
LS-RQ: A Lightweight and Forward-Secure
Range Query on Geographically Encrypted Data

Yanguo Peng ,Member, IEEE, Long Wang , Jiangtao Cui ,Member, IEEE,

Ximeng Liu ,Member, IEEE, Hui Li ,Member, IEEE, and Jianfeng Ma,Member, IEEE

Abstract—In the era of cloud computing, to achieve convenient location-based service (LBS), consumers such as users, companies, and

organizations prefer subcontractingmassive geographical data to public clouds after encryption for privacy and security. However, numerous

harmful cyber-attacks happen on those public clouds in an unpredicted and hourlymanner. To alleviate those concerns, various secure query

schemes on the encrypted data have been proposed in the literature. As a fundamental query of LBSs, forward-secure range query has not

beenwell investigated. To address this issue, we propose a lightweight and forward-secure range query (LS-RQ) on geographically encrypted

data, which soundly balances between security and efficiency. Promisingly, we design an indexmechanism tomanage geographical data on

the public clouds, while not compromising the privacy of data.Moreover, our LS-RQschemes provide a convenient approach to range query on

geographically encrypted data on-the-fly.We also rigorously prove that LS-RQ is forward-secure. Finally, extensive experimental studies are

performed on both real and synthetic datasets. By observation, our LS-RQschemes are highly efficient in realistic environments. Particularly,

on encrypted datasets with about 1000000 geographical data, our solution to secure range query takes strictly less than a second.

Index Terms—Dynamic range query, locality sensitive hashing, proxy re-encryption, forward-security, location-based service

Ç

1 INTRODUCTION

IN the era of cloud computing, various types of data from
both academic and industrial communities are constantly

subcontracted to public clouds by consumers (i.e., users, com-
panies, organizations, etc.).Within location-based service (LBS)
applications, a representative field among these, geographi-
cally tagged data is subcontracted to public clouds for data-
driven services, such as query, mining, analysis, etc. With the
help of public clouds, any company can provide advertising
recommendations and spatial-temporal correlated services on-
the-fly without worrying about hardware investment and
maintenance overhead. Notably, Twitter1 and Netflix2 have
outsourced all trajectory data and messages (i.e., photos, vid-
eos, and texts) with geographical tags to public clouds.

Unfortunately, unpredictably and hourly harmful cyber
attacks by hacker groups have threatened privacy and security
of data terribly in public clouds, such as Equifax data breach,3

Verizon cloud leak,4 etc. Those hacker groups leverage on the

leaked trajectory data to infer consumers’ private information
(i.e., home address, private property, etc.), which are further
sold for benefits. An ideal solution towards this problem is the
encryption-before-outsourcing mechanism, which avoids the
potential leakage of private information. However, as tradi-
tional symmetrical encryptions completely break the semantic
of original data and thus degenerate the availability of data,
the LBS cannotwork properlywith such encryptions.

To overcome the problem, extensive research efforts have
been conducted with respect to secure LBS models, especially
the fundamental building block, namely secure range query
over geographical data with 2-dimensionality [1], [2], [3], [4],
[5], [6], [7]. Compared with 1-dimensional data (i.e., key-
word [8], [9], integer/float values [10], etc.), geographical data
is inherently out-of-order, and thus the encrypted one is
harder to be securely indexed. Hence, a secure range query on
geographically encrypted data ismore challenging. Definitely,
a secure range query on geographical data can efficiently
retrieve points of interest that are bounded in a certain 2-
dimensional rangewithout decrypting the data on-the-fly.

However, in the above schemes a token, which is submit-
ted to the public cloud for secure range query on-the-fly, will
inherently be long-term effective. Since the public cloud can
easily capture a legal token, it means that the public cloud
can reconstruct all original data by leveraging the attacks
that are defined in literatures [11], [12], [13], [14]. Similarly,
an adversary, who secretly captures a legal token, can ubiq-
uitously do the same attack until consumers are aware of the
leakage of the token. Fortunately, forward-security [15], [16]
is a promising security model against such attacks. In a
secure range query with forward-security, a legal query
token generated with a particular timestamp is only allowed
to issue queries on existing records but will be invalid on
those records updated afterwards.

� Y. Peng, L. Wang, and J. Cui are with the School of Computer Science and
Technology, Xidian University, Xi’an 710071, China. E-mail: {ygpeng,
cuijt}@xidian.edu.cn, wldklyx@gmail.com.

� X. Liu is with the College of Mathematics and Computer Science, Fuzhou
University, Fuzhou 350108, China. E-mail: snbnix@gmail.com.

� H. Li and J. Ma are with the School of Cyber Engineering, Xidian Univer-
sity, Xi’an 710071, China. E-mail: {hli, jfma}@xidian.edu.cn.

Manuscript received 11 July 2019; revised 18 Dec. 2019; accepted 11 Feb.
2020. Date of publication 17 Feb. 2020; date of current version 17 Jan. 2022.
(Corresponding author: Ximeng Liu.)
Digital Object Identifier no. 10.1109/TDSC.2020.2974218

1. https://blog.twitter.com/engineering/en_us/topics/infrastructure/
2018/a-new-collaboration-with-google-cloud.html

2. https://media.netflix.com/en/company-blog/completing-the-
netflix-cloud-migration

3. https://www.ftc.gov/equifax-data-breach
4. https://money.cnn.com/2017/07/12/technology/verizon-data-

leaked-online/index.html

388 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3210-0714
https://orcid.org/0000-0002-3210-0714
https://orcid.org/0000-0002-3210-0714
https://orcid.org/0000-0002-3210-0714
https://orcid.org/0000-0002-3210-0714
https://orcid.org/0000-0003-0436-2837
https://orcid.org/0000-0003-0436-2837
https://orcid.org/0000-0003-0436-2837
https://orcid.org/0000-0003-0436-2837
https://orcid.org/0000-0003-0436-2837
https://orcid.org/0000-0001-5569-0780
https://orcid.org/0000-0001-5569-0780
https://orcid.org/0000-0001-5569-0780
https://orcid.org/0000-0001-5569-0780
https://orcid.org/0000-0001-5569-0780
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0003-2382-6289
https://orcid.org/0000-0003-2382-6289
https://orcid.org/0000-0003-2382-6289
https://orcid.org/0000-0003-2382-6289
https://orcid.org/0000-0003-2382-6289
mailto:ygpeng@xidian.edu.cn
mailto:cuijt@xidian.edu.cn
mailto:wldklyx@gmail.com
mailto:snbnix@gmail.com
mailto:hli@xidian.edu.cn
mailto:jfma@xidian.edu.cn
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2018/a-new-collaboration-with-google-cloud.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2018/a-new-collaboration-with-google-cloud.html
https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration
https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration
https://www.ftc.gov/equifax-data-breach
https://money.cnn.com/2017/07/12/technology/verizon-data-leaked-online/index.html
https://money.cnn.com/2017/07/12/technology/verizon-data-leaked-online/index.html

For example, Twitter leverages on the result of remote
secure range query to mine hot spots in a city on-the-fly. If a
legal query token is secretly captured by an adversary (even
a public cloud), who can ubiquitously issue legal requests
of the same range query, he/she is able to re-construct the
whole dataset and further infer corresponding users’ pri-
vate information until Twitter is aware of the leakage of the
token. In contrast, in a forward-secure range query, even if
a previous legal token is leaked, an adversary cannot exe-
cute the range query on the newly updated records. This
scheme limits the leakage risk of both data and query.
Hence, forward-security is especially practical for dynamic
application scenarios, in which the geographical tags will be
frequently updated due to address (i.e., geographical coor-
dinates) migration and facility addition.

In particular, cloud computing aims at providing a light-
weight framework for consumers, where most computing
and storage burdens are shifted to public clouds. Following
this principle, we propose a Lightweight and forward-
Secure Range Query (LS-RQ) scheme on geographically
encrypted data, and demonstrate that it has a good balance
between security and efficiency. The main contributions are
threefold,

1) Secure data storage: LS-RQ allows users to outsource
geographical datasets to public clouds for secure
storage without compromising the privacy of each
record.

2) Secure range query on-the-fly: LS-RQ enables fast range
query directly on geographically encrypted data with-
out decrypting on public clouds.Moreover, it prevents
the potential leakages of both data and query.

3) Forward-security and high efficiency: We present a rig-
orous proof of LS-RQ’s forward-security. Moreover,

extensive experimental studies are carried out on
both real and synthetic datasets to demonstrate the
superiority of LS-RQ.

The rest of this paper is organized as follows. In Section 2,
we present the framework of LS-RQ and the formal model of
security, followed by the generic idea to achieve LS-RQ. In
Section 3, a new index mechanism for LS-RQ is designed
based on several newly designed kernel components. Then,
we present the formal construction of LS-RQ in Section 4 and
theoretically analyze it in Section 5. In Section 6, experimental
studies are elaborated and analyzed indetail. Finally,we sum-
marize related works in Section 7 and conclude this paper in
Section 8. Primary notations are summarized in Table 1.

2 PROBLEM FORMALIZATION

In this part, we present the system framework and formalize
the security model for LS-RQ. Afterwards, several generic
building blocks for designing a secure range query framework
are introduced. Finally, we give a brief introduction of proxy
re-encryption (PRE), which will be employed in the construc-
tion of LS-RQ.

2.1 System Framework

A dynamic range query framework on geographically
encrypted data consists of three entities (namely, a client, a
public cloud, and an LBS provider) in Fig. 1. During the off-
line phase, the LBS provider divides the original dataset into
subsets and generates an index. It selects a set of security-
related parameters and encrypts both them afterwards. Fol-
lowing that, the encrypted ones are subcontracted to the
public cloud. During the on-line phase, given a range query,
the client generates a token and submits it to the public cloud
with the help of the LBS provider. The public cloud will per-
form a filtering algorithm to obtain encrypted candidates and
re-encrypt the accessed encrypted points and index. Then, the
public cloud sends the encrypted candidates back to the client,
who will further decrypt and refine the partial answer to
obtain the final result.

