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Exact Inference Techniques for the
Analysis of Bayesian Attack Graphs

Luis Munoz-Gonzélez", Daniele Sgandurra, Martin Barrere, and Emil C. Lupu

Abstract—Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers
can use to compromise network resources. The uncertainty about the attacker’s behaviour makes Bayesian networks suitable to model
attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a
Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make
exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our
approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies,
showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing

approaches.

Index Terms—Security risk assessment, attack graphs, Bayesian networks, dynamic analysis, probabilistic graphical models

1 INTRODUCTION

THE estimated cyber-security market is expected to grow
to $101 billions in 2018 [1]. Nevertheless, efforts to pro-
tect networks cannot cope with the sophistication of attackers,
as shown by the history of data-breaches organizations have
suffered, including in recent times [2]. However, it is not
always possible to patch all existing vulnerabilities: some sys-
tems cannot be interrupted or a lack of manpower prevents
from doing so. Therefore, one way to optimize the resources
and effort required to protect a network is to first assess its
risks, and then, prioritize the most critical threats. This
requires estimating the risk exposure of vulnerable network
nodes, given the threat likelihood and the severity of the
impacts [3], and using these values to select appropriate coun-
termeasures. This process produces not only a better threat
prioritization, but also an improved return-on-investment.
However, this approach does not consider the dependencies
between vulnerabilities, thus limiting its usefulness.

These shortcomings can be addressed with Attack Graphs
(AGs) [4], [5], [6], which represent prior knowledge about
vulnerabilities and network connectivity, enabling system
administrators to reason about threats and their risks in
a formal way. AGs permit a priori analysis of the possible
avenues an attacker can exploit to compromise the system.
Thus, they can be used to focus on the most-effective threats
and produce a better countermeasures selection [7], which is
also known as static analysis.

On the other hand, proactive security hardening is not
always the best strategy. As discussed in [8], a reactive
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security strategy can be competitive when the defender
does not overreact to the last attack but learns from past
experience. In this sense, AGs can also be used to dynami-
cally profile the attacker’s paths, to determine which
nodes are more likely to be attacked in the next steps.
They can also be used to evaluate the security risks for
valuable network resources and to reason about nodes
that may have been already compromised, when we
observe evidence of an ongoing attack. Since organiza-
tions are often under attack, this dynamic analysis gives
system administrators important insights in real-time on
where they should spend their efforts and the most
vulnerable targets.

Both static and dynamic analysis of AGs have inherent
probabilistic characteristics given the uncertainty about the
attackers’ ability to exploit vulnerabilities. In this sense,
Bayesian Networks (BNs) provide an appropriate frame-
work to model AGs, since they depict causal relationships
between random variables in a compact way. This approach
has already been proposed in the literature: [9] present a
Bayesian AG (BAG) to model attack paths in a network,
using Variable Elimination (VE) as an algorithm for infer-
ence on the Bayesian model. [10], [11] present mechanisms
to calculate the conditional probability tables, which repre-
sent the combined effect of vulnerabilities to compromise a
node. More recently, [12] present a BN framework to per-
form risk assessment and propose risk mitigation strategies
in the context of AGs.

However, none of the above propose appropriate and
efficient algorithms for inference on their models, and com-
puting unconditional probabilities in BNs is an NP-Hard
problem. For example, using a brute force approach and com-
puting the joint probability distribution for a BAG with
40 nodes, using 8 bytes to store each entry in the table,
requires 2073 /1,024% = 8,192 Gigabytes of memory. There-
fore, the use of efficient inference techniques is important to
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reduce the time and computational resources required and
improve the applicability of the approach. More concretely,
in [10], [11] no mechanism is proposed to calculate the uncon-
ditional probabilities of compromising each node. Forward-
backward propagation is proposed in [12]. However, as
shown in [13], [14], this technique is applicable only when the
corresponding graph is a chain', which is not true for AGs in
general. Finally, although the VE algorithm proposed in [9] is
valid for inference in BAGs, its computational complexity
limits its applicability to small graphs, especially in the case
of the dynamic analysis where the time to respond to an
attack is of essence. Furthermore, none of the previous papers
reports an experimental evaluation of the time and memory
requirements of the techniques proposed to assess their suit-
ability for static and dynamic analysis of AGs.
The main contributions of this paper are the following;:

e We propose a revised BAG model for the static and
dynamic analysis of AGs, which overcomes some lim-
itations of previous models, such as the undesirable
effects of adding a prior on the attacker capabilities.
Furthermore, this model serves as a basis for further
model extensions, including zero-day vulnerabilities,
attacker’s capabilities or dependencies between vul-
nerability types, among others.

