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Abstract—Anomaly detection can infer the presence of errors without observing the target services, but detecting variations in the
observable parts of the system on which the services reside. This is a promising technique in complex software-intensive systems,
because either instrumenting the services’ internals is exceedingly time-consuming, or encapsulation makes them not accessible.
Unfortunately, in such systems anomaly detection is often ineffective due to their dynamicity, which implies changes in the services or
their expected workload. Here we present our approach to enhance the efficacy of anomaly detection in complex, dynamic software-
intensive systems. After discussing the related challenges, we present MADneSs, an anomaly detection framework tailored for the
above systems that includes an adaptive multi-layer monitoring module. Monitored data are then processed by the anomaly detector,
which adapts its parameters depending on the current system behavior. An anomaly alert is provided if the analysis conducted by
the anomaly detector identify unexpected trends in the data. MADneSs is evaluated through an experimental campaign on two
service-oriented architectures; software faults are injected in the application layer, and detected through monitoring of underlying
system layers. Lastly, we quantitatively and qualitatively discuss our results with respect to state-of-the-art solutions, highlighting

the key contributions of MADneSs.

Index Terms—Anomaly detection, software-intensive system, dynamicity, MADneSs, SOA, multi-layer, context-awareness

1 INTRODUCTION

OMPLEX systems are intrinsically difficult to model due to

dependencies, relationships, or interactions between
their parts or the environment [49]. As an example, control
systems for power grids management have to supply energy,
whilst at the same time maintaining operational performance
and reducing costs also when the demand is changing fre-
quently and unpredictably.

To deal with the above dynamicity and complexity, there
is a need for better interoperability and integration of con-
trol functions on different hierarchical levels, such as pro-
cess control and operations management services. These
systems are usually modeled and realized as modular
reconfigurable systems based on reusable distributed com-
ponents integrated within Service Oriented Architectures
(SOAs) or Systems of Systems. Implementation details are
often not accessible, as they are proprietary or legacy soft-
ware. Additionally, services are often characterized by a
dynamic behavior, where the services themselves and their
interactions with others may be updated. Further, services
can evolve through time, due to changes in their require-
ments and in their behavior [22].

As a result, instrumenting each individual service to mon-
itor dependability-related properties in software-intensive
systems is generally difficult if not unfeasible [33]. Several
works in the last decade [13], [16], [34], [35] report on the
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difficulties of detecting service errors in complex systems
before they escalate into system failures. These difficulties
are mainly related to the multitude of relations, inter-
connections and interdependencies that propagate wrong
decisions. For example, an update, a configuration change,
or a malfunction in a single module or service can affect the
whole system.

To tackle this problem, several works are focusing on
anomaly detection, which refers to the problem of finding pat-
terns in data that do not conform to the expected, or normal,
behavior [1]. In most of the cases, specific and non-random
factors are the causes of the pattern changes above. For
example, the activation of software faults or malicious activ-
ities may generate a system overload.

However, the characterization of the expected behavior,
and consequently the identification of the anomalies, is chal-
lenging due to dynamicity and evolution characteristics of
complex systems. Currently, there are no clear state-of-the-art
answers on applying error or anomaly detection in highly
dynamic and complex systems. Problems are mainly related to
the necessity of frequently reconfiguring the detection algo-
rithms to match changes of the system. These issues call for
monitoring solutions that: i) require minimal knowledge on
the services; ii) avoid direct instrumentation of the services
with monitoring probes, iii) automatically reconfigure the
monitoring system.

Our Contribution. In this paper we present our approach to
anomaly detection in complex dynamic systems. Our main
contributions reside in i) leveraging multi-layer monitoring
and ii) exploiting context-based detection. In addition, we
also provide a framework that—to the authors” knowledge—
is the first that allows applying the techniques above in an
orchestrated and structured way. More in detail, we list
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several research challenges related to dynamic systems that
negatively affect the efficacy of traditional anomaly detection
techniques. Then, as a methodological contribution, we pro-
pose general design choices to mitigate such challenges.
Afterwards, we present MADneSs, a novel Multi-layer Anom-
aly DetectioN framEwork for complex Dynamic SystemS that
tackles the challenges above. The monitoring approach we
adopt in MADneSs consists in shifting the observation per-
spective from the application layer, where services operate, to
the underlying layers, namely operating system (OS), middle-
ware, and network. This allows detecting anomalies due to
errors or failures that manifest in services that are not directly
observed. This multi-layer approach is suitable to cope with
system dynamicity. In fact, when services change, the
expected behavior may change and, consequently, a new con-
figuration of the anomaly detector is needed. The layers
underlying the services’ layer are not modified, and conse-
quently the monitoring system is unaltered. Further, as
already examined in [45], [46], [47] and according to our pre-
vious work [5], we show that a more accurate definition of the
context i.e., context-awareness, improves the detection accu-
racy. In fact, we substantiate this hypothesis as follows. MAD-
neSs allows monitoring a wide set of indicators, where the
most relevant for anomaly detection purposes are identified
depending on the current context, which is reconstructed by
dedicated mechanisms. Context-awareness is also used to
train the parameters of the implemented anomaly detection
algorithm, tailoring them on the current context and ulti-
mately maximizing their ability in detecting anomalies. The
anomaly detection algorithm we selected for MADneSs is SPS
(Statistical Predictor and Safety Margin, [19]), which predicts an
acceptability interval for the next observed value based on a
sliding window of past observations. SPS is more suitable for
dynamic systems than other algorithms as clustering or neural
networks [1] since it requires short periods of training and
quickly re-computes the values of its parameters.

The experimental assessment is conducted by exercising
MADneSs on: i) a part of the prototype of the Secure! [11]
Crisis Management System (CMS), and ii) jSeduite. Both sys-
tems are structured as a SOA, where services are managed
by different entities and are deployed on different nodes.
Such services may incur in frequent updates, or even new
services may be introduced, together with modification to
their orchestration. Consequently, while instrumenting
each service with probes is unfeasible, the opportunity to
observe the underlying layers, i.e., middleware, OS and
network, is offered in both systems.

Paper Structure. The paper is organized as follows. Section 2
presents basics on anomaly detection and its application on
complex systems. Section 3 discusses the design choices
and our approach. The resulting MADneSs framework is
described in Section 4 along with the devised methodology.
An extensive experimental campaign targeting the Secure!
and jSeduite SOAs is presented in Section 5. Discussions and
comparisons are expanded in Section 6, letting Section 7 to
conclude the paper.

2 BAsICS, STATE OF THE ART AND CHALLENGES

2.1 Basics on Anomalies and Anomaly Detection

Anomalies are classified in [1] as 1) point anomaly (outlier): a
single data instance that is out of scope or not compliant

with the usual trend of a variable, ii) contextual anomaly: a
data instance that is unexpected in a specific context, and
iii) collective anomaly: a set of related data instances that is
anomalous with respect to the dataset.

Anomaly detectors have been proposed to detect errors
and intrusions [16] or to predict failures [2], based on the
hypothesis that the activation of a fault or the manifestation
of an error generates increasingly unstable—and anomalous
- performance-related behavior before escalating into a fail-
ure. An anomaly detector analyzes such behavior, detecting
anomalies used to trigger adequate diagnostic routines or
recovery strategies.