2.2 Security Model

Forward-secure range query is a promising branch of dynamic
searchable symmetric encryption. Note that, public cloud is
assumed to be semi-honest, which means that it strictly fol-
lows the protocol but is curious about the encrypted data and
index. Client and LBS provider are both assumed to be honest.
The forward-security model for LS-RQ is parameterized by a

TABLE 1
Summary of Primary Notations

Notation Meaning

D, pp A set of points, and a point.
B, B A bucket, and a bucket ID.
Q A query range.
t A token for query, insertion, updating or

deletion.
#ðXÞ Number of elements inX.
ID An identifier of a point.
ðIDi; ppiÞ An ID-point pair, in which IDi is the identifier

of ppi.
Dic, ’Dic Single and forwardly inverted dictionary.
h, hðppÞ A locality sensitive hashing (LSH) function.
H,Hð�Þ A keyed hash function.
PRE A concrete proxy re-encryption algorithm.
< pk; sk > A pair of public and secret keys.
rkA!B A re-encryption key.
C,A Challenger and adversary.
GameR;Að1�Þ A real game between C and A.
GameS;Að1�Þ A simulated game between C and A.
L A leakage function.
~h A set that contains all points with h in dataset.
D A label for fast locating candidate points.
jjaajj2 The ‘2 norm of aa.
&ðXÞ The address ofX.
m The number of the adopting LSH functions.
‘ The LSH value length for a single LSH function.

Fig. 1. A forward-secure framework for range query in LBS. (The dotted
lines with arrows exhibit the off-line preprocessing. The solid numbered
lines with arrows exhibit the on-line processing sequentially.)

PENG ET AL.: LS-RQ: A LIGHTWEIGHT AND FORWARD-SECURE RANGE QUERY ON GEOGRAPHICALLY ENCRYPTED DATA 389

collection of leakage functions

L ¼ ðLS;LQ;LI ;LD;LUÞ:

Here, LS , LQ, LI , LD and LU are the leakage functions dur-
ing system setup, range query, data insertion, deletion and
updating, respectively. In fact, the first 4 primitives are con-
sistent with those in existing forward-security models [15],
[16], [17], [18], [19], [20], [21].

More precisely, a real game GameR;Að1�Þ and a simulated

(ideal) game GameS;Að1�Þ are defined. We carefully define a

sequence of games from the real gameGameR;Að1�Þ to approx-
imate the simulated game GameS;Að1�Þ. The task of adversary

A is to distinguish between every two contiguous games. Fol-
lowing on the definitions of leakage functions and games,
L-forward-adaptive-security for LS-RQ can be formalized as
follows.

Definition 1 (L-forward-adaptive-security for LS-RQ).
An LS-RQ scheme is L-forward-adaptive-secure if two con-
straint conditions are satisfied.

1) For any adversary A in probabilistic polynomial-time,
there exists an efficient simulator S such that the following
equation holds:

jPr½GameR;Að1�Þ ¼ 1�
� Pr½GameS;Að1�Þ ¼ 1�j � neglð1�Þ:

Herein neglð1�Þ is a negligible function bounded by security
parameter 1�. Both the real and simulated games are defined as
follows,

� GameR;Að1�Þ. A initially chooses a dataset D, and gets
back the output of standard Setup. Then, A adaptively
performs Insertion, Query, Updating and Deletion
and gets the real transcripts generated by these primi-
tives. Finally, A observes the real transcripts and out-
puts a bit b 2 f0; 1g.

� GameS;Að1�Þ. A initially chooses a dataset D, and gets
back the output of standard SðLSð1�ÞÞ. Then, A adap-
tively performs SðLIð1�ÞÞ, SðLQð1�ÞÞ, SðLUð1�ÞÞ and
SðLDð1�ÞÞ, and gets the ideal transcripts generated by
these primitives. Finally, A observes the ideal tran-
scripts and outputs a bit b 2 f0; 1g.

Additionally, a game returning 1 means that the adversary
accepts all transcripts and outputs all primitives. Otherwise, a
game returns 0.

2) There exists a leakage function �L such that,

LIðfðIDi; ppiÞgni¼1Þ ¼ �LðfIDigni¼1Þ:

Herein fðIDi; qqiÞgni¼1 is the inserted dataset, and fIDigni¼1
denotes the corresponding set of IDs. ðIDi; ppiÞ is an ID-point
pair, where IDi is the identifier of ppi. It means that the insertion
primitive of any L-forward-adaptive-secure LS-RQ scheme
reveals only the identifiers of the inserted points but nothing else.

2.3 System Overview

Efficiency and security are the paramount concerns in range
query on a public cloud. LS-RQ is systematically reviewed
from the following aspects.

Dataset Division. Index, which is a dominant component
for fast locating candidate points, can only be efficiently con-
structed on ordered data. However, geographically data is
out-of-order from a cursory observation and is difficult to be
indexed. Additionally, if all subsets contain different num-
bers of points, an adversary can easily distinguish between
any two encrypted subsets. Hence, to provide indistinguish-
ability between encrypted subsets, all subsets should be of
regularity, which means all subsets contain a consistent
number of points.

To resolve the first concern, LSH is revised (formally
defined in Section 3.1) to be compatible with geographic data
and employed in a novelmanner to construct complex buckets
(i.e., the outsourcing subsets). LSH [22] is a widely-adopted
dimension reduction tool that can map high-dimensional data
into a single ordered code (i.e., integer) by equation hðppÞ ¼
baa�ppþrw c as shown in Fig. 2a.5 Furthermore, in order to retrieve

candidate points efficiently, aggregating close points into a
unique bucket is widely adopted in various applications [23],
[24], [25]. Once a query is issued, the client can quickly locate
the bucket, in which the points are near to the query one. In
LS-RQas shown in Fig. 2b, all points in each LSH-based bucket
corresponds to a unique LSH value by Bi ¼ fpjpjjhðpjpjÞ ¼
i ^ pjpj 2 Dg. Following that, to eliminate small-scale buckets,

we reasonably select a volume nV (i.e., 4 in Fig. 2b) to construct
complex buckets, by adopting new-designed greedy merge
method (formally defined in Section 3.2). All LSH-based buck-
ets are merged into several complex buckets such that the
size for each complex bucket is closest to but does not exceed
nV as shown in Fig. 2b.

Additionally, to eliminate the irregularity of complex
buckets, fake points are added such that the size of each
complex bucket equals to nV . Specifically, a single fake point
is added into B3 and B4 respectively, and two fake points
are added into B5. All fake points are hollow and can be eas-
ily distinguished from the true ones in solid.

Index and Query. Note that, both rectangle-range and cir-
cular-range queries are compatible with the mechanism to

Fig. 2. A generic idea for fast range query on geometric data. (Generally,
a range is mapped into a set of complex buckets which completely cov-
ers the range itself. The given range contains pp8, pp9 and pp12. For avoiding
a cloud knowing the range itself, both B2 and B3 are sent to the cloud
from the client. The cloud returns all real points (i.e., pp4, pp6, pp7, pp8, pp9,
pp12, pp13) and fake ones (i.e., F1) are sent back to the client, who refines it
with the real range and obtains the accurate results in plain domain.)

5. Here, aa is a random vector (i.e., point), r is a segment offset, and w
is a unique width of segments.

390 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022

be described below, hereby we adopt rectangle-range query
to illustrate the general idea as shown in Fig. 2. Specifically,
a rectangle-range query is mapped into a set of identifiers of
complex buckets, such that the complex buckets’ corre-
sponding spatial region can completely cover the region of
range query. Specifically, in a range query as illustrated in
Fig. 3, by employing a new-designed forwardly inverted
dictionary, both complex buckets and deleting points can be
quickly located. Specifically, in the forwardly inverted dic-
tionary (formally defined in Section 3.3), all complex buck-
ets are inversely indexed for fast range query and all points
are forwardly indexed for quickly deleting points.

Moreover, for forward-security, the encrypted dataset
stored on the cloud is divided into two parts. Points in the first
and second parts are encrypted with ckey and ukey, respec-
tively. When issuing a query, a token for retrieving all points
in B2 and B3 is submitted to the cloud, who returns all
encrypted points in B2 and B3 as candidate points. After per-
forming the query, the points that have been visited (i.e., all
points in B2 and B3) are re-encrypted with nkey. In this
way, forward-security is satisfied, which will be analyzed in
Section 5.2. The formal construction of LS-RQ is in Section 4.

2.4 Proxy Re-Encryption Algorithm

Blaze et al. first introduced the concept of PRE [26]. Since then,
PRE has undergone extensive research [27], [28], and has been
deployed into various practical applications [8], [29]. We
introduce PRE into LS-RQ to re-encrypt the visited points on
public clouds while answering a range query. A concrete
proxy re-encryption is a tuple of 6 primitives, Setupð1�Þ !
prm, KeyGenðÞ ! ð< pkA; skA > Þ, ReKeyGenðskA; skBÞ !
rkA!B, EncðpkA;mÞ ! cA, ReEncðrkA!B; cAÞ ! cB and Dec

ðskA; cAÞ ! m. Note that prm is necessary for the last five
primitives but is omitted in the rest of this paper, skA and pkA
are secret and public keys, rkA!B is a re-encryption key,
m 2 RNTRU=q is a plaintext and c 2 RNTRU=q is a ciphertext.
Additionally, PRE satisfies the following properties.

� Correctness. First, given skA and cA ¼ EncðpkA;mÞ,
DecðskA; cAÞ ¼ m holds. Second, given skB and cB ¼
ReEncðrkA!B; cAÞ, DecðskB; cBÞ ¼ m holds.

� Transitivity. If rkA!B ¼ sk�1A � skB and rkB!C ¼ sk�1B �
skC , then rkA!C ¼ rkA!B � rkB!C .

In fact, we only list part of the properties that PRE supports.
The other properties (such as directionality, interactivity, etc.),
which are not necessary for our work, are omitted here.

Also, the detailed definition of PRE is referred to in the
literature [27].

3 INDEX MECHANISM FOR LS-RQ

In this section, we design a new-defined even LSH function
and a new-defined greedymergemethod to generate complex
buckets with regularity. Following that, to speed up the pro-
cess of query, a forwardly inverted dictionary is designed to
manage geographical data.

3.1 Even LSH Function

In order to generate regularity complex buckets, even LSH
function is carefully designed by leveraging normalization
and density distribution of a dataset.

Theorem 1 (Even Division). Give a code-length ‘ 2 N�, a ran-
dom vector aa ¼ ðax;ayÞ 2 Rd �Rd such that jjaajj2 ¼ 1, and a
density function fðx; yÞ that dataset D follows. The critical value
fcij1 � i � 2‘g (as shown in Fig. 10 in supplementary 1, which
can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TDSC.2020.2974218) are
calculated by solving the following equation, such that each area
contains consistent number of points.

A � i=2‘ ¼ F1ðcix; uðcixÞÞ �F1ð0; uð0ÞÞ
�F2ðcix; vðcixÞÞ þF2ð0; vð0ÞÞ:

(1)

Here, uðxÞ and vðxÞ are the upper and lower bound of integral,
A ¼D fðx; yÞds , F1 ¼

R
F ðx; uðxÞÞdx, F2 ¼

R
F ðx; vðxÞÞdx

and F ðx; yÞ ¼ R
fðxax þ yay; yax � xayÞdx.