e Although exact inference in probabilistic graphical
models is NP-Hard, we propose to use message
passing algorithms such as Belief Propagation (BP)
(for Attack Trees) and Junction Tree (JT) (for general
AGs), to efficiently calculate the unconditional prob-
abilities that the nodes have been compromised con-
sidering, if applicable, evidence of ongoing attacks.

e To assess the applicability of the algorithms pro-
posed and to show the limitations of existing
approaches, we provide a comprehensive experi-
mental evaluation using synthetic AGs. Our results
show that the JT algorithm can be applied to AGs of
hundreds of nodes, corresponding to networks of
thousands of nodes. As far as we know, this is the
first experimental evaluation in the literature of AGs
that analyses the time and memory requirements for
static and dynamic inference in BAGs.

e Our results also show the importance of cluster
structures when modelling with AGs. We show that
the JT algorithm in clustered networks scales linearly
in the number of nodes for dynamic inference, which
makes it suitable for use in practical settings such as
corporate networks where hosts are grouped for
management purposes.

The rest of the paper is organised as follows. Section 2
reviews Attack Graph models. In Section 3 we present a
BAG model that improves upon existing models in the liter-
ature. In Section 4 we introduce VE, BP, and JT as proce-
dures to perform exact inference on BAGs. Experimental
results for static and dynamic inference on BAGs are pre-
sented in Section 5 while in Section 6 we sketch possible
extensions of our model. Section 7 concludes the paper and
discusses further research directions.

1. In this context, a chain is a graph where, given nodes X, ..., Xx,
there is only one edge from each X; to X;; fori =1,..., N — 1.

ftp_rhosts(0,1)

Fig. 1. Simple example of a network configuration and the corresponding
logical AG taken from [19], [20].

2 ATTACK GRAPHS

AGs are graphical models that represent the knowledge
about vulnerabilities in a network, and their interactions,
showing the different paths an attacker can follow to reach a
given goal. Along each path, vulnerabilities are exploited in
sequence, each successful exploit giving the attacker more
privileges towards his goal. Two main types of AG are used
in the literature: state-based representations and logical AGs.

In state-based representations [4], [5], [15] each node in the
AG reprents the state of the whole network after a simple
atomic attack, and contains a table with global variables
defining that state. The number of states and variables com-
binatorially explodes when increasing the number of nodes
[16], [17], [18], thus limiting the applicability of these repre-
sentations to very small networks only. Moreover, state-
based AGs can contain duplicate attack paths that differ
only in the order of the attack steps. This additionally
increases the complexity of the graph.

In contrast, logical AGs are defined as bipartite graphs
which represent dependencies between exploits and security
conditions [16]. These representations rely on a monotonicity
principle: the attacker never relinquishes privileges once
obtained. Although not always applicable this assumption is
reasonable in most cases. Monotonicity allows to remove
duplicated paths and results in a Directed Acyclic Graph
(DAG), which grows polynomially with the number of vul-
nerabilities and the number of connected pairs of hosts [6].
Formally, we can define an AG (in the logical representation)
as a directed bipartite graph G = (EUC, R, U R;), where
the vertices £ and C are the sets of exploits and security
conditions, respectively, and the edges R, C C' x E and
R; C E x C are require and imply relations.