Point anomalies can be detected using algorithms that iden-
tify outliers [24] in a trend, as pattern recognition [23] or sta-
tistical-based methods which are able to reconstruct the
statistical inertia of the trend under investigation [19], [21].
Contextual anomalies are detected by techniques that are able
to tune their behaviour depending on the current state of the
system. They define the expected behaviour in the current
context of the system; then they use historical [24], user/oper-
ator-provided [25], or runtime [47] data to compare the
expectations with the data provided by the monitoring mod-
ules. Summarizing, contextual anomalies identify data points
that are not expected in a given context. Collective anomalies
are usually harder to detect [1], and require more sophisti-
cated detection techniques, either looking for specific patterns
[25] or using wider training sets to better define them. Despite
different techniques may be effective for detecting point and
also collective anomalies without having any information on
the context, to identify contextual anomalies the chosen tech-
nique should include strategies that allow tracing the current
state of the system.

2.2 Anomaly Detection in Complex Systems
MADneSs was primarily designed to target complex dynamic
systems. In [22], dynamicity is described as the capability of a
system to react promptly to changes in the environment. A system
that is not intended to change during its life is called static or
semi-static. Some anomaly detection algorithms that dynami-
cally adapt their behavior to suit the current state of the system
were already proposed in the literature [7], [21], but in general
they require heavy manual intervention when services change.
Noteworthy, no clear answers to characterize the expected
behavior and to define monitoring and data analysis strategies
in complex systems were provided in the state of the art.
Instead, several studies describe frameworks [2], [3], [4],
[e], [7], [9], [19] tackling anomaly detection in complex sys-
tems that rarely change i.e., semi-static systems. In general,
these works address either error detection or failure predic-
tion, gathering data about indicators related to multiple sys-
tem layers. In particular, in CASPER [2] the authors use
different detection strategies based on symptoms aggregated
through Complex Event Processing (CEP) techniques using
data gathered by observation of network traffic parameters.
Tiresias [3] predicts crash failures through the observation of
network, OS and application layers by applying an anomaly
detection strategy instantiated on each parameter. Differ-
ently, SEAD [7] aims at detecting configuration or perfor-
mance anomalies in cluster and cloud environments by
observing data coming from the middleware or the cloud
hypervisor. In [6], the authors describe a process for invariant
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TABLE 1
General Design Choices, Challenges Involved and Our Approach to Them

Scope Design Choice Challenges Our Approach Alternative Approaches

Monitoring Monitoring Strategy CH3 Static Multi-Layer Monitoring Dynamic Monitor [42], Database [15], Non-Intrusive [2]
Monitoring Context-Awareness CH1, CH3 Server-Side Context Awareness User Profiling, Environment [18]

Data Analysis Scoring Metrics CH4 FScore(2), FPR Recall (Coverage), Accuracy [9], Look-ahead Time [3]
Data Analysis  Selection of Indicators CH2, CH5 Goodness of Fit, Filtering Profiling [39], Manually Identified by Experts
Data Analysis Detection Algorithm CH1, CH2, CH4 SPS, Historical Checks Invariants [6], Sliding-Window Algorithms [43]
Data Analysis Voting Strategy CH1 Majority, 1-out-n, n-out-n Weighted sum [37], median, mean and plurality [38].

building, including advanced filtering and scoring techni-
ques aimed at selecting the most relevant ones. Moreover, in
[19] the authors applied SPS to detect the activation of soft-
ware faults in an Air Traffic Management (ATM) system that
has a defined set of services and predictable workloads.
Observing only OS indicators, SPS allowed anomaly-based
error detection with high scores.

While the works mentioned above target semi-static sys-
tems, ALERT [9] aims at triggering anomaly alerts to achieve
just-in-time anomaly prevention in dynamic hosting infra-
structures. The authors propose a novel context-aware anom-
aly prediction scheme to improve prediction accuracy. In [4],
we tackled the problem of performing anomaly detection in
dynamic systems by adapting the approach in [19] to work
in a dynamic context, where a multi-layer anomaly detection
strategy was instantiated on the prototype of Secure! [11].
The results achieved showed that analysing Secure! without
adequate knowledge on its behavior did not lead to a satisfac-
tory solution. We obtained a high number of false positives
and negatives because boundaries between expected and
anomalous behaviour were not identified properly. Further,
the lack of information on the current state of the system does
not allow detecting contextual anomalies.

We show that information on the context can be used to
improve anomaly detection in dynamic systems [20]. Con-
text-awareness usually refers to knowledge of the user envi-
ronment that is used to improve the performances of web
services [18]. Differently from that, in MADneSs we introduce
server-side context-awareness that does not require information
on the user. Instead, we investigate the context defined by the
services that are running at application layer. This helps defin-
ing the expected behavior of such services, also subject to fre-
quent updates and without requiring information of their
internals. These observations have been first introduced in [5].
Here we report on the general methodology, with a more
extensive evaluation to put in practice our preliminary results.

2.3 Main Challenges

Anomaly detection in complex and dynamic systems is
hard: we list here the intrinsic challenges that need to be
tackled to build suitable detection techniques.

CH.1. Adaptive Notion of Expected Behavior. Dynamicity leads
to frequent changes in the expected — and consequently anom-
alous - behavior. This means that the model of the expected
behavior needs to be repeatedly updated [1], because its valid-
ity is going to become false through time. In [7] and [9], the
authors propose self-adaptive anomaly detection strategies to
deal with such evolving notion of expected behavior.

CH.2. Avoiding Interferences and Minimizing Ouverhead. The
anomaly detection logic must not interfere with the target

system: the anomaly detection framework must not steal
computational resources or introduce relevant overheads e.g.,
during training of the anomaly detection algorithms. Intrusiv-
eness of anomaly detection frameworks are evaluated by aut-
hors in [2], [4], [19], mainly analyzing CPU and RAM usage.

CH 3. Applicable Monitoring Strategy. Data is collected from
different sources that compose the target system. However,
insights of the services or components may be not observable,
e.g., in case of third-party components or encapsulated com-
ponents [34]. Moreover, the set of services may change, e.g.,
services may be updated, added or removed. This calls for a
monitoring strategy that identifies viable monitoring targets
and does not require manual reconfiguration when the serv-
ices evolve.

CH 4. Suitable Anomaly Detection Algorithms. The anomaly
detection logic needs to rapidly cope with frequent changes
of the expected behavior. Algorithms that require a massive
training effort - such as clustering [7] or Markov-based mod-
els [2] - are not adequate when the system changes frequently.

CH.5. Selection of the Indicators. To minimize impact on
systems and/or networks, monitors should observe all and
only the minimum set of features (indicators) required by
the anomaly detector. For example, indicators values
obtained observing the network layer are generally suitable
for intrusion detectors [21], [23], while the operating system
is usually monitored when detecting performance issues [4]
or malware [17]. Other studies on the selection of the indica-
tors are in [6] on the filtering of invariants, and in [7] where
authors describe how they select 14 indicators out of 653
from the Xen hypervisor.

3 DESIGN CHOICES

We report the design choices (see Table 1) that address these
challenges and that have been implemented in the MADneSs
framework. For each design choice, we i) describe the general
approach, ii) describe our instantiation for the case studies,
and iil) report on alternative state-of-the-art strategies.
Despite the approach is generic, the instantiation of each
design choice may be changed according to the specific needs
and the availability of sophisticated algorithms or techniques.

3.1 Data Collection
3.1.1  Monitoring Strategy

When dealing with dynamic and evolving systems, instead of
instrumenting each service or application it appears more
appropriate to instrument the underlying layers such as oper-
ating systems, application servers, network protocols [14] or
databases [15]. This switches the observation perspective
from each service to the whole system. Problems generated by
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services e.g., due to manifestation of errors or attacks, can be
detected observing anomalies at the underlying system layers.