(The proof is in supplementary 1, available online.)

Definition 2. An even LSH function h : Rd ! f0; 1g‘ maps a
d-dimensional object into a single integer. An even LSH func-
tion is piecewise defined as

hðppÞ ¼ fijci�1 < pp � aa � cig:
Here, aa is a random vector such that jjaajj2 ¼ 1, c0 ¼ 0, and
fcij1 � i � 2‘g are determined by Theorem 1.

By Definition 2, all points in a dataset are divided into
complex buckets such that each one contains an almost
unique number of points.

3.2 Greedy Merge Method

By only introducing even LSH function, it is not sufficient to
guarantee the regularity for all complex buckets due to the fol-
lowing reasons: 1) the distribution of data is not known previ-
ously; or 2) even if the distribution is known, all complex
buckets are not regular with a non-negligible probability since
the loss of precision during the construction. In order to make
the numbers of points in complex buckets equal, a greedy
merge method is proposed to resolve the first problem.
Besides, fake addition is additionally introduced to resolve the
second problem. Here, we define ppi 	 ppj iff hi ¼ hj, in which

hi is the LSHvalue of ppi. Specially,wedenote ~hi ¼fppjjppi 	 ppjg.
For Unknown Distribution of Dataset. Equal-length LSH

function defined in [30] is employed to map original points to
LSH-based codes. LSH-mapping dictionary DicH, which is
generated by a greedy merge method, maintains a set
fðhi; BjÞj~hi
 Bjg thatmapsLSHvalues into complex buckets.

Fig. 3. A generic idea for forward-security in range query. (Assume that
the query result falls in complex buckets B2 and B3.)

PENG ET AL.: LS-RQ: A LIGHTWEIGHT AND FORWARD-SECURE RANGE QUERY ON GEOGRAPHICALLY ENCRYPTED DATA 391

http://doi.ieeecomputersociety.org/10.1109/TDSC.2020.2974218
http://doi.ieeecomputersociety.org/10.1109/TDSC.2020.2974218

The greedy merge method is formally described in Algo-
rithm 1. D is sorted at the beginning and DicH is initialized
to be empty (Line 2-3). Maximum bucket size w is the
greater of a threshold u and the maximum volume of buck-
ets (Line 4). A predefined threshold can avoid obtaining a
locally optimal solution, which means that w is too small to
result in an excessive number of complex buckets. The
merge starts from the first element in a dataset (Line 5).
Then, a loop is carried out to continuously construct com-
plex buckets (Lines 6-19). Also, an LSH-mapping dictionary
is generated. Following that, fake addition (shown in Algo-
rithm 2) is applied to guarantee the regularity for all com-
plex buckets (Line 20). Finally, the regular complex buckets
B and LSH-mapping dictionary DicH are returned (Line 21).

Algorithm 1. Greedy Merge Method

1: function GREEDYMERGE (D, u)
2: Sort D according to their LSH values;
3: Let DicH ;, i 1, j 1; /* i and j are subscripts of

complex buckets and points, respectively. */
4: w maxfu;max1�k�n #ð~hkÞg;
5: repeat
6: Bi ;;
7: repeat
8: if#ðBiÞ is greater than w then
9: DicH:Insðh; BiÞ, where h 2 ½hj�1; hj � 1� and Bi is

the ID of complex bucket Bi. The loop is terminated;
10: else
11: Add all points in ~hj into Bi, and ðhj; BiÞ into DicH;
12: Increase j by#ð~hjÞ;
13: end if
14: until no left points that are not inserted;
15: Increase i by 1;
16: until j > n;
17: FAKEADDITION (B) in Algorithm 2;
18: return B, DicH;
19: end function

For Known Distribution of Dataset. By adopting even LSH
function, original points are mapped into different LSH val-
ues. All points that correspond to an LSH value constitutes
a complex bucket. That means Bi ¼ ~hi. However, all com-
plex buckets still have different numbers of points since the
possible loss of precision during construction. Here, we first
adopt Algorithm 1 to merge buckets. Then, a fake addition
algorithm, as shown in Algorithm 2, is applied to guarantee
the regularity for all complex buckets. In the algorithm, the
fake points added can be attached with a special label in
practice for easy recognition. Additionally, according to the
proposed even LSH function, LSH-mapping dictionary DicH
maintains a set fðhi; BjÞj~hi 2 Bjg.

3.3 Forwardly Inverted Dictionary

To accelerate the insertion/deletion of points into/from a
dataset, a forwardly inverted dictionary is introduced [16] to
index all points. However, as [16] is based on the assumption
that the Cloud is completely trusted, it cannot be applied in
our scenario. Therefore, we present a novel forwardly
inverted dictionary scheme. Different from [16], which
requires either keyword or document counting, our scheme is
based on a single dictionarywithout counting operation.

Algorithm 2. Fake Addition Algorithm

1: function FAKEADDITION (B)
2: Pick up the maximal size #max of irregular complex buck-

ets as the unique size for regular complex buckets;
3: for i ¼ 1 to#ðBÞ do
4: Add#max �#ðBiÞ fake points into Bi;
5: end for
6: return Regular complex buckets B;
7: end function

Definition 3 (Single Dictionary). A single dictionary Dic is a
data structure that maintains a set of ðD; dataÞ 2 f0; 1g� �
f0; 1g� pairs. It allows the following operations (i.e., create, insert,
get, update and delete respectively) to manage tuples in the set.

� Dic:CrtðfðDi; dataiÞj1 � i � ngÞ ! Dic;
� Dic:InsðD; dataÞ ! Dic0;
� Dic:GetðDiÞ ! datai or ?;
� Dic:UpdðD; dataÞ ! Dic0;
� Dic:DelðDÞ ! Dic0 or ?;

Here, D is the unique access entry for each tuple in Dic.
The access entry can be efficiently located by adopting per-
fect hash function [31], which has been widely adopted in
almost all mainstream programming languages (such as C/
C++, Java, Python, etc.), to implement creation, insertion,
getting, updating and deletion.

Definition 4 (Forwardly Inverted Dictionary). A for-
wardly inverted dictionary ’Dic is a dual dictionary that main-

tains a set fei ¼ ðDðBÞi ;D
ðIDÞ
i ; dataiÞg. It allows the following

operations to manage tuples in the set.

� ’Dic:Crtðfeij1 � i � ngÞ:
– DicI:CrtðfðDðBÞi ; dataiÞj1 � i � ngÞ.
– DicF:CrtðfðDðIDÞi ;D

ðBÞ
i ;&ðdataiÞÞj1 � i � ngÞ.

� ’Dic:Insðfeij1 � i � ngÞ:
– DicI:InsðfðDðBÞi ; dataiÞj1 � i � ngÞ.
– DicF:InsðfðDðIDÞi ;D

ðBÞ
i ;&ðdataiÞÞj1 � i � ngÞ.

� ’Dic:GetðDðBÞÞ ! fðDðIDÞ; dataÞg or ?:
– If DicI:GetðDðBÞÞ ¼ ? then return ?.
– fðDðIDÞ; dataÞg DicI:GetðDðBÞÞ.

� ’Dic:GetðDðIDÞÞ ! data or ?:
– If DicF:GetðDðIDÞÞ ¼ ? then return ?.
– ðDðBÞ;&ðdataÞÞ DicF:GetðDðIDÞÞ.
– Return ðDðBÞ; dataÞ by address resolution of data.

� ’Dic:UpdðDðIDÞ; data0Þ:
– If DicF:GetðDðIDÞÞ ¼ ? then return ’Dic.
– Otherwise DicF:UpdðDðIDÞ; data0Þ.

Here, DicF is a one-to-one dictionary, and DicI is a one-
to-many dictionary. That means DicI:CrtðÞ will append

multiple tuples < DðIDÞ; data > to the access entry DðBÞ and
DicI:InsðÞ will append extra tuples < DðIDÞ; data > to the
tails. Other operations work in the same way as single
dictionary.

4 CONSTRUCTION OF LS-RQ

In this section, the detailed construction of a novel light and
forward-secure range query on geometric encrypted data is
presented. We shall discuss the framework in single setting

392 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022

and multiple setting in sequence, where single and multiple
indicate the number of even LSH functions employed.

4.1 LS-RQ in Single Setting

An LS-RQ scheme based on a single LSH function is named
LS-RQ-S, which is also illustrated in supplementary 2, avail-
able online.

Setup. This primitive takes as input a dataset D and data
encryption keys. It generates a forwardly inverted dictio-
nary ’Dic as the output.

Specifically, a security parameter 1� is selected according to
application requirements. A keyed hash functionH : f0; 1g��
f0; 1g� ! f0; 1g� , a proxy re-encryption algorithm PRE and a
pseudo-random permutation (PRP) p : f0; 1g� � f0; 1g� !
f0; 1g� are generated according to the security parameter 1�.
The public parameter for such a range query system is
SP ¼ ð�;H; prmÞ, where prm is the public parameter in PRE

and generated by PRE:SetupðÞ. Both complex buckets B and
LSH-mapping dictionary DicH are derived as described in
Section 3.2.

To provide secure guarantee, two pairs < cpki; cski > and
< upki; uski > of public and secret keys are generated
by PRE:KenGenðÞ for each complex bucket Bi. Additionally,
a key dictionary Dickey containing a set fðBi; ð< cpki; cski > ;
< upki; uski > ; < npki ¼ null; nski ¼ null > ÞÞj1 � i �
#ðBÞg is maintained at the LBS provider side. A forwardly
inverted dictionary ’Dic is created based on Dickey. In ’Dic,

DðIDÞ ¼ pðIDÞ,DðBÞ ¼ HðB; cskiÞ and data ¼ PRE:Encðcpki; ppÞ.
Insertion. This primitive takes as input the newly added

dataset AddSet and ’Dic, and outputs a newly generated
’Dic. Specifically, at the client side, AddSet containing all
newly inserted points is generated. Concretely, all the new
points are scattered into brand-new complex buckets B0,
both that and B share the same LSH-mapping dictionary
Dich. All the newly added points are encrypted with a
new key pair < upk; usk > to provide forward-security.
That means DðIDÞ ¼ pðIDÞ, DðBÞ ¼ HðB; uskiÞ and data ¼
PRE:Encðupki; ppÞ. DðIDÞ, DðBÞ and data are further added into
AddSet. Then, AddSet is sent to the cloud, who will insert
each element in AddSet into ’Dic by ’Dic:InsðÞ in
Definition 4.