Fig. 1 shows a scenario from [19], [20], where Host 1 offers
File Transfer Protocol (FTP), Secure Shell (SSH), and Remote
Shell (RSH) access, whilst Host 2 offers FTP and RSH. The
firewall allows FTP, SSH, and RSH traffic from external users
(Host 0) to both servers. The goal of the attacker is to gain root
privileges on Host 2. In the AG, the conditions are repre-
sented as circles where the host involved is inside the paren-
theses, while vulnerabilities are depicted in rectangles,
showing the source and destination host inside parentheses,
i.e., (source, destination). In Fig. 1, we observe that there are
three possible paths for the attacker. The probabilities that an
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P(B) = 0.800
P(D) = 0.800

Fig. 2. BAG representation for the AG in Fig. 1 with the unconditional
probabilities calculated for each node when there are no attacks.

attacker can successfully exploit the vulnerabilities in the
network given in [20], using the Base Score metric of the
CVSS score, are: 0.8 for ftp_rhost, 0.1 for ssh_bof, 0.9 for rsh,
and 0.1 for local_bof.

3 BAYESIAN ATTACK GRAPHS

As logical representations of AGs result in DAGs, Bayes-
ian Networks (BNs) are suitable to model the AGs and
perform static and dynamic analysis, to calculate the
probability that an attacker can reach each state (condi-
tion) in the graph.

The use of BNs for AGs was first introduced in [9] for the
dynamic analysis of AGs. The authors proposed to use the
VE algorithm [21] to calculate the probability that an
attacker can reach a security state given prior knowledge of
the state it had reached. They also propose to use the Most
Probable Explanation (MPE) algorithm (relying on VE) to
determine the nodes that have been possibly already com-
promised. However, VE can be computationally expensive
compared to other inference algorithms such as Junction
Tree (JT). Furthermore, the authors do not propose an elimi-
nation ordering algorithm before applying VE, which has
significant impact on the algorithm’s performance, as we
show in Section 5. Moreover, finding the optimal elimina-
tion order turns out to be another NP-Hard problem [22].
[9] also lacks an experimental evaluation to assess the appli-
cability of the algorithm in practice. Finally, we consider
that the use of MPE is not appropriate in the context of AGs
and can lead to misleading conclusions about the network
state, as further discussed in Section 4.

[11] and [10] show how to calculate the conditional proba-
bility tables in a Bayesian Attack Graphs (BAGs) as the com-
bined effect of vulnerabilities in a network. In [19], a Dynamic
BN is proposed to also model temporal factors that affect the
impact of the vulnerabilities, however they do not provide
any mechanism for inference on their models. [12] proposes a
risk management framework using BNs to assess at run-time
the chances of a network compromise and select mitigation
strategies. However, the authors propose to use forward-
backward propagation for inference, which is not appropriate
for general AGs, as this algorithm can only be applied to
chains, not to general graphs [13], [14].

A BN is a directed graphical model where the nodes repre-
sent random variables and the directed edges represent
dependencies between them, forming a DAG. Let X = {X,
..., X, } be a set of random variables (continuous or discrete).
The joint probability distribution can be written as,

p(X) = [[ p(Xilpa,), 6)
=1

so that, under the BN representation, for each node X; there
is a directed edge from each node in the set of parents nodes
pa, of X; pointing to X;. For example, the joint probability
distribution of the BAG in Fig. 2 can be written as,

p(A,B,C,D,E, F,G) = p(A) p(B|A) p(D|A) p(C|A, B)
x p(E|C) p(F|D, E) p(G|F).
(2)

3.1 Model Assumptions

Following a treatment similar to others works in the litera-
ture on AGs, we will make here the following assumptions
to build the BAG from the AG logical representation: 1) We
consider that successfully exploiting a vulnerability in a
given context (e.g., on a host) does not change the probabil-
ity of exploiting the same or similar vulnerabilities in a dif-
ferent context (on another host). 2) The probability of
successfully exploiting a vulnerability remains constant in
time e.g., the attacker does not improve his success during
the attack. Although in [19] a dynamic network is proposed
to model such aspects, the changes in probabilities are slow
enough (i.e., days or weeks) to be considered constant. It is
then better to recompute the model, than to increase the
complexity of the model to deal with such dynamic aspects.
3) The attacker’s capabilities are not considered or, at least,
all the potential attackers are supposed to have the same
skills and attack preferences. 4) We do not consider zero-
day vulnerabilities, social engineering attacks and insider
attacks. 5) We assume that the Intrusion Detection System
(IDS) may not detect all the events of interest and that it
does not trigger false alarms (or false alarms have been dis-
carded following investigation).