Our Approach. Consequently, we apply a multi-layer
monitoring strategy (CH.3). The system layers that are instru-
mented in MADneSs are the OS, the network, and the Java-
based middleware. We choose to investigate indicators
related to OS and network since these are common layers. We
selected Java middleware because it is the foundation of
several service-based software systems, e.g., Apache Tomcat or
JBoss. Depending on the specific system, layers such as data-
base [15] may be considered.

3.1.1 Context-Awareness and Contextual Information

Context-awareness can facilitate the description of the
expected behaviour of the services (CH.1, CH.3). This
approach was suggested by [45], where authors demon-
strated how a highly precise context-sensitive program repre-
sentation allows improving static program models. Also, in
[46], the context helps the data analyst making decisions: the
context is the latest data triage operation, which change every
time the analyst performs new operation. In fact, contextual
information has a key role in defining boundaries between
expected and anomalous behaviour. For example, let us con-
sider a user that invokes a “store file” service at time t. We can
combine contextual information with information on the cur-
rent behaviour of the servicei.e., a fingerprint, which here con-
cerns data transfer. Therefore, if the “store file” service is
invoked at time ¢, we expect an exchange of data during the
majority of the service. If no data is exchanged, we can reveal
that something anomalous is happening.

Our Approach. We refer to server-side context awareness. In
SOAs, web-services share common information through an
Enterprise Service Bus (ESB, [27]) that is in charge of i) integrat-
ing and standardizing common functionalities, and ii) collect-
ing data about the services. The ESB provides knowledge on
the services running at any time t. Moreover, we define a fin-
gerprint for each service of the SOA, composed by statistical
indexes i.e., average, median, standard deviation, related to the
expected usage of each monitored indicator while a specific
service is running. The running services and their fingerprint
build contextual information used for more accurate analyses.
For example, the ESB acquires information as the time instant
a web-service is called or replies, or the amount of data exch-
anged through a service invocation, and logs them to make
such information available to other processes. We do not
require knowledge on the user, contrary to what is typically
done when monitoring systems based on (web) services [18].

3.2 Data Analysis
3.2.1 Scoring Metrics

The basic measures are correct detections - true positives (TP),
true negatives (TN) - and the wrong ones, either missed detec-
tions (false negatives, FN) or false detections (false positives, FP).
More complex measures based on the basic ones are precision,
recall (or coverage) and F — Score(pB) [10]. Especially in the
F — Score(p), varying the parameter f makes it possible to
weight precision and recall (note that F' — Score(1) is referred
as F-Measure).

Our Approach. Since we are mostly targeting critical sys-
tems, we prefer to reduce the occurrence of missed detections

(EN), even at the cost of a higher rate of FP. For this reason,
our reference metric is F' — Score(2), which weights the recall
double than the precision. However, since anomalies and
related errors are supposed to be rare events, using only preci-
sion and recall is not a good choice as they do not account for
TNs. Thus, in combination with F' — Score(2), we use False
Positive Rate (FPR), or rather the ratio of incorrectly detected
anomalies to the number of all the correctly labeled expected
instances (TNs).

3.2.2 Detection Algorithm

Monitored data are processed by the selected anomaly detec-
tion algorithm(s). To cope with the dynamicity of the system,
adaptive anomaly detection techniques need tailoring their
parameters on the current context (CH.1). Self-adaptive and
online machine learning algorithms allow detecting observa-
tions that do not follow the inertia of their trend with reduced
computational or memory demands (CH.1, CH.4) [19]. The
subsequent observations of the value of an indicator are man-
aged through a sliding window mechanism [43], which keeps
track of the past elements related to such indicator. Past
elements are used by the algorithm to build a prediction, or
to build an acceptability range for the current value of the
indicator.

Our Approach. MADneSs performs anomaly detection by
adopting two strategies: i) Historical Checker (HIST), which
checks if the current data instance complies with the expect-
ations defined through contextual information, and ii) the
Statistical Predictor and Safety Margin (SPS, [19]) algorithm.
This algorithm predicts the next value of a sequence of
observations depending on a statistical analysis of the past
values. The prediction produces an interval of two values in
which the next value is expected to fall. If the next value is
outside the interval, SPS signals that this data point is anom-
alous. It is worth noting that SPS identifies point anomalies,
but does not identify groups of subsequent similar anoma-
lies (collective anomalies).

3.2.3 Selection of Indicators

The monitoring activity produces a sequence of observed val-
ues for the available system performance indicators (e.g.,
memory usage, network packets sent), to provide a complete
vision of the state of the monitored machines, because they
embrace different aspects of the monitored system. However,
monitoring all the system indicators is not usually allowed,
and may not be a proper choice, since the amount of data that
generated is challenging to be analysed without incurring in
delays (CH2). An accurate selection is thus required to opti-
mize the whole monitoring and data analysis environment.
As example, studies in [39] were directed to find the smaller
set of indicators providing good detection scores in different
systems (CH5). Moreover, it is difficult to catch possible rela-
tions when observing each indicator separately. An invariant-
based approach to detect faults by identifying dependencies
between indicators was proposed in [40] and then expanded
in [6]. Briefly, invariants are stable relations among indicators
that are expected to hold: a broken invariant reflects an anom-
alous state of the system.

Our Approach. Our initial set of indicators is composed by
i) simple indicators, or rather specific system indicators, and
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Fig. 1. High-level view of the MADneSs framework.

ii) composed indicators, couples of indicators that are linked
by a given relation. Composed indicators are identified acc-
ording to invariants as described in [40]. When a given
invariant between two simple indicators shows a Goodness
of Fit greater than a given threshold, a composed indicator
is created. Then, the set of indicators, either simple or com-
posed, to be used at runtime is filtered during training,
discarding indicators that are not informative (e.g., semi-
constant values) or extremely unstable, generating multiple
false alarms (i.e., high FPR scores).

3.2.4 Voting

The outputs of HIST and SPS for different indicators are col-
lected at the end of the data analysis process and are used
to evaluate if the state of the system is anomalous or not.
The way they are combined heavily impacts on the out-
comes of the anomaly detection process. To such extent, in
the literature several works on voting strategies in n-modular
redundant systems [37], [38] were primarily proposed as
adjudicators for improving fault tolerance of redundant sys-
tems. Noticeably, strategies as majority, median, mean, k-out-n
and plurality voting are still relevant when aggregating dif-
ferent individual results.

Our Approach. We assume of each algorithm that searches
for anomalies for a given indicator provides boolean results:
therefore, majority, median, mean and plurality voting lead to
the same scores. As a result, we will consider majority and k-
out-n strategies for the final voting of the single anomaly
scores. It is worth remarking that the strategies above con-
sider all the single scores having the same relevance, or repu-
tation. In many cases, it would be safe to weight detected
anomalies in different trends of indicators differently depe-
nding on the context e.g., the running service(s). As we do
not have any trustable way to assign weights, we use a voting
strategy that gives the same weights to our indicators.

3.3 Point, Contextual and Collective Anomalies
Our design approach supports the detection of point, contex-
tual, and collective anomalies (CH.4).

SPS identifies values that do not follow the statistical
inertia of the trend of observations, thus detecting point
anomalies. Information about the context makes us able to
check if the observed behaviour is compliant with the
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expected behaviour defined by contextual information i.e.,
HIST strategy. Consequently, this makes possible to identify
contextual anomalies.

Dealing with collective anomalies is generally difficult. In
some cases, algorithms catching either point or contextual
anomaly can also successfully identify collective anomalies.
However, collective anomalies may not differ significantly
from the expected trend in a given context, or they can be
erroneously evaluated as a new trend resulting from system
dynamics. In addition, background noise negatively influen-
ces their detection since it generates fluctuations that may be
misinterpreted as anomalies. To cope with this specific and
often tricky category of anomalies, we take advantage of com-
posed indicators. As described earlier, composed indicators
identify stable relations among couples of indicators that are
overall less sensitive to noise than simple indicators, reducing
false alarms.