Query. This primitive takes as input a range query Q and
’Dic, and outputs the query result by a single interaction
between a client and a public cloud. Generally, executing a
query is divided into three relatively independent processes.

First, the query itself is translated into a set of identifiers
for complex buckets which completely cover areas that the
query falls in. For a rectangle query,Q ¼ ðqqmin; qqmaxÞ. For cir-
cular query, Q ¼ ðoo; rÞ where oo ¼ ðox; oyÞ is the center and r
is the radius. Explicitly, qqmin and qqmax can be calculated by
resolving the following system of equations.

ðx� oxÞ2 þ ðy� oyÞ2 ¼ r2

ðy� oyÞ=ðx� oxÞ ¼ ay=ax

�
: (2)

There are obviously two solutions, ðxmin; yminÞ and ðxmax;
ymaxÞ, for Equation (2). Here, qqmin ¼ ðxmin; yminÞ and
qqmax ¼ ðxmax; ymaxÞ. Also, the generic idea of query translation
is illustrated in Fig. 4.

Second, the corresponding token t for query is generated
and sent to the cloud by leveraging Dickey and DicH as shown

in function CLIENTQUERY() in Algorithm 3. Client requests
Dickey and DicH from the LBS provider. For each candidate
bucket, a new generated key pair < npk; nsk > is for re-
encrypting points(Line 4), and csk and usk are retrieved from
Dickey (Line 5). A token t that contains several trapdoors for
quick retrieval is generated (Lines 6-11). Then, < upk; usk >
is updated for the touched bucket (Lines 12-13). Finally, t is
sent to the cloud.

Algorithm 3. Query for Client in LS-RQ-S

1: function CLIENTQUERY (h, Dickey, DicH, Q)
2: ðhmin; hmaxÞ BUCKETMAP (h, DicH, Q), t ;, Dicsk ;;
3: for each h 2 ½hmin; hmax� do
4: < npk; nsk > PRE:KeyGenðÞ, B DicHðhÞ;
5: ð< cpk; csk > ; < upk; usk > Þ DickeyðBÞ;
6: D

ðBÞ
1 HðB; cskÞ, DðBÞ2 HðB; uskÞ;

7: DðBÞ
0 HðB; nskÞ;

8: rkc!n PRE:ReKeyGenðcsk; nskÞ;
9: rku!n PRE:ReKeyGenðusk; nskÞ;
10: Add fDðBÞ1 ;D

ðBÞ
2 ;DðBÞ

0
; rkc!n; rku!ng into t;

11: Add fB; nskg into Dicsk;
12: < upk; usk > PRE:KeyGenðÞ;
13: Dickey:UpdðB; < npk; nsk > ; < upk; usk > ;fÞ;
14: end for
15: return t and Dicsk;
16: end function
17: function CLIENTDECRYPT (DicCan, Dicsk, Q)
18: s ;;
19: for each ðDðBÞ; CanSetÞ 2 DicCan do
20: nsk Dicsk:GetðDðBÞÞ;
21: for each ðDðIDÞ; dataÞ 2 CanSet do
22: Add data0 ¼ PRE:Decðnsk; dataÞ into ResSet;
23: end for
24: end for
25: return the refined ResSetwith Q;
26: end function

Third, the cloud scans ’Dic and gathers all candidate
points through Algorithm 4. A candidate set is empty-
initialized at the beginning (Line 2). The token for query
contains several sub-tokens. For each sub-token, all
encrypted candidates are retrieved by matching D

ðBÞ
1 and

D
ðBÞ
2 (Lines 4-6). Then the candidate set is prepared by two

loops (Lines 7-18). Generally, the algorithm looks up all can-
didate points that are encrypted with cpk (resp. usk) in the
first (resp. second) loop. In a single loop, the encrypted data
are refreshed (Line 8, 14). Following that, ’Dic is updated to

Fig. 4. Generic idea for bucket mapping of rectangle and circular
queries.

PENG ET AL.: LS-RQ: A LIGHTWEIGHT AND FORWARD-SECURE RANGE QUERY ON GEOGRAPHICALLY ENCRYPTED DATA 393

ensure forward-security (Lines 9, 15). Meanwhile, the data
encrypted under upk in ’Dic is removed (Line 16). At the
end of each loop, bucket labels are updated (Line 12) and
the candidates are added into the candidate set (Lines 10,
17). The candidate set is returned to the client (Lines 19, 21).

Algorithm 4. Query for Cloud in LS-RQ-S

1: function CLOUDQUERY (’Dic, t)
2: DicCan ;;
3: for each element in t do
4: Parse the element and let CanSet be empty;

5: fðDðIDÞ; dataÞg1 ’Dic:GetðDðBÞ1 Þ;
6: fðDðIDÞ; dataÞg2 ’Dic:GetðDðBÞ2 Þ;
7: for each element in fðDðIDÞ; dataÞg1 do
8: data0 PRE:ReEncðrkc!n; dataÞ;
9: ’Dic:UpdðDðIDÞ; data0Þ;
10: Add ðDðIDÞ; dataÞ into CanSet;
11: end for
12: Replace D

ðBÞ
1 with DðBÞ

0
;

13: for each element in fðDðIDÞ; dataÞg2 do
14: data0 PRE:ReEncðrku!n; dataÞ;
15: ’Dic:DicI:InsðDðBÞ

0
; data0Þ;

16: Remove elements with access entry D
ðBÞ
2 ;

17: Add ðDðIDÞ; dataÞ into CanSet;
18: end for
19: DicCan:InsðDðBÞ

0
; CanSetÞ;

20: end for
21: return DicCan;
22: end function

At the client side, as shown in Algorithm 3, finally, the
query result is derived (Lines 18-26). Specifically, the client
first looks up the secret key nsk by matching bucket label
DðBÞ (Line 20). After that, the encrypted candidate points are
correctly decrypted (Lines 21-23). The candidate set will be
refined to derive the accurate result (Line 25), in which all
decrypted candidate points are compared with the query
itself and all false-positive candidate points are removed.

Updating. This primitive takes as input a pointwith an iden-
tifier ðID; ppÞ and ’Dic, and outputs amodified ’Dicwhere p is
updated. For a client, given an updating point ðID; ppÞ, updat-
ing token t is generated and sent to the cloud. The Client first
looks up both cpk and upk with the help of DicH and Dickey
with the help of the LBS provider. The corresponding
access entries, D

ðBÞ
1 HðBÞðB; cskÞ, DðBÞ2 HðBÞðB;uskÞ and

DðIDÞ pðIDÞ, are generated. After that, the new point is
encrypted with cpk and upk respectively such that data1
PRE:Encðcpk; ppÞ and data2 PRE:Encðupk; ppÞ. The token
combines the above components. At the cloud side, both
’Dic:UpdðDðIDÞ; data1Þ and ’Dic:UpdðDðIDÞ; data2Þ are exe-
cuted afterwards.

Deletion. This primitive takes as input an identifier ID of
a point and ’Dic, and outputs a modified ’Dic where pp is
set to a random value. Generally, the deleting point is
replaced by a fake point. Indeed, deletion is completed by
covering the corresponding element with a fake point. At
the client side, a fake point �qq is randomly generated, and the
following procedures are the same as that for updating. In
fact, the cloud only receives a request to execute ’Dic:UpdðÞ.
So, it cannot distinguish it from a real process of updating.
Hence, since the cloud is semi-honest, it will delete qq.

4.2 LS-RQ in Multiple Setting

In LS-RQ-S, for a range query, there is a non-negligible
probability that the scale of the returned candidate set is
much larger than that of the query’s accurate result (a piece
of evidence is in Fig. 6.). Hence, the communication cost
between a public cloud and a client is heavy. In order to fur-
ther reduce the communication burden of the client, a novel
multiple setting mechanism is introduced in this section, by
adopting multiple LSH functions.

The forward-secure range query based on multiple LSH
functions is named LS-RQ-M. The main body is almost simi-
lar to that in single setting with a significant difference that,
given a dataset, m LSH functions are adopted. Thus, the
cloud holds m copies of ’Dic, and the LBS provider holds
m copies of Dickey and Dich. When conducting a range
query, the query process of LS-RQ-S is executed m times.
There will be m copies of the generated candidate set. The
query result is indeed the intersection of all candidate sets,
since that the real result must be included in every candi-
date set. Other processes (i.e., Creation, Insertion, Updating,
and Deletion) are implemented in a similar way.

It is worth noting that it is infeasible to directly remove
redundant candidate points that are encrypted with differ-
ent public keys. In order to further reduce the communica-
tion cost between a public cloud and a client, another public
cloud (named removal cloud), that does not collude with
the existing one (named query cloud), is introduced for
duplicate removal.

Algorithm 5. Duplicate Removal in LS-RQ-M

1: function REMOVALCLIENT fDicskgmi¼1, fpgmi¼1
2: t ;, < rsk; rpk > PRE:KeyGenðÞ;
3: for i 2 ½1;m� do
4: for each fB; nskg in Dic

ðiÞ
sk do

5: rkn!r PRE:ReKeyGenðrsk; nskÞ;
6: Dic

ðiÞ
sk :UpdðB; rkn!rÞ;

7: end for
8: Add fp�1i ; Dic

ðiÞ
skg into t;

9: end for
10: return t;
11: end function
12: function REMOVALCLOUD fCanSetgmi¼1, t
13: Can ;;
14: for i 2 ½1;m� do
15: for each fB; rkn!rg in Dic

ðiÞ
sk do

16: for each ðDðIDÞ; dataÞ in CanSet do
17: data0 PRE:ReEncðrkn!r; dataÞ;
18: DðIDÞ

0 p�1i ðDðIDÞ
0 Þ;

19: Add ðDðIDÞ0 ; data0Þ into Can;
20: end for
21: end for
22: end for
23: return \Can;
24: end function

Duplicate Removal. At the client side, a token is generated
as shown in Algorithm 5 and is sent to a removal cloud. At
the very beginning, a removal key pair < rsk; spk > is gen-
erated as a session key (Line 2), which is only used in this
process of range query. For each ’Dic, a re-encryption key
is generated by the adopting proxy re-encryption algorithm

394 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022

(Line 5). Then, the corresponding key in Dicsk is updated for
each complex bucket (Line 6). Finally, the generated token
(Lines 8, 10) is sent to the removal cloud. After receiving
removal token and encrypted candidate sets, the removal
cloud carries out CLIENTQUERY() in Algorithm 5 to remove
redundant points. First, in a loop (Lines 14-22), all candidate
points under different LSH functions are re-encrypted (Line
17), and all labels for ID are inversely permuted to recover
the original IDs (Line 18). Finally, all candidate points are
intersected according to their IDs for removing redundant
points (Line 23), which will be sent back to the client.