Although these assumptions may seem restrictive, they
are common in the literature on AGs. Furthermore, the effi-
cient probabilistic inference mechanisms we propose can
also be applied to other more flexible BAG models as dis-
cussed in Section 6. Under these assumptions, the nodes in
the BAG represent the different security states that an
attacker can reach. We model the behaviour of these states as
Bernoulli random variables, so the probability of a node X;
to be compromised is? Pr(X; =T) = p, and, consequently,
the probability of a node not to be compromised is Pr(X; =
F)=1-p, withp € [0,1].

In Fig. 2 we show the BAG generated from the AG shown
in Fig. 1 along with the probabilities for each node to be
compromised by an attacker. The initial node, A = user(0),
shows that the attacker has user privileges on his own
machine with probability 1.

2. To simplify the mathematical notation, we will refer to the uncon-
ditional probability of a node to be compromised as Pr(X;).
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3.2 Conditional Probability Distributions

Under the BN representation, the information available at
each node X is the conditional probability distribution of
X; to be compromised given its parent nodes, i.e., p(X;|pa,).
From a security view point, these conditional probabilities
represent the probabilities of an attacker to reach security
state X; given the observations of the set of preconditions
pa;. These allow the attacker to compromise X; by exploit-
ing the vulnerabilities e;, which link pa, with X in the origi-
nal bipartite AG. We consider that the probabilities of
successfully exploiting vulnerabilities are parameters of the
model (instead of random variables), which allows to calcu-
late the conditional probability tables that define p(X;|pa,).

The scores provided by the Common Vulnerability Scor-
ing System (CVSS) [23] can be used to estimate p,,, the prob-
ability of an attacker successfully exploiting a vulnerability
vj. Although CVSS scores estimate the impact of a vulnera-
bility rather than its probability of being successfully
exploited, in the absence of better indicators, CVSS scores or
some of their submetrics are often used in the literature.
Whilst [19], [24] use the entire CVSS score, in our opinion,
the exploitability submetric is more appropriate since it tries
to measure the difficulty of exploiting a vulnerability. This
is also proposed in [12]. For the AG in Fig. 1 we have used
the probabilities given by [20], which only consider the Base
Score metric of the CVSS score.

To calculate the conditional probability distributions
p(X;|pa;,) we consider two possible cases [12]: A logical
AND where all the preconditions should be met to compro-
mise node X;. This can be expressed as,

0, 3X; epa|X;=F
p(Xilpa) = { I x; Pvj  otherwise. ©

A logical OR where only one of the preconditions in pa,
needs to be satisfied to compromise X;. This can be calcu-
lated using the noisy-OR formulation [25], so that,

VX]' € paL|X] =F

otherwise.

0,
p(X7|paL) = { 1-— Hj:Xj(l _pvj)7 @

The Supplementary Material shows how to compute the
conditional probability tables for the AND and OR cases
through an example, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TDSC.2016.2627033.

3.3 Effect of the Prior Probability on the Initial State
The effect of the initial node of the BAG, which represents the
initial state of the attacker (for example, node A in Fig. 2)
requires further consideration. It has not been discussed in
the literature and can have significant implications for the
analysis of AGs, as we will show. In our opinion, this node
does not represent a random variable, as considered in other
approaches, since it only represents that the attacker has full
rights on his own machine. This is equivalent to consider
that Pr(X,) = 1. Other studies, e.g., [12], propose to use this
node to reflect some subjective prior knowledge of the
attacker’s capabilities or the attacker intention and let the
administrator set the value of Pr(X;). This has two main
shortcomings: first, modelling the attacker’s capabilities only

OR
(@)

P(B)=0.973 -
Evidence

P(D)=0.800 |P(E)=1.000

Fig. 3. (a) Unconditional probabilities for the BAG in Fig. 2 when the prior
belief on the initial state of the attacker (node A) is set to 0.7. (b) Uncon-
ditional probabilities for the previous BAG when evidence that the
attacker has compromised node E is observed. The result is the same
as when observing the same evidence for the BAG in Fig. 2.

describes a subjective average behaviour of different kinds
of attackers and, second, the effect of this prior can lead to
misleading conclusions in the dynamic analysis of the AG,
especially when reasoning about the nodes an attacker may
have already compromised.