4 MADNESS FRAMEWORK

We describe here the MADneSs framework, which imple-
ments the design choices described in Section 3.

4.1 Architectural Overview

In Fig. 1 we depict a high level view of MADneSs; from left
to right, the framework can be described as follows. The
users execute a workload, which is a sequence of invocations
of services hosted on several physical or virtual target
machines. One or more target machines can be monitored as
shown in the bottom left of the figure. In each target
machine, probes are instrumented, observing the indicators
related to 3 different system layers: i) OS, ii) middleware (Java
Virtual Machine, JVM) and iii) network. These values are col-
lected by custom probes aimed at minimizing the distur-
bance of target system (CH.3).

These probes repeatedly collect data on the Target Machine,
sending them to the communication handler, which forwards
data to the communication handler of the Detector Machine.
Here, the monitor aggregator encapsulates probes data in a
snapshot. The snapshot is then coupled with the fingerprint
of the running service that is obtained through tests e.g., aver-
age, standard deviations, on the expected trend of indicators,
and stored in the database (see the bottom-right of Fig. 1).
More in detail, once changes in the services are detected, tests
are run (test invocation) to gather a novel or updated finger-
print of each updated service. In our implementation, the fin-
gerprint is used together with contextual information extracted
from the ESB. Executing the monitor aggregator on a separate
machine allows i) reducing intrusiveness on the target
machine (CH.2), and ii) connecting more machines to the
same detector machine.

Finally, the snapshot and the fingerprint are then sent to
the Anomaly Detection module. If it evaluates the snapshot as
anomalous, it creates an object containing all the informa-
tion related to such anomaly e.g., which indicators are hav-
ing anomalous behaviors.

Anomaly alerts activate automated diagnosis strategies
e.g., testing quality of services [50], while the administrator is
alerted or recovery strategies executed only if the malfunction
is confirmed. Detailed diagnostic routines, countermeasures
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or reaction strategies are outside from the scope of this work
and will not be elaborated further.

4.2 Insights on the Monitor Aggregator

Data Categories. Periodically (once per second), the Monitor
Aggregator of the Detector Machine in Fig. 1 provides to the
anomaly detection module a snapshot of the observed sys-
tem status, composed of the quantities retrieved from the
probes installed on the Target Machine(s). For each indica-
tor, two quantities are provided: i) PLAIN: the current
probes’ observation, and ii) DIFF: the difference among the
current PLAIN value and the previous one.

Data Series. A data series is defined as a triple < indicator,
data_category, series_layer > . Indicator represents the indica-
tor responsible for the set of data we are analyzing. For exam-
ple, this can be the usage of the memory, the number of
accesses to the hard disk or the number of active threads man-
aged by the OS. Data_category specifies if the data series refers
either to PLAIN e.g., 234 threads are currently active, or to
DIFF elements e.g., 2 threads were created since the previous
observation. Lastly, series_layer describes the system layer
from which the data are collected. Noteworthy, MADneSs
also works with composed indicators; in this case, the serie-
s_layer is labeled as CROSS. For the sake of simplicity, in our
study composed indicators are obtained only through linear
combinations using a single arithmetic operator (—, /).

4.3 Insights on the Anomaly Detection Module
The Anomaly Detection module includes a set of anomaly
checkers, selected according to a given metric. An anomaly
checker is assigned to a given data series, and evaluates if the
current value of such data series is anomalous following a set
of rules. Two or more anomaly checkers can be created for the
same data series. Taking a snapshot as input, each anomaly
checker produces a score; then, individual outcomes of the set
of anomaly checkers are combined to decide if an anomaly is
suspected. Consequently, an anomaly is raised only if this
combined score reaches or exceeds a given treshold.

Anomaly Checkers. For each data series, we build two
anomaly checkers:

e  Historical (HIST): implements a contextual check by
comparing the values of a given data series with the

expectations contained in the fingerprint. If this
quantity is outside of the interval defined by average
=+ standard deviation contained in the fingerprint, an
anomaly is raised.

e SPS: for a given data series, this anomaly checker

applies the SPS algorithm described in [19].

Selected Anomaly Checkers and Anomaly Threshold. Once the
metric is defined, it is used to automatically detect the best
configuration of each anomaly checker. MADneSs detects
anomalies depending on a set of anomaly checkers that are
selected from the pool of available ones according to specific
rules. The selected anomaly checkers are extracted either by
choosing:

e BEST x: the x anomaly checkers that have the best
scores according to the metric e.g., BEST 5 (B5) repre-
sents the 5 checkers with higher FScore(2), or

e FILTERED y: the y checkers with the best metric
scores, filtered to avoid having two anomaly check-
ers exercised on the same data series. For example, it
avoids selecting SPS and HIST anomaly checkers on
the same “HeapMemoryUsage” PLAIN data series.

Having selected the anomaly checkers, we chose the

appropriate anomaly threshold as follows. A snapshot is voted
as anomalous if at least a threshold of the anomaly checkers
raise an anomaly. We propose different approaches to set this
threshold, namely

e ALL: all the selected anomaly checkers evaluate their
data series as anomalous;

e QUARTER / THIRD / HALF: at least a quarter /
third / half of the selected anomaly checkers evalu-
ate their data series as anomalous;

e ONE: the snapshot is evaluated as anomalous if at
least one of the anomaly checkers raises an anomaly.

It is important to remark that the choice of the threshold

heavily affects the overall detection performance. The usage
of a single checker (i.e., adopting ONE) reduces the amount
of false negatives; instead, a consensus among anomaly
checkers, e.g., ALL, reduces the number of (false) alarms.

4.4 Methodology to Exercise the Framework

The methodology to exercise MADneSs is composed of two
steps to be repeated when major reconfigurations occur:
Training Phase and Runtime Execution.

Training Phase. This phase is organized in two steps. In the
first step, fingerprints are obtained through the fest invocation
in Fig. 2. Then, preliminary runs exercising the expected work-
load are executed, storing the obtained data in the database.
Preliminary runs are conducted by either i) observing the
behavior of the system through functional tests, or ii) injecting
anomalies in one of the SOA services, and observing the
effects they generate on the monitored indicators. Preferably,
the service in which anomalies are injected is a custom service
devoted exclusively to testing, allowing to modify its source
code. This strategy is particularly useful when we cannot
inject faults into the services exposed by the target system.

During this step, the services are not open to users, which
consequently are waiting until the SOA is available again.
When the SOA is first deployed, deploy is completed only
after completion of step i) and ii). Once the SOA is available to
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TABLE 2
Models of Anomalies Adopted in Different State-of-the-Art Studies
Framework Anomalies
Name Target System Dynamicity =~ Reconfiguration — Misconfiguration Interaction Resource Usage
[8] - - v v
CASPER [2] Air Traffic Management Very Low vV
[6] Distributed Web App Low v v v
SEAD [7] Cloud Environment Low v
TIRESIAS [3]  Distributed Environment Low v
[19] Air Traffic Management Low v
ALERT [9] Cluster Environment Medium v
[4] SOA High v
MADneSs SOA High v v v

users, it is expected that only few services will be updated
each time, requiring specific tests and consequently short
periods of unavailability. Moreover, to avoid bothering the
user, preliminary runs can be exercised in low load periods
such as at night or on mirror systems. Scalability and solutions
to reduce training times are explored in Sections 6.3 and 6.4.