Finally, the client receives encrypted candidate points
and correctly decrypts them with rsk, as they have been
already re-encrypted with rkn!r on the removal cloud. The
candidate points will be refined to derive the accurate result
in a similar manner of LS-RQ-S. For easy understanding, a
workflow is also illustrated in supplementary 2, available
online.

5 THEORETICAL ANALYSIS

Herein we theoretically analyze the correctness, security,
efficiency, and comparisons of LS-RQ sequentially.

5.1 Theoretical Correctness

An LBS provider holds two dictionaries, Dich and Dickey.
Mapping relations between LSH values of data and identi-
fiers of complex buckets are maintained in Dich. The key
pairs for generating token are stored in Dickey.

A client, in order to issue a query in single setting, sub-
mits the query itself to the LBS provider, which calculates
LSH value by leveraging (even) LSH functions, and further
picks up identifier B for corresponding complex buckets by
looking up Dich. The complex buckets are generated, by
adopting even LSH function and greedy merge method. In
such a way, both rectangle and circular range are mapped
into two bounded points, qqmin and qqmax. According to line 2
and the outermost loop in Algorithm 3, qqmax and qqmin are
mapped into LSH values, hmin and hmax. All points in data-
set that falls in complex buckets with LSH values
h 2 ½hmin; hmax� are totally gathered as encrypted candidates.
So, the encrypted candidates totally cover the real result of
a range query.

Additionally, the candidates are encrypted with upk
while inserting into dataset as shown in Insertion. The fetch-
ing candidate is stored as cu ¼ PRE:Encðupki; pipiÞ. According
to line 17 in Algorithm 5, the encrypted candidate sent back
to the client is cr ¼ PRE:ReEncðrkn!r; PRE:ReEncðrku!n; cuÞÞ.
The client decrypts it and gets m ¼ PRE:Decðrsk; crÞ. Obvi-
ously, according to the correctness of PRE as defined in
Section 2.4, pipi can be correctly decrypted due to the follow-
ing equation,

PRE:Decðrsk; crÞ
¼PRE:Decðrsk; PRE:ReEncðrkn!r; PRE:ReEncðrku!n; cuÞÞÞ
¼PRE:Decðrsk; PRE:ReEncðrkn!r; cnÞÞ
¼PRE:Decðrsk; crÞ ¼ pipi:

In a similar manner, the fetching encrypted candidates,
that are encrypted in Setup and are re-encrypted in lines 8
and 9 of Algorithm 4, can also be correctly decrypted.

5.2 Theoretical Security

L-Forward-Adaptive-Security of LS-RQ. During LS-RQ, all
transmitting data are encrypted by PRE. Confidentiality of
both data and query is satisfied since the leverage of PRE. In
LS-RQ, the leakage during Insertion is only the set of IDs of
newly added points. Furthermore, by re-encrypting the
touched data, LS-RA is forward-secure. The formal analysis
is particularly stated in supplementary 3, available online.

Secure Consideration Under Access Pattern Leakage. Recently,
several works reconstruct 1-dimensional dataset only from
serious of access pattern leakage’s variants, such as the vol-
ume of range query’s result [11], [12], access pattern itself [13],
[14], etc. All the works lie on two underlying assumptions, 1)
theremust be a partial order relationship between elements in
a dataset, and 2) the leakage of access pattern must be specific
and accurate.

Analysis for Assumption 1. Actually, the above attacks work
for datasets comprising keywords or 1-dimensional numerical
values (such as ages, salaries, etc.), since that lexicographical
order is inherent for keywords and 1-dimensional numerical
values are inherently partial ordered. However, there is, cur-
rently, no effective partial order for geographical data (i.e., 2-
dimensional points). Specifically, for any two points, pp1 and
pp2, the relations between cannot be legibly defined except
equivalence. So, the above attacks do notwork for LS-RQ.

Analysis for Assumption 2. In most existing secure (range)
query mechanisms [4], [7], [16], [18], [19], [20], [21], [32], the
returned encrypted candidate sets are specific and accurate,
which means that the returned candidate sets include only
accurate results without any false positive or true negative
candidates. The above attacks work for the above mecha-
nisms. LS-RQ is implemented in an approximate manner for
the cloud. Specifically, from a cloud perspective, the candi-
date set retained is a supplementary collection of the accurate
result. As illustrated in Fig. 2b, given ‘ ¼ 10, query’s span is 1
percent and aa ¼ ðax;ayÞ, the accurate covered area is
AI ¼ ð1%Þ2 ¼ 0:0001 and theminimally realistic touched area
isAR ¼ ð1% �

ffiffiffi
2
p Þ2 ¼ 0:0002when ax ¼ ay. Thus, the realistic

number of touched points is at least twice that of the accurate
result. And, also, the scale fact is varying while the location of
range changes. The precision that will be reported in Fig. 6 is
evidence of this point. Hence, in the view of the cloud, the
retained access pattern is unspecific and inaccurate.

In a word, the two crucial assumptions for attack under
access pattern leakage are unsatisfactory. So, the presented
LS-RQ can resist such attacks.

5.3 Theoretical Efficiency

In LS-RQ, several pivotal parameters matter efficiency. n is
the scale of dataset. m is the number of the adopting LSH
functions. The code length of LSH value is ‘. c ¼ 2‘ is the
number of complex buckets for a single LSH function. The
security parameter � determines the bit length of keyed
hash functions and the length of identifiers. Query’s span is
assumed to be a magnitude greater than c. In general, th, tu,
and tc are the time for executing keyed hash function,
’Dic:UpdðÞ, and comparison once, respectively. The time of
encryption, re-encryption, decryption, key generation and
re-encryption key generation for PRE are te, tr, td, tk and trk,
respectively. The time for executing PRP once is tp.

PENG ET AL.: LS-RQ: A LIGHTWEIGHT AND FORWARD-SECURE RANGE QUERY ON GEOGRAPHICALLY ENCRYPTED DATA 395

Storage at Cloud. ’Dic is stored and maintained on a pub-
lic cloud. For LS-RQ-S, ðDðIDÞ;DðBÞÞ and ðDðBÞ;DðIDÞ; dataÞ
are stored for a single piece of data. There is a certain scale
of supplementary fake data. However, compared with the
scale of a dataset, the scale of supplementary fake data is
limited, which will be testified in Section 6. So, the storage
costs for LS-RQ-S and LS-RQ-M at the cloud side are about
5�n and 5�mn bits.

Storage at LBS Provider. An LBS provider holds both
Dickey and Dich. In LS-RQ-S, the former dictionary keeps
ðB; ð< cpk; csk > ; < upk; usk > ; < npk; nsk > ÞÞ and the
another dictionary keeps ðh; BÞ for each complex buckets.
So, the storage cost for LS-RQ-S and LS-RQ-M at the LBS
provider side are 7�cþ 2‘þ1� and 7�mcþ 2‘þ1�m bits.

Time Cost at Cloud. For range query, themost time-consum-
ing operation is ’Dic:UpdðÞ. In LS-RQ-S, the time cost are
10ntu=c. In LS-RQ-M, there is an additional duplicate removal
operation. So, the time cost in LS-RQ-M is 10mntu=cþmtc, in
whichmtc is the time cost for duplicate removal operation. In
primitives of data updating, insertion and deletion, the time-
consuming operation is ’Dic:UpdðÞ. In both LS-RQ-S and LS-
RQ-M, time costs are tu andmtu respectively.

Time Cost at LBS Provider. For range query, the time-
consuming operations are keyed hash function and re-
encryption key generation. In LS-RQ-S and LS-RQ-M, the
time costs are 3cth þ 2ctrk and 3mcth þmctrk. For data inser-
tion in LS-RQ-S and LS-RQ-M, the time costs are
cth þ nte þ tp and mcth þmnte þmtp. For both data updat-
ing and deletion in LS-RQ-S and LS-RQ-M, the time costs
are 2th þ 2te þ tp and 2mth þ 2mtx þmtp.

Transmission Overhead Between a Client and a Public Cloud.
For range query, in LS-RQ-S, t is generated in the line 10 of
Algorithm 3. The transmission overhead is 5c� bits. In LS-
RQ-M, the transmission overhead is 5cm� bits. For inserting
n new points, AddSet is a triple tuple. So, in LS-RQ-S and
LS-RQ-M, the transmission overheads are 3�n and 3�mn
bits. For data deletion, in LS-RQ-S and LS-RQ-M, the trans-
mission overheads are 4� and 4�m bits.

For eLS-RQ-S and eLS-RQ-M that adopt even LSH func-
tions, the costs are very similar to that of LS-RQ-S and LS-
RQ-M. Hence, the analysis is omitted here.

5.4 Theoretical Comparisons

As shown in Table 2, there are three typical range queries in
practice, i.e., rectangle, circular and polygons. LS-RQ schemes

support both rectangle and circular range queries as other
state-of-art schemes do. In terms of security, existing secure
range query schemes are not forward-secure. LS-RQ is the
first attempt to design a forward-secure mechanism that sup-
ports the range query. Also, a cloud is assumed to be semi-
honest as other state-of-art schemes are.

Interaction and cryptographic tools can significantly mat-
ter efficiency. The proposed LS-RQ, aswell as the schemes [4],
[7], [16], [32], need only a single round of interaction, which is
an essential condition for providing high efficiency of query
and lightweight characteristic for a client. Furthermore, in
popular searchable encryption mechanisms [2], [4], [16], [18],
[19], [20], [21] as well as LS-RQ, lightweight cryptographic
tools are adopted.

Comparisons of asymptotic complexity between LS-RQ
and other schemes that support range queries are analyzed
in depth in Table 3. Note that only heavy computations are

TABLE 2
Theoretical Comparisons

Schemes Type Forward-security Cloud Model Interaction Cryptographic Tools�

CRT [2] Rectangle & Circular Not Supported Semi-honest Yes SE
RASP-QS [4] Circular Not Supported Semi-honest No OPE
EPLQ [32] Circular Not Supported Semi-honest No BP
SPSQ [7] Polygons Not Supported Semi-honest No BP
DSSE [16] Keyword Supported Fully Trusted No SE & PRF
Janus [18], Janus++ [19],
Mitra [20], Bunker [21]

Keyword Supported Semi-honest No PE, SPE, PRF, OMAP, SGX

LS-RQ Rectangle & Circular Supported Semi-honest No PRP & PRE

�SE is symmetric encryption, OPE is order-preserving encryption, BP is bilinear pairing, PE is puncturable encryption, SPE is symmetric PE, PRF is pseudo-
random function, PRP is pseudo-random permutation, OMAP is obvious map, Intel SGX is a set of security-related instruction codes that are built into some
modern Intel CPUs, and PRE is proxy re-encryption.

