tide
in seven lead days, which exhibits low prediction errors and
highly similar spatial patterns. The quantitative comparison in
long-term forecasts also shows the superiority of PIRT to other
advanced methods. In the future, we will use remotely sensed
reflectance data to distinguish different red tide species and
thus achieve finer prediction results.
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