In the second step, services information and data extracted
from preliminary runs are used by the anomaly detection
module to train its parameters (CH.1), automatically choos-
ing the best selected anomaly checkers and threshold.

Runtime Execution. The fingerprints used during training
are now used by the Monitor Aggregator to build a complete
snapshot. Along with contextual information, such snapshots
are sent to the anomaly detection module: depending on
its outcomes, an anomaly alert is raised. If a service update is
detected during this phase, a new training phase is scheduled.
The scheduling policy is strictly dependent on the character-
istics of the system, and it is outside of the scope of MADneSs.

4.5 MADneSs Anomalies Model

We identify the model of anomalies that MADneSs aims to
detect. To such extent, we review well-known anomaly mod-
els from the literature identifying which of them are relevant
for MADneSs. The anomalies in such models cause perturba-
tions on the expected behaviour of system indicators and
should thus trigger detection. They describe common mani-
festation of attacks or faults but here we are not interested in
identifying their precise root cause, i.e., the specific individ-
ual attacks or faults which generated the anomaly. In Table 2,
we show the anomaly models adopted by the frameworks
analyzed in Section 2.2. Most of these frameworks consider
anomalies in the resource usage; while in [6] authors consider
reconfigurations and erroneous configurations (misconfigu-
ration) of parameters as sources of anomalies. Concerning
reconfiguration, the re-training of MADneSs every time a
reconfiguration is detected makes the detection of these
anomalies out of scope. Instead, we do include anomalies
concerning misconfiguration in our model.

Anomalies due to interaction among modules and compo-
nents of the complex system are sometimes considered as
well. In particular, [8] defines a set of behaviors that can
emerge in complex systems, such as: i) deadlock/livelock, ii)
trashing, iii) phase change, iv) synchronization and oscillation,
and v) chaotic. Similarly to reconfigurations, phase changes
are considered main system variations, thus calling for a new
training and not considered in our model. Furthermore, since

the Anomaly Detection module treats each Target Machine
individually, synchronization, oscillation and chaotic behav-
iors have minor impact or likelihood. Additionally, our mid-
dleware (JVM) automatically controls thrashing: the JVM
manages the garbage collection and context switches with the
objective of avoiding performances degradation. Instead,
deadlock and livelock are considered in our model as they
are possible cause of anomalies in complex systems.

Consequently, the resulting model is composed by i) per-
formance anomalies, and in particular we identify in this
paper four anomalies that we name MEMORY, CPU, DISK,
NETWORLK, ii) anomalies due to deadlock/livelock, that we
label as DEADLOCK, and iii) anomalies due to misconfigura-
tions. More in detail, we will focus on misconfiguration of the
network permissions, labeling them as NETPERM.

4.6 Implementation
The implementation of the framework is divided in Target
Machines and Detector Machine, and detailed as follows.

Target Machine. First, we assume that the target machines
have a Linux OS and use a Java-based application server to
run (web)services. OS and Network probes are shell modules
that read data from the /proc virtual filesystem of the Linux
distribution, while the JVM probe consists in a Java module
accessing performance data through the Java Management
Beans (MBeans). These three probes monitor 55 indicators: 23
from the OS, 25 from the Java, and 7 related to the network.
These probes are coordinated by a Java-based communication
handler that manages the collection of data, encapsulates
them in JSON format and sends the data through a TCP
socket. The version of Java required on the target machine(s)
to be instrumented with our probing system is 7 or higher.
Here we remark that despite several enterprise solutions pro-
viding monitoring facilities exist, we chose to develop our
own probes building on [44], [19] to limit the intrusiveness of
such monitoring tools. Intrusiveness of the adopted probes
was already studied in [4].

As indicators, let us consider our set of 55 indicators -
selected as in Section 3.2 - and nc composed indicators,
which are combined using the —, / matemathical operations
obtaining 2 * nc novel composed data series. Considering
both PLAIN and DIFF data categories for each indicator, we
obtain 110 separate single data series and 4 * nc composed
data series. On each data series we can instantiate either the
SPS or the HIST algorithm, totalizing 2 * (110 + 4 * nc) pos-
sible anomaly checkers. The set of checkers to be used is
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reduced and then ranked during the training phase, accord-
ing to the chosen metric.

Detector Machine. The engine of the Detector Machine is
based on the Complex Event Processor Esper [26], an open-
source software based on Event Stream Processing techni-
ques. Esper has been developed specifically to process huge
amounts of data in near real-time by means of SQL-like
queries called rules. The Esper engine facilitates collection of
data from different Target Machines, managing the different
trends in parallel. Further, it facilitates the combination of
snapshots and fingerprints performed by the Monitor Aggre-
gator, and the application of the Anomaly Detection module.
In particular, the Anomaly Detection module is realized in a
multithreading code that fetches the data from a MySQL data-
base and instantiates the anomaly checkers on the data series
provided by the Monitor Aggregator. The test invocations are
generated through a sequence of SOAP invocations, which
are executed through Apache AXIS calls.

Tailoring MADneSs to Other Systems. MADneSs can be
applied to any other service-oriented system as follows. Sup-
pose that you want to setup a server that uses the OwnCloud
[52] suite to manage a private repository of sensitive data,
events, documents and contracts. As opposed to our exam-
ples, the server will run a Windows Server distribution and
OwnCloud will be supported by a MySQL database. To suc-
cessfully setup and exercise MADneSs, a system administra-
tor should devise the main layers and preliminarily trying to
figure out where meaningful indicators may be located. In
this case, since there will be lots of data exchanges, the admin-
istrator targets Network, OS and Database layers. Then, admin-
istrator has to define probes for each layer e.g., using the
Performance Counters API for Microsoft OS, or activating a
packet sniffer as Wireshark to gather network. MADneSs is
able to read CSV files created by probes by adjusting a prefer-
ences file. In any other case, the administrator has to extend
the source code of MADneSs by creating a new Jauva class
extending CycleProbe and implementing the method readPar-
ams, that defines how the probe gather data at each instant of
time. Further, the administrator has to setup a strategy to
derive the active services at a given time, e.g., a connector to
occ — the interactive OwnCloud shell, to provide contextual
information. Then, MADneSs is ready to be used, requiring
minimal additional tuning e.g., specifying the IP address and
port of Detector Machine, where the monitored data is sent for
analysis. Note that the code running on Detector Machine
does not mandatorily require specific setup, while preferen-
ces to optimize the framework may be set e.g., if intermediate
data or anomaly scores of snapshots should be stored in a DB.

5 EXPERIMENTAL EVALUATION

We describe the experimental evaluation of MADneSs. To the
purpose of the evaluation, we run an automatic controller that
checks input data and manages the communications among
the Target and the Detector Machine. This facilitates the auto-
matic execution of the experimental campaign without user
intervention, except for the setup. All data is available at [32],
including additional files we do not report here for brevity.

5.1 Description of Our Case Study

The Target and Detector Machine are virtual machines run-
ning on a rack server with 3 Intel Xeon E5 — 2620@ 2.00

GHz processors. The Target Machine, which hosts either
the Secure! or jSeduite code, is instrumented with the prob-
ing system which produces 1 snapshot per second.