TABLE 3
Asymptotic Comparisonsa

Schemes # Interactions Computation at Cloud

CRT [2]b OðlognÞ -
RASP-QS [4]c 1 Oðm lognÞ � Co

EPLQ [32]d 1 Oðlog ðnþ nrÞÞ � ncê
SPSQ [7]d 1 4nnrE þ 2nnrM
LS-RQe 1 �nrEr

LS-RQ-Me 1 �mnrEr

Schemes Communication Computation at Client

CRT [2]b OðlognÞ OðlognÞ � E�1s
RASP-QS [4]c OðnrÞ OðnrÞ � E�1o

EPLQ [32]d OðnrÞ 2n2
cM þ 2n2

cAþ nr � E�1s
SPSQ [7]d OðnrÞ 2rE þ 4rêþ 2rM þ nr � E�1s
LS-RQe Oð�nrÞ �nrE

�1
p

LS-RQ-Me Oð�mnrÞ �mnrðE�1p þ CÞ � �mnrE
�1
p

aIn this table, n is the scale of dataset, and nr < < n is the accurate scale of
range query’s result. Additionally, OðfðnÞÞ means that, for large enough n,
the complexity for running time, interaction, or communication cost is at most
k � fðnÞ for some constant k.
bE�1s is symmetric decryption.
cCo and E�1o are comparison and decryption under OPE.
dM, A, E and ê are multiplication, addition, exponentiation, and pairing
under bilinear pairing. The length nc(is suggested to be 37) of encoded vectors
is particular for EPLQ [32].
eEr is the re-encryption under PRE, and E�1p is the decryption under PRE. � is
an expansion factor which is small. The number of adopting LSH functions in
LS-RQ-M ism. C is the comparison between plaintexts.

396 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022

reported in the comparisons. Obviously, in a lightweight
secure range query schemes, the number of interactions
between a public cloud and a client must be limited at one
single round. Also, the computational burden for clients
should be minimal, which means that a client should only
decrypt results without any other computation. By observa-
tion, only RASP-QS [4] and LS-RQs simultaneously satisfy
the above two conditions, since that time for comparison C
on the plaintext is much smaller than that for E�1p and can
be ignored. However, EPLQ is not forward-secure, which is
satisfied with LS-RQs. Furthermore, the complexities of LS-
RQs are at the same level as other state-of-art schemes.

Additionally, during transmitting encrypted candidate
points, since the length of the ciphertext in PRE ismuch bigger
than that in symmetric encryption mechanisms, communica-
tion cost increases in LS-RQ. The latter cannot support for-
ward-security, in spite of that, it can minimize the length of
the ciphertext. In the experimental studies of LS-RQ, PRE in
literature [27] is adopted. The length of the ciphertext is about
1,856 bits. In practice, the length of a 2-dimensional point with
a unique identifier is 32þ 64 � 2 ¼ 160 bits. So, during trans-
mitting encrypted candidate points in LS-RQ, the communi-
cation cost is about 12 times than that in the plain domain.
However, in LS-RQ-M, the number of returned encrypted
candidate points is strictly small than 500. Hence, the commu-
nication cost is only about 113 kB,which is still practical.

6 EXPERIMENTAL STUDY

In this section, we present experimental studies to evaluate
LS-RQ under different workloads. First, we tune parameter
m to find appropriate values to present a sound trade-off
between efficiency and accuracy. Then we compare LS-RQs
with two related secure range schemes (i.e., CRT [2] and
SKD6) to show superiority. At last, we further investigate
the insertion performance of LS-RQ. All experimental stud-
ies are evaluated on an x64 machine with Intel (R) Xeon (R)
E5-2630 v3*2 @ 2.20 GHz and 384GB RAM.

In the experimental studies, there are two workloads that
are extracted from publicly real dataset, HK and NE. HK7

contains 1,384,420 points in Hong Kong, China. NE8 con-
tains 123,593 points in North East, USA. We also generate 2-

dimensional uniform and Gaussian datasets, named UN
and GA. Each dataset contains 1,000,000 data points that fol-
low uniform/Gaussian distribution. We adopt PRE in litera-
ture [27]. For fair and valuable evaluations, 100 random
queries are generated to gain average performances, and
the number c ¼ 210 (i.e., ‘ ¼ 10) of complex buckets is fixed.
In experimental comparisons and performance evaluations,
queries’ spans are tuned from 1 to 5 percent.

6.1 Parameter Tuning

The number m of the adopted LSH functions is a pivotal
parameter in LS-RQ-M. We varied m 2 ½1; 10� to find the
most appropriate values for each dataset, as shown in
Fig. 5. Obviously, when m is greater than 3, the search time
at the client side is sufficiently low for resource-constraint
devices (i.e., smartphone, pad, end node in IoT, etc.). With
the growth of m, the precision increases while the search
time at the client side decreases and storage overhead grows
linearly. For an optimized balance between storage over-
head and precision, we letm be 4 for all testing datasets.

6.2 Experimental Comparisons

In this section, we compare LS-RQ approaches with both CRT
and SKD from several aspects. The prefix e of eLS-RQ-S and
eLS-RQ-M indicates that even LSH function in Section 3.1 is
adopted instead of the standard one. Specifically, the even LSH
function is calculated by Corollary 1 as shown in supplemen-
tary 4, available online. The query is restricted in the type of
rectangle. In realistic applications, the performance of a circular
range query is highly similar to that of a rectangle range query.
So, the experiments of a circular range query are ignored here.

Precision on Various Datasets. The precision performances
on different datasets showing in Fig. 6 are almost stable.
The precision is calculated by the following equation,

Precision ¼ #ðsÞ
#ðCanSetÞ : (3)

Fig. 5. Effect ofm on datasets.

Fig. 6. The evaluation of precision.

6. SKD is a new-designed range query scheme by encrypting nodes
in KD-tree with comparable encryption (CE) [33], which is an high-effi-
cient encryption scheme that supports direct comparison between
ciphertexts. Both CRT and SKD are adopted as reference schemes to
illustrate ’Dic’s superiority compared to popular index structures, R-
tree and KD-tree, respectively.

7. http://metro.teczno.com/#hong-kong
8. http://www.rtreeportal.org

PENG ET AL.: LS-RQ: A LIGHTWEIGHT AND FORWARD-SECURE RANGE QUERY ON GEOGRAPHICALLY ENCRYPTED DATA 397

http://metro.teczno.com/#hong-kong
http://www.rtreeportal.org

According to Equation (3), the bandwidth for transmitting
candidate set is 1

Precision times as many as that for transmit-
ting the accurate result. The time shifts from 1.2 to 3.4 in
multiple settings (i.e., eLS-RQ-M and LS-RQ-M). The band-
width overhead is obviously sound and acceptable in prac-
tice, while LS-RQ brings confidentialities for both data and
query. So, such expenditure is tolerable. Straightforwardly,
in single setting (i.e., eLS-RQ-S and LS-RQ-S) the bandwidth
overhead is obviously unacceptable in practice. It is very
consistent with the characteristics of LSH. In fact, multiple
LSH functions are adopted to construct an index for higher
precision rather than a single LSH function. Hence, we also
suggest that multiple setting should be adopted in practice
for reducing bandwidth overhead. The precisions in multi-
ple setting are at least 14 (at most 94) times as many as that
in single setting.

By contrast, both CRT and SKD are a bit better than the
proposed LS-RQ schemes on all datasets. It is mainly
because that the index structures in CRT and SKD (i.e., R-
tree and KD-tree) can filter more false candidate points that
of ’Dic. However, it is still challenging for both R-tree and
KD-tree to provide forward-security, which can be effi-
ciently achieved in ’Dic of LS-RQ schemes.

Search Time on Various Datasets. In LS-RQ schemes, most
part of the processing query is performed at the cloud side.
In general, as shown in Figs. 7 and 8, the processes at the
cloud side are accomplished in minutes, and that at the cli-
ent side is in seconds. That means LS-RQ shifts the heaviest
computation overhead to the cloud and the client does not
need expensive modules to accomplish heavy computa-
tions. Additionally, the growth trends for search time both
at the cloud and client sides are consistent with the number
of accurate result points. In fact, the decryption time is the
dominant part in total search time both at the client side
and cloud sides. Compared with the total search time at the
cloud side as shown in Fig. 7, the process of re-encryption

costs half of the time. It is noteworthy that the time cost for
re-encryption at the cloud side is still acceptable for practice
since one can accelerate re-encryption by strengthening the
cloud’s computation capacity. For clients, the decryption
time is unavoidable in a secure search scheme on encrypted
data and is linearly dependent on the size of #ðCanSetÞ.
Hence, the smaller Precision is, the more time that decryp-
tion needs. Additionally, LS-RQ schemes in multiple setting
(i.e., LS-RQ-M and eLS-RQ-M) tremendously outperform
that in single setting (i.e., LS-RQ-S and eLS-RQ-S). The
speedup factor is between 14 and 69. Generally, in practice,
LS-RQ schemes in multiple setting are recommended.

By contrast, for search time at both the cloud and client
sides, SKD is much less than LS-RQ schemes and CRT on
all datasets. The reason is twofold. First, precisions for both
CRT and SKD are generally higher than LS-RQ schemes. So
the number of decrypting points in LS-RQs is more than
that in both CRT and SKD. Additionally, the decryption
algorithm (i.e., PRE and AES) in both LS-RQ schemes and
CRT are much time-consuming than that in SKD (i.e.,
CE [33]). However, it is worth highlighting that our solu-
tions to secure range query take strictly less than 1 second.

Storage Expansion on Various Datasets. To facilitate range
queries on massive data, an index is pre-established before
the data is subcontracted to a cloud. Furthermore, for security
concerns, noisy points are attached to a dataset as shown in
Algorithm 2. Storage expansion directly reflects the amounts
of attached noisy points as shown in Fig. 9. In LS-RQ schemes

Fig. 7. Theevaluation of search time at the cloud side. (CRT is absent since
the vast majority of computing burden are at the client side and the cloud in
CRT does nearly nothing except returning encrypted nodes inR-tree.)

Fig. 8. The evaluation of search time at the client side.

Fig. 9. The evaluation of storage expansion at the cloud side.