To illustrate this, consider the example in Fig. 3a, where
we have the same BAG as in Fig. 2, but with the prior belief
on the initial state to the attacker set to Pr(A) = 0.7, instead
of 1. As expected, the unconditional probabilities of the
other nodes decrease with respect to the probabilities calcu-
lated in Fig. 2. At some stage, forensic evidence of an attack
may let us conclude that node E has been compromised as
shown in Fig. 3b; thus Pr(£) = 1. Note that this result is the
same regardless of the value of Pr(A). In the case where
Pr(A) = 1, we see that all nodes have increased their proba-
bilities except D. This indicates that nodes C' and B, as
parents of £, may have been compromised. In contrast, if
Pr(A) = 0.7 and E has been compromised, the probabilities
of all the nodes have increased. This is misleading, as there
is no additional evidence that the attacker followed the path
from A to D or that the attacker’s ability to compromise D
has increased. This effect can hinder reasoning about the
attack paths that an attacker could follow or nodes that may
have been already compromised.

Finally, to calculate the unconditional probabilities of the
BAG more efficiently, we propose to use one initial node
(the initial state of the attacker) for each initial attack path.
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P(A1) = 1.000

P(A2) = 1.000 P(A3) = 1.000

B = trust(0,1)

=t
P(B) =0.800

P(A1) = 1.000 P(A2) = 1.000 P(A3) = 1.000

P(B) =0.973
Evidence
P(E) = 1.000

P(D) = 0.800

P(F)=0.972

P(G) = 0.097

Fig. 4. (a) Unconditional probabilities for the BAG in Fig. 2 splitting the
node of the initial state of the attacker in 3 nodes, one for each initial
attack path. (b) Unconditional probabilities for the previous BAG when
evidence that the attacker has compromised node E is observed. The
result is the same than in Fig. 3.(b).

This does not affect the values of the unconditional proba-
bilities for the other nodes (with and without evidence of
possible compromise), but allows to break some loops in
the graph, which reduces the complexity of the inference
algorithms described in the following sections. For example,
the BAG in Fig. 2 becomes the tree shown in Fig. 4. This
makes it suitable to use Belief Propagation (BP) to calculate
the unconditional probabilities of all the nodes efficiently.
Note also that by splitting the initial state of the attacker in
different nodes, we consider the initial attack paths inde-
pendently and can thus track their change in probabilities
when considering new evidence of compromise. This rec-
ommendation applies even when the prior belief on the
attacker’s state is not set to 1 and represented as a random
variable and avoids the misleading intuitions we can get
when modelling the initial state as in Fig. 3a.

3.4 Applying BAGs for Security Risk Assessment
The applicability of the proposed BAG model for security
risk assessment can be categorized in: static risk analysis,
dynamic risk analysis, and dynamic risk mitigation.

For static risk analysis we consider the security posture at
rest. From the network topology, network reachability and
the results of a vulnerability analysis we can build the BAG
model, determine the values of the successful exploitation

of vulnerabilities e.g., using the Base Score metric of the
CVSS score, and build the conditional probability tables.
Then, using inference techniques, such as the JT algorithm,
we can compute the unconditional probabilities of all the
nodes in the BAG. These probabilities serve as risk estimates
that can be used to detect weak areas in the network and
serve as an input for network hardening or static risk miti-
gation techniques.

For dynamic risk analysis, the BAG model is recomputed
at run-time, taking into account indications that some of the
network components may have been compromised, e.g.,
from a Security and Incident Event Management System
(SIEM) or IDS. Then, the nodes where we observe evidence
of compromise are set to 1 (or to a value corresponding to
the evidence observed) and the posterior probabilities of the
rest of the nodes in the BAG given the evidence are com-
puted. In this context, our model enables administrators to
dynamically profile the possible attack paths that the
attacker is following and to determine the nodes that are
more likely to be compromised in the next steps.