Secure!. Our Target Machine is one of the four virtual
machines that host the Secure! crisis management system [11].
Secure! is built on the Java-based Liferay 6.1.1 [12] portal on
Apache Tomcat 7.0.40 as application server, and it exposes web
services such as authentication mechanismes, file storage, and
calendar management. We identified 11 different web serv-
ices that can be invoked by the Secure! users, and we created
the All Services workload that invokes them with different
orders, with a time interval of 1 second between successive
invocations. One execution of the workload lasts approxi-
mately 65 seconds.

jSeduite. jSeduite is a SOA dealing with information broad-
cast inside academic institutions. It is composed of atomic
web services representing information sources and orchestra-
tions of business processes [41]. Some of the available services
cover basic operations as ErrorLogger, DataCache, FileUploade,
FeedRegistry, and Twitter Wrapper, that represents pillars on
which safety and/or security critical services are built upon.
We distributed jSeduite on a Glassfish Java-based server, setting
its services to use a MySql database.

5.2 Injection Approach
The injection of anomalies was performed by code mutation
in different injection points.

Injection Points. In Secure!, the injections targeted i) the corm.
liferay.portlet.documentlibrary.store.FileSystemStore in charge of
managing the addition of a directory in the Liferay filesystem,
ii) the encoding strategy involved in the exchange of data
between the database and the Ul showing the calendar (com.
liferay.portlet.calendar service.  impl.CalEventLocalUtil._encode-
Key function), and iii) the creation of a SOAP model (function
com.liferay.portlet. bookmarks.model.BookmarksFolderSoap.
toSoapModel) describing the response of the request of adding
a bookmark in the user data. The injection is triggered by a
timer expiring approximately at 70, 80, or 90 percent of the
workload: the code is mutated only when the timer expires.
This leads to 9 possible ways of injecting anomalies in Secure!:
3 injection points per 3 injection instants. An example of XML
workload can be found in [36].

With jSeduite, the injections were performed in 10 differ-
ent functions related to 4 of the selected 8 web services (fr.
unice.i3s.modalis.jSeduite.technical package). More in detail,
we instrumented TvHelper (tv.extract), Twitter Wrapper (mes-
saging.twitter.{getIntendedTweets, getChannel, getFreeTokens]),
ApalWrapper (apal.{getTopWithTreshold, getTopl0, getLoosers,
getPromos}), and FeedRegistry (registry.{getURL, getCategories,
getNicknames) services.

Injection Approach. We inject a single fault in each individual
run. Noteworthy, we are interested in detecting the first anom-
aly that is generated after the activation of the fault and that
can be explained by the fault itself. In fact, the manifestation of
a single fault can lead to several cascading effects on the sys-
tem, with consequent variations from the expected behavior
i.e.,, multiple anomalies. The complexity of our target system
does not allow studying the propagation effects of the injected
faults. Therefore, we are not able to distinguish if and especi-
ally how different anomalies are related. It follows that only the
first anomaly that is detected after the activation of the injected
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Fig. 3. Values of precision, recall, and FScore(2) for different injections.

fault can be considered a true positive (TP) in our analysis.
Further, this anomaly must be detected within a limited tem-
poral distance from the injection time instant; this way, we are
confident that the anomaly is a consequence of the injected
fault and not a false positive (FP). We experimentally set this
temporal distance to 2 seconds. Successive anomalies, which
can occur due to i) new manifestation(s) of errors, ii) cascading
effects of the injected faults, and iii) false positives, are ignored.

5.3 Experimental Campaign

We first conducted 90 golden runs in which we executed the
workload without any injection. Then, we performed runs
with injections for the 6 anomalies that are present in our
model of anomalies. For each anomaly, we executed 10 runs
for injection point identified, as discussed before.

Overall, 630 and 690 experiments were conducted on
Secure! and jSeduite respectively. This number was defined
observing the standard deviation for the results, which was
acceptable. To guarantee the correctness and repeatability of
the experiments, we reset the Target Machine before each
experiment. This also provides independency among subse-
quent experiments. The experiments above served i) as pre-
liminary runs for the training phase of MADneSs, and ii) to
validate the efficacy of the framework itself. In particular, the
90 golden runs and 70 percent of the others (e.g., 378 runs
with Secure!, i.e., 63 runs for each anomaly) were used for the
training phase. The remaining runs (e.g., 162 for Secure!)
were used for the validation of the framework.

5.4 Results: Detection Efficiency
The results of the experiments in terms of precision, recall, and
FScore(2) are depicted in Fig. 3. Each set of bars reports on the
results with the injection of a given software fault: as example,
the first set is related to injections of a MEMORY anomaly.
Moreover, each set of bars reports the results related to our
two case studies, obtained by using the optimal setup discov-
ered during training to detect specific anomalies. Results
related to jSeduite are reported using bars with solid fill, while
the Secure! ones are bars filled with a vertical-striped pattern.
Overall, we can observe how recall scores (Recall Sec! and
Recall jSe) are significantly higher than their precision counter-
parts. This is due to the choice of targeting FScore(2) as refer-
ence metric for the whole process favors anomaly checkers
that give higher recall scores. Consider though that in our

TABLE 3
Relevant Indicators for Experiments of Both
Secure! and jSeduite

Secure! jSeduite

Indicator Layer Indicator Layer
HeapUsage.committed =~ CENTOS  CPU Kernel Processes ~ CENTOS
CPU Kernel Processes CENTOS Minor Page Faults CENTOS
ThreadCount JVM ThreadCount JVM
Tcp_Syn NETWORK CollectionCount JVM
Free Virtual Pages JVM Active Memory CENTOS
CPU Soft Interrupts CENTOS  CPU Soft Interrupts ~ CENTOS
Major Page Faults CENTOS Net_Sent NETWORK

scenario when anomalies are injected we can have at most
one true positive, therefore in such scenarios false positives
are a better indicator than precision. Regarding the MEMORY
experiments in Fig. 3, all the injected anomalies were detected
i.e., recall scores are optimal at the price of a few false alarms,
which make precision scores lower than recall. The NET-
PERM experiments resulted in 2 false positives this was the
highest number of false positives observed. The average was
1.48 false positives per experiment, (with a FPR of 2.07).

Depending on the system, a given rate of false alarms can
be either a strong limitation for the application of our tech-
nique or a reasonable price to pay considering the chal-
lenges identified in Section 2.3. In any case it should be
considered that anomaly alerts normally activate automated
diagnosis strategies e.g., testing quality of services [50],
while the administrator is alerted or recovery strategies exe-
cuted only if the malfunction is confirmed.

5.5 Results: Indicator Selection

Table 3 reports on the indicators which overall give the more
relevant contribution to anomaly detection in all our exp-
eriments. The detailed list of the indicators and anomaly
checkers for each category of anomalies can be found in [32].
The indicators are ranked in Table 3 according to the
TOP_10 Avg FScore(2) index, which is not shown for brevity.
We compute the average FScore(2) of the 10 better anomaly
checkers which process data of either a simple or a composed
indicator. For each indicator, we report the name and its layer
for both the Secure! and jSeduite. Indicators regarding the
three layers are mentioned in the table, highlighting how OS-
related information resulted more useful than others for
detecting anomalies.

The list in Table 3 is not intended to be a selection that is
valid for any complex system. This is the list of the indicators
that scored better in our case studies: the list may vary depe-
nding on the target system, although some indicators (rep-
orted in italic font in Table 3) seem to be relevant in both case
studies. A guide for the selection of the appropriate data series
when using MADneSs is further expanded in Section 6.5.

5.6 Results: Sensitivity Analysis

We apply all the possible combinations among the selected
anomaly checkers to identify the setup that ultimately gives a
higher FScore(2). In Fig. 4 we report the graphical result of
the sensitivity analysis on the runs we used as validation of
our framework to detect MEMORY anomalies. On the hori-
zontal axis, are listed the different strategies for the choice
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Fig. 4. Sensitivity analysis aimed at finding the best combination of
anomaly checkers for the detection of MEMORY anomalies.

of the selected checkers. On the depth axis, instead, the
anomaly thresholds.