398 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022

without even LSH, by observation, the storage expansion rate
reaches only about 40 percent for a dataset with about 10,000
points (i.e., dataset NE). If the dataset contains about 100,000
points (i.e., dataset HK, UN, and GA), the storage expansion
rate reduces to only about 22 percent or even more low. With
embedding evenLSH into LS-RQ, it is striking that the storage
expansion rate reduces only to 7.3 percent for dataset UN.
That means the proposed even LSH can divide the original
dataset more uniformly with fewer noisy points and is more
compatible with datasets with the pre-known distribution.
There is a suggestion that eLS-RQ-M should be adoptedwhile
the distribution of a dataset is pre-known. In fact, the storage
cost of LS-RQ on a public cloud is much heavier than CRT
since the size of ciphertext usually is much bigger than the
plaintext. The expansion factor is about 12 as analyzed in
Section 5.4. Certainly, reducing the size of PRE’s ciphertext is
still challenging.

Additionally, LS-RQ is a dynamic scheme for range query,
in which data can be integrated and indexed as time goes on.
We thoroughly investigate insertion performance to exhibit
the superiority of LS-RQ in supplementary 5, available online.
In general, the insertion performances of LS-RQ are stable and
sound in both storage cost and response time.

Summary of Experimental Comparisons. Both LS-RQ-M and
eLS-RQ-M’s performances on precision, search time both at
the cloud and client sides are in the mainstream levels as
related research articles have reported. Specifically, search
time at the client side is in seconds and the precision
remains at about 22 percent while LS-RQ is forward-secure
which is, however, not satisfied in all existing secure range
schemes. Additionally, for large scale datasets, the storage
expansion rate is only about 30 percent at most. It is note-
worthy that the storage expansion rate for eLS-RQ-M on
dataset UN is only about 7.3 percent which is half of that for
LS-RQ-M. It means that even LSH can dramatically reduce
storage expansion rates and greatly release storage burden
at the cloud side. Furthermore, forward-security is the dom-
inant contribution in LS-RQ schemes while the state-of-art
secure schemes cannot support.

7 RELATED WORKS

Searchable encryption is first presented by Song et al. [10].
Since that, many secure frameworks for various types of
data have been proposed in the literature [34]. Recently,
range query on geographically encrypted data has been
resolved based on anonymity technique [1], [35], heavy
encryption [3], [5], [7], secure index [2], [4], [6], etc. Here, we
briefly summarize relevant methods.

Anonymity-Based Approaches. In [36], k-anonymity is pro-
posed to provide guarantees of consumer’s privacy protec-
tion. The core idea is that a compositional token consisting of
the real query and k� 1 confusing queries is submitted to a
public cloud for query services. In this case, an adversary can-
not distinguish between the real query and confusing queries.
Based on k-anonymity, Kalnis et al. [37] proposed a frame-
work supporting range query without the leakage of the
query itself. After that, several works [2], [35] have been done
to promote the efficiency of the range query. However, there
is a noteworthy flow that k-anonymity may failure in several
scenarios or specific locations, such as the confusing query is

closest to the real query, the confusing query exceeds the valid
scope of range query, etc. To overcome such flow, Chow
et al. [1], [3] proposed a secure framework for range queries
with leveraging cloaking techniques. It is an effective generali-
zation of k-anonymity. Unfortunately, anonymity-based
approaches suffer from huge transmission overhead, since
the cloud must return a huge candidate set including multi-
fold candidate points of confusing queries.

Encryption-Based Approaches. Song et al. [10] proposed a
secure search scheme in the database community by leverag-
ing stream cipher and symmetric under a weak secure
assumption. After that, Boneh et al. [38] formalized the secu-
rity model of searchable encryption and presented a concrete
scheme based on bilinear pairing. In [39], the authors pre-
sented the first secure scheme supporting range query. Fol-
lowing that, there are several works [3], [5], [7] to improve
efficiency and security. Liu et al. [3] presented a scheme that
supports the nearest neighbor search by leveraging the poly-
gon cloaking area. In [5], Homomorphic encryption is intro-
duced to construct a concrete scheme for secure range
queries. Zhu et al. [7] presented a scheme that supports poly-
gon range queries by leveraging bilinear pairing-based cross
products. Recently, in 2018, Yang et al. [40] introduce predi-
cate encryption to achieve a secure range query. Most of these
work leverages heavy cryptographic tools and result in low
efficiency. The security in these works followed traditional
securitymodels, such as IND-CPA, semantic security, etc.

Secure Index-Based Approaches. Many indexes have been
proposed for searching on large-scale databases [41]. In a simi-
lar miner, the security community began designing secure
indexes for various searching types [42]. In [43], Khoshgo-
zaran et al. proposed a secure index for kNNsearching on geo-
graphically encrypted data. It can be facilely migrated for
range queries with a weaker assumption of security. After
that, many works are proposed. Yiu et al. [44], Demertzis
et al. [6] and Cui et al. [45] proposed encrypted indexes based
onR-tree by leveraging symmetric encryption, Paillier system,
bilinear pairing, etc. However, all these schemes adopted tra-
ditional security models. The forward-security model is not
investigated so far. Additionally, several schemes suffer
multi-round interactions,whichwill lead to significant degen-
eration of efficiency.

Forward-Security Consideration. Forward-security is for-
mally proposed by Bost [15]. It is for searchable symmetric
encryption and is appropriate for highly dynamic environ-
ments as mentioned in Section 1. Since that, various work is
proposed to promote the efficiency of searching on encrypted
keywords [15], [16], [18], [19], [20], [21]. Bost et al. proposed a
secure keyword search under the forward-security model
and a secure keyword search under the backward security
model in [15] and [18], respectively. In [16], Kim et al. pro-
posed a dual and secure dictionary for promoting the effi-
ciency of secure keyword searches. After that, there are
several works on providing both forward-security and back-
ward privacy [19], [20], [21], where retrieve objects are still
keywords. Zuo et al. [46] presented a forward-secure range
query mechanism on one-dimensional data. It is infeasible to
be compatible with geographical data. So far, the range query
on geographically encrypted data is not investigated under
the forward-security model, which is the essential objective in
this paper.

PENG ET AL.: LS-RQ: A LIGHTWEIGHT AND FORWARD-SECURE RANGE QUERY ON GEOGRAPHICALLY ENCRYPTED DATA 399

8 CONCLUSION

Range query on geographically encrypted data is a requisite
module to alleviate concerns about data privacy and security
for LBS services. We proposed, in this paper, a lightweight and
forward-secure scheme for dynamic range query, named LS-
RQ, which achieved several tangible advantages. Forward-
security, which provides a guarantee such that expired token
cannot be legally issued again,was satisfiedby formally theoret-
ical proof. LS-RQ schemes were also high-efficient due to two
reasons. On one hand, the search time at the client side was at
the level of seconds. On the other hand, LS-RQ-M and eLS-RQ-
M needed to transfer more candidates than an accurate result
from the cloud to the client. But the overhead factor of transfer-
ring shifted only from 1.2 to 3.4. It was not expensive and can be
acceptable in practice since the accurate result only comprised a
fewpoints usually.Due to forward-security andhigh-efficiency,
LS-RQ is a practical scheme of secure range queries.

ACKNOWLEDGMENTS

The authors would like to thank the editors, anonymous
reviewers, Dr. Xiaofang Xia, and Dr. Yingfan Liu (School of
Computer Science and Technology, Xidian University) for their
helpful comments on an earlier draft of this article. This work
was supported in part by the National Natural Science Founda-
tion of China (No. 61702403, 61702105, 61976168, 61672408,
and 61972309), in part by the Key Research and Development
Plan of Jiangxi Province (No. 20181ACE50029), in part by the
Project funded by China Postdoctoral Science Foundation (No.
2018M633473), in part by the Key Research and Development
Plan of Shaanxi Province (No. 2019ZDLGY13-09), in part by
theNatural ScienceBasic ResearchProgramof Shaanxi Province
(No. 2019CGXNG-023), in part by the CCF-Huawei Database
System Innovation Research Plan (No. CCF-HuaweiDBIR008B),
in part by the China 111 Project (No. B16037), and in part by the
National Engineering Laboratory of China for Public Safety
Risk Perception andControl by BigData (PSRPC).

REFERENCES

[1] C.-Y. Chow, M. F. Mokbel, and W. G. Aref, “Casper*: Query proc-
essing for location services without compromising privacy,” ACM
Trans. Database Syst., vol. 34, no. 4, pp. 1–48, 2009.

[2] M. L. Yiu, G. Ghinita, C. Jensen, and P. Kalnis, “Enabling search
services on outsourced private spatial data,” The VLDB J., vol. 19,
no. 3, pp. 363–384, 2010.

[3] Y. Liu, X. Chen, Z. Li, Z. Li, and R. C.-W. Wong, “An efficient
method for privacy preserving location queries,” Front. Comput.
Sci., vol. 6, no. 4, pp. 409–420, Aug. 2012.

[4] Z. Alavi, L. Zhou, J. Powers, and K. Chen, “RASP-QS: Efficient
and confidential query services in the cloud,” Proc. VLDB Endow-
ment, vol. 7, no. 13, pp. 1685–1688, 2014.

[5] R. Gay, P. M�eaux, and H. Wee, “Predicate encryption for multi-
dimensional range queries from lattices,” in Proc. IACR Int. Work-
shop Public-Key Cryptography, 2015, pp. 752–776.

[6] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis,
and M. Garofalakis, “Practical private range search revisited,” in
Proc. Int. Conf. Manage. Data, 2016, pp. 185–198.

[7] H. Zhu, F. Liu, and H. Li, “Efficient and privacy-preserving poly-
gons spatial query framework for location-based services,” IEEE
Internet Things J., vol. 4, no. 2, pp. 536–545, Apr. 2017.

[8] Y. Yang and M. Ma, “Conjunctive keyword search with designated
tester and timing enabled proxy re-encryption function for e-health
clouds,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 4, pp. 746–759,
Apr. 2016.

[9] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li, “Practical attribute-
based multi-keyword search scheme in mobile crowdsourcing,”
IEEE Internet Things J., vol. 5, no. 4, pp. 3008–3018, Aug. 2018.

[10] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy,
2000, pp. 44–55.

[11] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks
on secure outsourced databases,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2016, pp. 1329–1340.

[12] P. Grubbs, M.-S. Lacharite, B. Minaud, and K. G. Paterson, “Pump
up the volume: Practical database reconstruction from volume
leakage on range queries,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2018, pp. 315–331.