The computed posterior probabilities also provide the
administrator with run-time risk estimates that can be used
to select countermeasures and dynamic risk mitigation strate-
gies. This involves planning the most efficient strategies to
reduce the risk taking into account the available security
measures that can be applied and the cost of applying them.
Once countermeasures have been selected and applied the
conditional probabilities can be updated in the BAG and the
posterior probabilities recomputed. We do not consider in
this paper methods for the selection of countermeasures but
our BAG model can be combined with that proposed in
[12], which models risk mitigation as a discrete reasoning
problem solved using a genetic algorithm.

4 EXACT INFERENCE IN BAGS

For the analysis of AGs, we are interested in calculating the
unconditional probability distributions p(X;), rather than
p(Xilpa;), to determine the probability that an attacker can
reach a given security condition, and thus, the risk. Using
Bayes rule it is possible to calculate p(X;) from the condi-
tional probability distributions,

pX) = Y00 = 3 [[o(Xilpay),  ©®
; X—X; j=1

X=X,

where X — X; indicates that we sum over all the set of ran-
dom variables X except Xj;.

However, the exact calculation of (5) is an NP-Hard prob-
lem [25], [26]. In our case, as each node corresponds to a
Bernoulli random variable, the memory required to store
the joint probability distribution p(X) grows as 2". Thus,
applying brute force for inference in probabilistic graphical
models is not a reasonable approach in terms of computa-
tional time and memory, even for small graphs, and the use
of efficient algorithms is a strong requisite.

As discussed in previous section, this issue has not been
covered adequately in the literature on BAGs. [12] proposes
to use forward-backward propagation, but this procedure is
only valid for chains [13], [14] and cannot be applied to gen-
eral AGs. The Variable Elimination (VE) algorithm pro-
posed in [9], is an efficient technique to calculate the
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unconditional probabilities, but the authors do not propose
a heuristic to find a reasonable elimination ordering, which
impacts the performance of the algorithm significantly. VE
is also used in [9] for Maximum A Posteriori (MAP) estima-
tion to provide the MPE. However, MAP estimations can
lead to misleading conclusions. For the example in Fig. 2,
the result of the MPE queries when there is no evidence of
attacks is that all the nodes except G are in the True state
(and then G is in the False state). The attacker would have
therefore already compromised all the nodes except G,
which makes no sense. In this case, we can easily show that
MPE is impractical to assess the security risk in AGs.

In the next section, we first review VE, the algorithm that
was used in [9]. Then, we describe the Belief Propagation
(BP) and Junction Tree (JT) algorithms, which we propose
for static and dynamic analysis of BAGs. These algorithms
use a message passing approach to calculate the uncondi-
tional probabilities on BNs and their average computational
complexity is significantly lower than VE.

4.1 Variable Elimination
VE or Bucket Elimination is a heuristic first introduced in
[27] and revisited in [21] to efficiently compute the uncondi-
tional probabilities in BNs and Markov Random Fields
(MRFs). In essence, to address the exponential blow-up
when computing marginal probabilities, it identifies factors
in the joint distribution that depend on a small number of
variables, computes them once and caches the results to
avoid generating them exponentially many times [25].

For example, consider the probability p(G) that an
attacker can obtain root privileges on Host 2, in the AG
shown in Fig. 2. We can then write p(G) as,

p(G)=>">"3"3"3"5 " p(A) p(BIA) p(C|A, B)
A B C D FE F

x p(D|A) p(E|C) p(F|D, E) p(G|F).

(6)

As discussed before, computing the joint distribution scales
in time and memory as O(2"), with n =7 in this case. In
contrast to this brute force approach, VE groups factors that
involve the same variables and marginalizes (sums over)
those variables. Then, we can re-write p(G) as,

p(G)=> p(GIF)Y_ > p(FID,E)Y p(E|C)
F E D C

(7)
x> > p(A) p(B|A) p(C|A, B) p(D|A).
B A

Evaluating this expression from right to left we can recur-
sively eliminate all the variables in the BN except G. In this
case, we follow the elimination ordering Q = {A, B,C, D,
E, F'}. The steps of elimination using the VE algorithm are
shown in Table 1: At each step we create a new factor ¢; by
multiplying all the factors that involve the variable we want
to eliminate, and then marginalizing the corresponding var-
iable from the factor ¢;.