Regarding the detection of the anomaly MEMORY, an
optimal setup is represented by F10 (HALF), as can be
observed in Fig. 4. F10 (HALF) labels a snapshot as anoma-
lous if at least five anomaly checkers trigger an anomaly for
that snapshot. Other optimal setups can be obtained by con-
sidering the B3, that raises an anomaly either if i) at least
one out of three checkers detects an anomaly (ONE, QUAR-
TER, THIRD on the z-axis of Fig. 4), or ii) all three anomaly
checkers raise anomalies (ALL in the z-axis). Results of the
sensitivity analyses for the other injected anomalies are not
reported here for brevity, but lead to similar observations.

5.7 Detecting Unknowns
Beyond the results presented in Section 5.4 and depicted
in Fig. 3, we evaluated also the capabilities of MADneSs in
identifying unknown anomalies, which in the security domain
can represent the manifestations of zero-day attacks. To such
extent, we executed a different training of the framework.
When aiming at detecting anomalies linked to resource
usage, we used as training set: i) the golden runs, and ii)
runs with injection of either NETPERM or DEADLOCK
anomalies. Instead, runs with the injections of MEMORY,
NETWORK, CPU or DISK anomalies—together with the
golden runs—were used to train MADneSs when looking
for NETPERM or DEADLOCK anomalies. Consequently,
when looking for a given anomaly, during training phase
we did not include this specific type of anomaly, that there-
fore can be considered unknown in this particular setup.
Results of this complementary analysis are reported in
Table 4. Scores related to anomalies detected as unknowns
(right part of the table) are obviously lower wrt. the case of
training but still very good considering they are unknown.
The 7th column of Table 4 tells us that MADneSs is able to
identify on average 82 percent of the previously unseen
anomalies we injected. Clearly the price is higher false posi-
tives, as background noise could often result in a false
alarm. As example, regarding DEADLOCK we can observe
in Table 4 that recall is a bit higher when detecting anoma-
lies as unknowns: however, the false positive rate is higher
compared with the results obtained when training MAD-
neSs with such anomaly.

TABLE 4
Precision (P in the Table), Recall (R), FScore(2) (F2), and
False Positive Rate (FPR) Average Scores When
Detecting Specific Categories of Anomalies

Anomaly Training Unknown
Anomaly
Category

P R F2 FPR P R F2 FPR
MEMORY 0.56 1.00 0.86 225 0.37 0.85 0.67 3.24
NETWORK 0.54 094 082 221 050 0.73 0.67 1.84
CPU 0.68 087 0.82 1.62 046 0.80 0.70 2.46
DISK 057 084 077 233 034 079 0.63 243
NETPERM 048 093 0.79 2.60 038 0.84 0.68 3.37
DEADLOCK 0.72 0.88 0.84 138 037 092 071 3.75
Average 0.59 091 0.82 2.07 0.40 0.82 0.68 2.85

Columns on the left regard scores obtained by MADneSs after ad-hoc training,
while columns on the right indicate the detection scores when MADneSs is not
trained to identify such anomaly, which is unknown.

5.8 Results: Performance

According to our methodology, we need to build the finger-
prints of the services. Here we investigate the time required
to i) exercise the workload by conducting preliminary runs,
and ii) analyse these data to characterize services, to obtain
the parameters of each anomaly checker.

Preliminary Runs. We computed the time needed to testi) a
single web service, and ii) all the web services on the Secure!
system. Overall, testing a single service once requires
between 8 and 12 seconds, while a single invocation of all the
11 services in a row requires approximately 72 seconds.
Once preliminary runs are conducted, and services informa-
tion is stored in the database, data is analysed to select the
best combination of parameters for the anomaly checkers.
The performance of this operation is strictly dependent on
the characteristics of the anomaly checker, and on the
amount of training data that is used to select the best
configuration.

Training Times. We measured the time needed to select
the best anomaly checkers when processing Secure! data,
using all the 468 training runs. For (average, median, standard
deviation), each SPS anomaly checkers took (42.68,42.21,
1.15) ms, while each HIST needed (0.45,0.33,0.19) ms. While
these are short, we remark that they are related to a single
anomaly checker. In the worst case, when all the possible
612 (49 composed indicators are selected in Secure!) anom-
aly checkers are considered(e.g., at the start of the system),
we need 814.5 and 8.7 seconds to select the best configura-
tions of anomaly checkers respectively for SPS and HIST for
a single set of 63 training runs.

Complexity Analysis. The time needed to select the best con-
figuration is linear to the number of runs used for training. Let
us consider te as the number of training runs, while O(SPS)
and O(HIST) represent the computational complexity to train
a given checker respectively for SPS and HIST using data
from a single run. It follows that the worst-case complexity
to select the best configuration of a checker on a single
experiment can be approximated as O(te) * maz{O(SPS),
O(HIST)}. In other words, the complexity of the training
phase of MADneSs is strictly related to the complexity of the
heaviest anomaly detection algorithm implemented (SPS in
our case).
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TABLE 5
Six Anomaly Detectors, Where Technical Advancements are
Progressively Introduced Until Reaching MADneSs

Table 6
Comparing Metric Scores of MADneSs with Respect
to Frameworks in Table 2

Context-  Composed
# Layers Data Aware  Data Series
[19] (05 PLAIN NO NO
[4] OS, JVM PLAIN NO NO
il OS, JVM, Network PLAIN NO NO
iv OS, JVM, Network  PLAIN, DIFF NO NO
v OS, JVM, Network  PLAIN, DIFF YES NO
MADneSs OS, JVM, Network PLAIN, DIFF YES YES

6 COMPARISONS AND DISCUSSIONS

6.1 Incremental Improvements of Detection Scores
To explain the difficulties of detecting anomalies in dynamic
systems, in Table 5 we show the incremental introduction of
six technical advancements that led to MADneSs. These can
be interpreted as six different frameworks, where the amount
of detection features available is progressively increased.
From the top of the table, i) consider the framework in [19], ii)
adds probes that monitor the JVM middleware [4], iii) intro-
duces probes that monitor the network layer, iv) includes the
DIFF data series in addition to the default (PLAIN), for each
indicator, v) uses services information in combination with
context awareness, and vi) finally, extends the solution for
composed data series, completing MADneSs. In Fig. 5 we
report only Precision and Recall obtained when applying
the 6 alternatives to our SOAs. The introduction of a tech-
nical advancement never lowers Recall, which significantly
improves when more indicators and data series are added
i.e., stepsit, 1%, iv.

Instead, precision decreases in Secure! in the technical
advancement iv. The introduction of the DIFF data series
increases the number of data series and, consequently, anom-
aly checkers, without the ability to distinguish which are the
most effective (this is instead done in the successive technical
advancement, number v). As a result, the anomaly checkers
are able to improve detection capability (increase of recall) at
the cost of an increased number of false alarms. This is solved
in the next technical advancement v, where information on
the context supports the characterization of the expected

100%
& Precision Sec!
Precision jSe
80%
m Recall Sec!
Recall jSe
60%
40%
20% -
0% 5=

[19] [4] ii iv v

MADneSs

Fig. 5. Detection capabilities for the six versions of anomaly detector
when looking for MEMORY anomalies.