[13] M. Lacharit�e, B. Minaud, and K. G. Paterson, “Improved recon-
struction attacks on encrypted data using range query leakage,”
in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 297–314.

[14] P. Grubbs, M.-S. Lacharit�e, B. Minaud, and K. G. Paterson,
“Learning to reconstruct: Statistical learning theory and encrypted
database attacks,” Cryptology ePrint Archive, Report 2019/011,
2019. [Online]. Available: https://eprint.iacr.org/2019/011

[15] R. Bost, “Sofoz: Forward secure searchable encryption,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 1143–1154.

[16] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, “Forward
secure dynamic searchable symmetric encryption with efficient
updates,” in Proc. ACMSIGSAC Conf. Comput. Commun. Secur., 2017,
pp. 1449–1463.

[17] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient con-
structions,” in Proc. 13th ACM Conf. Comput. Commun. Secur., 2006,
pp. 79–88.

[18] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic
primitives,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2017, pp. 1465–1482.

[19] S.-F. Sun et al., “Practical backward-secure searchable encryption
from symmetric puncturable encryption,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2018, pp. 763–780.

[20] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and
R. Jalili, “New constructions for forward and backward private
symmetric searchable encryption,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2018, pp. 1038–1055.

[21] G. Amjad, S. Kamara, and T. Moataz, “Forward and backward
private searchable encryption with SGX,” in Proc. 12th Eur. Work-
shop Syst. Secur., 2019, pp. 4:1–4:6.

[22] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in
Proc. ACM Symp. Comput. Geometry, 2004, pp. 253–262.

[23] H.-P. Kriegel, P. Kr€oger, and A. Zimek, “Clustering high-
dimensional data: A survey on subspace clustering, pattern-based
clustering, and correlation clustering,” ACM Trans. Knowl. Discov.
Data, vol. 3, no. 1, pp. 1–58, 2009.

[24] H. J�egou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 1, pp. 117–128, Jan. 2011.

[25] F. Shen, Y. Yang, L. Liu, W. Liu, and H. T. S. Dacheng Tao,
“Asymmetric binary coding for image search,” IEEE Trans. Multi-
media, vol. 19, no. 9, pp. 2022–2032, Sep. 2017.

[26] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and
atomic proxy cryptography,” in Proc. Int. Conf. Theory Appl. Cryp-
tographic Techn., 1998, pp. 127–144.

[27] D. Nu~nez, I. Agudo, and J. Lopez, “NTRUReEncrypt: An efficient
proxy re-encryption scheme based on NTRU,” in Proc. 10th ACM
Symp. Inf. Comput. Commun. Secur., 2015, pp. 179–189.

[28] D. Nu~nez, I. Agudo, and J. Lopez, “Proxy re-encryption: Analysis
of constructions and its application to secure access delegation,” J.
Netw. Comput. Appl., vol. 87, pp. 193–209, 2017.

[29] G. Ateniese, K. Fu,M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed
storage,”ACMTrans. Inf. Syst. Secur., vol. 9, no. 1, pp. 1–30, 2006.

[30] Y. Peng, J. Cui, H. Li, and J. Ma, “A reusable and single-interactive
model for secure approximate k-nearest neighbor query in cloud,”
Inf. Sci., vol. 387, pp. 146–164, 2017.

[31] M. L. Fredman, J. Komlos, and E. Szemeredi, “Storing a sparse
table with O(1) worst case access time,” in Proc. 23rd Annu. Symp.
Found. Comput. Sci., 1982, pp. 165–169.

[32] L. Li, R. Lu, and C. Huang, “EPLQ: Efficient privacy-preserving
location-based query over outsourced encrypted data,” IEEE
Internet Things J., vol. 3, no. 2, pp. 206–218, Apr. 2016.

[33] J. Furukawa, “Request-based comparable encryption,” in Proc.
Eur. Symp. Res. Comput. Secur., 2013, pp. 129–146.

400 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022

https://eprint.iacr.org/2019/011

[34] C. B€osch, P. Hartel, W. Jonker, and A. Peter, “A survey of prov-
ably secure searchable encryption,” ACM Comput. Surv., vol. 47,
no. 2, pp. 18:1–18:51, 2014.

[35] K. Vu, R. Zheng, and J. Gao, “Efficient algorithms for K-anony-
mous location privacy in participatory sensing,” in Proc. IEEE Int.
Conf. Comput. Commun., 2012, pp. 2399–2407.

[36] L. Sweeney, “k-anonymity: A model for protecting privacy,” Int. J.
Uncertainty Fuzziness Knowl.-Based Syst., vol. 10, no. 05, pp. 557–570,
2002.

[37] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Preventing
location-based identity inference in anonymous spatial queries,”
IEEETrans. Knowl. Data Eng., vol. 19, no. 12, pp. 1719–1733,Dec. 2007.

[38] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Int. Conf. Theory
Appl. Cryptographic Techn., 2004, pp. 506–522.

[39] D. Boneh and B. Waters, “Conjunctive, subset, and range queries
on encrypted data,” in Proc. Theory Cryptography Conf., 2007,
pp. 535–554.

[40] W. Yang, Y. Xu, Y. Nie, Y. Shen, and L. Huang, “TRQED: Secure
and fast tree-based private range queries over encrypted cloud,”
in Proc. Int. Conf. Database Syst. Adv. Appl., 2018, pp. 130–146.

[41] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity
search: A survey,” CoRR, vol. abs/1408.2927, 2014. [Online].
Available: http://arxiv.org/abs/1408.2927

[42] E. Shmueli, R. Waisenberg, Y. Elovici, and E. Gudes, “Designing
secure indexes for encrypted databases,” in Proc. 19th Annu. IFIP
WG 11.3 Work. Conf. Data Appl. Secur., 2005, pp. 54–68.

[43] A. Khoshgozaran and C. Shahabi, “Blind evaluation of nearest
neighbor queries using space transformation to preserve location
privacy,” in Proc. Int. Symp. Spatial Temporal Databases, 2007,
pp. 239–257.

[44] M. L. Yiu, G. Ghinita, C. S. Jensen, and P. Kalnis, “Outsourcing
search services on private spatial data,” in Proc. IEEE 25th Int.
Conf. Data Eng., 2009, pp. 1140–1143.

[45] N. Cui, X. Yang, L. Wang, B. Wang, and J. Li, “Secure range query
over encrypted data in outsourced environments,” in Proc. Int.
Conf. Database Syst. Adv. Appl., 2018, pp. 112–129.

[46] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic search-
able symmetric encryption schemes supporting range queries with
forward (and backward) security,” in Proc. Eur. Symp. Res. Comput.
Secur., 2018, pp. 228–246.

Yanguo Peng (Member, IEEE) received the BSc
degree in network engineering from North Univer-
sity of China, Taiyuan, China, in 2009, the MS
degree in computer software and theory from
Guizhou University, Guiyang, China, in 2012 and
the PhD degree in computer systems organization
from Xidian University, China, in 2016. Currently
he is a full lecturer with the School of Computer
Science and Technology, XidianUniversity, China.
His research interests include cloud security, data
privacy protection and blockchain.

Long Wang received the BSc degree in computer
science and technology from Xidian University,
Xi’an, China, in 2017. He is currently working
toward the MS degree in the School of Computer
Science and Technology, Xidian University, China.
His current research interests include searchable
encryption, secure searching.

Jiangtao Cui (Member, IEEE) received the MS
and PhD degrees both in computer science from
Xidian University, Xi’an, China, in 2001 and 2005,
respectively. Between 2007 and 2008, he has
been with the Data and Knowledge Engineering
group working on high-dimensional indexing
for large scale image retrieval, in University of
Queensland (Australia). He is currently the exe-
cute dean and a professor with the School of
Computer Science and Technology, Xidian Uni-
versity, China. He has published more than 50

journal and conference papers, including VLDB, SIGMOD, ICDE, the
IEEE Transactions on Knowledge and Data Engineering, VLDB J, IEEE
Transactions on Big Data, etc. His current research interests include
data and knowledge engineering, and high-dimensional indexing. He is
a distinguished member and a fellow of CCF and is now committee
members of CCF TCDB, CCF TCAPP, CCF TCBC.

Ximeng Liu (Member, IEEE) received the BSc
degree in electronic engineering from Xidian
University, Xi’an, China, in 2010 and the PhD
degree in cryptography from Xidian University,
China, in 2015. Currently, he is a full professor
with the College of Mathematics and Computer
Science, Fuzhou University, China. Also, he is a
research fellow with the School of Information
System, Singapore Management University,
Singapore. He has published more than 100
research articles including the IEEE Transactions

on Information Forensics and Security, IEEE Transactions on Depend-
able and Secure Computing, IEEE Transactions on Computers, IEEE
Transactions on Industrial Informatics, IEEE Transactions on Services
Computing, and IEEE Transactions on Cloud Computing. He has
awarded “Minjiang Scholars” distinguished professor, “Qishan Scholars”
in Fuzhou University, Fuzhou, China, and ACM SIGSAC China Rising
Star Award (2018). His research interests include cloud security, applied
cryptography and big data security. He served as a leader guest editor for
Wireless Communications and Mobile Computing and a member of the
ACM, and CCF.

Hui Li (Member, IEEE) received the BEng from the
Harbin Institute of Technology, China, and the PhD
degree from Nanyang Technological University,
Singapore. He is currently a professor with the
School of Cyber Engineering, Xidian University,
China. His research interests include data mining,
knowledge management and discovery, privacy-
preserving query and analysis in big data. His work
have been published in SIGMOD, VLDB, KDD, the
VLDB J., IEEE Transactions on Knowledge and
Data Engineering, ACM Transactions on Intelligent

Systems and Technology, ICDE, INFOCOM, CIKM and EDBT. He has
been nominated as theBest Paper Award in SIGMOD2015.

Jianfeng Ma (Member, IEEE) received the BS
degree in computer science from Shaanxi Normal
University, Xi’an, China, in 1982, the MS degree
in computer science from Xidian University, Xi’an,
China, in 1992, and the PhD degree in computer
science from Xidian University, Xi’an, China, in
1995. Currently he is the directer of the Depart-
ment of Cyber Engineering and a professor with
the School of Cyber Engineering, Xidian Univer-
sity, Xi’an, China. He has published more than
150 journal and conference papers. His research

interests include information security, cryptography, and network
security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

PENG ET AL.: LS-RQ: A LIGHTWEIGHT AND FORWARD-SECURE RANGE QUERY ON GEOGRAPHICALLY ENCRYPTED DATA 401

http://arxiv.org/abs/1408.2927

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