Framework Metric Scores (%)

Name Monitored Layers Precision Recall FScore(2)  FPR
CASPER [2] Network 88.5 76.5 78.6 11.3
[6] OS,Network 76.0 99.0 93.3 n.a.
SEAD [7] Hypervisor n.a. 92.1 n.a. n.a.
TIRESIAS [3] OS,Network 97.5 n.a. n.a. 2.5
[19] (best setup) (5] 97.0 100.0 99.3 1.9
ALERT [9] Host ~100.0 >90.0 >90.0 <10.0
[4] (best setup) OS JVM 35.1 443 42.1 44
MADneSs (avg) OS,JVM,Network 59.1 91.2 82.3 2.1

behavior and allows contextual anomalies to be detected.
Lastly, the introduction of composed data series and a sensi-
tivity analysis lead to the final framework, and consequently
to the best scores in Fig. 5.

6.2 Comparison with Respect to Other Frameworks
Surveyed Studies. In Table 6 we reported the detection per-
formance from the surveyed studies, including MADneSs.
We show only results for anomalies related to the resource
usage, because they are the only anomalies common to all
the surveyed studies (see column resource usage in Table 2).
Further, authors of [8] did not report detailed information
about their detection scores; consequently, we excluded this
work from our comparison.

Generally precision, recall, F-Score(2) and FPR - where
available - are strongly influenced by the characteristics of the
target system. When the dynamicity of the system is low it is
easier to define the expected behaviour resulting in a sign-
ificantly lower number of FPs and FNs (as in [19] [2] and [3])
with respect to [4] and, to a smaller extent, [6] (see Table 6).
High precision scores are obtained by ALERT [9], which is
exercised in a cluster environment. The system shows good
dynamicity, because hosts are added or removed; however,
the cluster runs a fixed pool of tasks during its operational
life. Instead, SEAD [7] obtains high recall scores by analy-
sing data from a hypervisor, but no precision or FScore are
reported.

Finally, MADneSs presents a recall index that is competi-
tive with the other solutions, especially considering that we
are exercising the anomaly detector on a highly dynamic
system. Precision of MADneSs is low, because despite a rel-
atively low number of false positives is observed, in our
case at mot 1 true positive can be observed.

Focusing on Unknowns. In addition to the surveyed works,
we refer to the context-aware studies in [47], [48] to evaluate
the ability of MADneSs to detect manifestation of unknowns,
either due to undiscovered faults or zero day attacks. In [47]
authors use a contextual misuse detector combined with a
neighbour-based algorithm to detect zero-day cyber-attacks
in static systems. As summarized in Table 7, in their study
authors reach recall and FPR scores that are lower than ours.
Another work for comparison is [48], where authors detect
anomalies in the frequency of service calls targeting a
“synthetic” SOA system, reporting experimental data related
to k-means and emerging patterns algorithms. Recall is higher
than ours with emerging patterns, but it generates a remarkable
amount of FPs. Moreover, in their experimental campaign
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TABLE 7
Comparing Metric Scores of MADneSs Dealing with Unknowns

Metric Scores (%)

Framework

Precision Recall FScore(2) FPR
[47] (local optimum 6 = 0.8) n.a. 67.0 n.a. 22.00
[48] (kmeans - best) n.a 80.0 n.a. 13.00
[48] (emerging pattern - best) n.a 91.0 n.a. 23.00
MADneSs (avg) 40.2 82.1 68.4 2.85

authors consider a reduced (two) amount of anomalies,
which impacts on the significance of the results above.

6.3 Scalability

Here we discuss how MADneSs scales when varying the
resources of the Detector Machine, the number of connected
Target Machines, and the monitored data.

Impact of Training. Once preliminary runs are executed, the
collected data is aggregated by the monitor and analyzed to
choose the best set of anomaly checkers and the most profit-
able anomaly threshold. This requires testing combinations
of data series and detection algorithms. The cost of this opera-
tion is linear with respect to the number of data series and
detection algorithms. Some algorithms require short periods
of training, since they either have a limited set of parameters
or simpler strategies: this is the case of the historical checker.
Instead, other algorithms, such as SPS, have more parameters
that need to be instantiated.

Impacts on Runtime Execution. In [4] we analyzed the intru-
siveness of system probes for OS and JVM, and the network
load required to transfer monitored data to a remote Detector
Machine. Although the analysis did not consider network
probes and the data processing was much simpler than
MADneSs, main results are still valid. We empirically dem-
onstrated that we were able to aggregate, process and analyze
data coming from 5 different Target Machines at the same
time. This is adequate for the Secure! system as it is composed
of four machines.

In this paper we replicated the analysis, confirming the
results from [4]. Further, we computed the time elapsed from
the observation of a snapshot on the Target Machine until its
evaluation by MADneSs. This time is 32.10 £ 5.99 ms in our
experiments. It is considered fully adequate for the Secure!
system.

6.4 More on Training Activity

When dealing with dynamic systems, frequent training
phases may be needed to keep the parameters and the
anomaly checkers compliant with the current notion of
expected and anomalous behavior (see conformal anomaly
detection [28]). In [29], authors tackle online training for fail-
ure prediction purposes i) continuously increasing the train-
ing set during the system operation, and ii) dynamically
modifying the rules of failure patterns by tracing prediction
accuracy at runtime. A similar approach is also used to
model up-to-date Finite State Automata tailored on sequen-
ces of system calls for anomaly-based intrusion detection
[30] or Hidden Semi Markov Models for online failure predic-
tion [31]. Consequently, training phases defining the “new”
expected behavior should start when specific triggers

activate. We are currently considering three triggers that
can be detected looking at the SOA and system setups: i)
update of the workload, ii) addition or update of a web service in
the platform, iii) hardware update.

6.5 System-Specificity of Our Findings

Experiments showed that MADneSs is able to perform
anomaly detection on dynamic systems with scores that are
comparable to those of other frameworks intended for more
static ones. Unfortunately, we could not find other datasets
collected from dynamic systems, and therefore we did not
test MADneSs on systems different from Secure! and jSe-
duite. It is thus hard to generalize part of the findings of our
work. Despite that, we believe that the design choices sug-
gested in Section 3 are valid regardless system-specific set-
tings, and their validity goes beyond our case studies.
Moreover, the selection of indicators for anomaly detection
presents some generically applicable results. For example,
we observed that some indicators are especially relevant to
detect certain anomalies, as the HeapMemoryUsage.committed
is for MEMORY anomalies; we expect this trend is main-
tained when observing errors that manifest as memory
anomalies in other systems, although further studies would
be needed to confirm this.

7 CONCLUSIONS

We presented our approach to anomaly detection in com-
plex dynamic systems. We listed challenges related to
dynamic systems that negatively affect the efficacy of tradi-
tional anomaly detectors; then, we proposed design choices
to address such challenges. We discussed Monitoring Strat-
egqy, ii) Context-Awareness, iii) Scoring Metrics, iv) Selection of
Indicators, v) Detection Algorithm, and, finally, vi) Voting
Strategy. The key aspects of our approach were integrated in
MADneSs, a novel framework for anomaly detection that
employs a large anomaly model, includes an automatic tun-
ing of its parameters, and manages relations among system
indicators. MADneSs integrates a multi-layer monitor,
which allows shifting the observation perspective from the
application layer—where services operate—to the underly-
ing layers, which are subject to smaller updates, allowing
instrumenting a monitor that does not require substantial
maintenance.

The detection algorithm was chosen accordingly, resulting
in the adaptive SPS [19] algorithm, which calculates an
acceptability interval for a data instance depending on a slid-
ing window of previous observations. Lastly, we conducted
our experimental campaign by exercising MADneSs on the
Secure! [11] CMS and on the jSeduite [41] SOA, showing that
context-awareness improves the detection accuracy. The
analysis included performance, complexity, sensitivity and
scalability analyses, and comparisons with other frameworks,
showing that MADneSs has potential for the considered tar-
get systems.
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