The same principle applies when we observe evidence of
compromise on some of the nodes and compute the poste-
rior probabilities of the nodes given the evidence. In this
case, as described in [13], [25], we first compute the joint
probability distribution of the query variable and the

TABLE 1
Steps of VE Algorithm for the BAG in Fig. 2 to Calculate
p(G) Using the Elimination Order Q = {A, B,C, D, E, F}

Var. Factors
A ¢1(A, B,C, D) = p(A)p(B|A)p(C|A, B)p(D|A)
' Tl(Bach) = ZA‘pl(AanC?D)
B: ¢2(B, C, D) = ‘L’1(B7 C, D)
. ‘[2(07 D) = ZB ‘El(B, C, D)
C- ¢3(C’ D, E) = 7-'2(07 D)p(E‘C)
’ T3(D, E) = ZC¢3(07 D7 E)
D: ¢4(D7E’ F) = TS(DvE)p(F|D7 E)
' 74(E’F):ZD¢4(D7E’F)
E: ¢5(E7 F) = T4(E7 F)
: w5(F) = p¢s(E, F)
- #0(F.G) = s F)p(CIF)

p(G) = 76(G) = > _p d(F, G)

evidence, and then, divide by the marginal probability of
the observed evidence. For example, if we observe that an
attacker has compromised node C in Fig. 2 (the attacker has
user privileges on Host 1), the posterior probability of G
given the evidence is calculated as,

p(G,C =1)

8
p(C=1) ®

p(GIC=1) =

The computational cost of the algorithm is exponential in
the scope of the factor with the maximum number of varia-
bles created during the elimination. In the example shown
in Table 1, this is ¢;, whose scope is A, B, C, D. Its computa-
tion requires a table with 24 = 16 entries, whereas the com-
putation of the expression in (6) requires a table with
27 = 128 entries. So, even in this simple example we can
notice significant savings.

The variables” elimination order has a significant impact
on the size of the intermediate factors created, and thus, the
computational complexity of the algorithm [25], [28]. For
instance, if in the previous example we use the elimination
ordering: Q' = {B, A,C, D, E, F}, the factor created to first
eliminate B is ¢} (A, B,C) = p(A) p(B|A) p(C|A, B), so that
T)(A,0) =Y 5 ¢/ (A, B,C). Then, ¢}, (A, C, D) = p(A) p(C|A,
B) 7}(4,C) and 14,(C, D) = > , ¢4(A, C, D). Following then
the same elimination steps as in Table 1 we obtain an order-
ing where the maximum scope of the biggest factor is
reduced from 4 to 3.

Although finding the elimination order that minimizes
the scope of the biggest factor is also NP-Hard [25], several
greedy heuristics [25], [28], [29], [30] provide good elimina-
tion orders at reduced computational cost. These rely on the
concept of an induced graph: the graph obtained when elimi-
nating a variable from the original one. They seek orderings
that induce small graphs, thus eliminating variables so that
the scope of the intermediate factors ¢; and 7; remains as
small as possible. Criteria commonly used in these heuristics
include:[25], [28]: 1) Min-neighbours: At each step removing
the node with the fewest neighbours in the current graph; 2)
Min-fill: At each step removing the node whose removal
requires adding the fewest edges in the induced graph; 3)
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Fig. 5. Factor graph for the BAG in Fig. 4.

Min-weight: At each step removing the node with the mini-
mum product of weights of its neighbours, where the
weights are the number of elements in the scope of the condi-
tional probability associated with the node (for example, in
the BAG in Fig. 2, the weight for node E would be 3 x 3 =9,
since its neighbours C' and F have 3 variables in their scope);
4) weighted-min-fill: At each step removing the node with the
smallest sum of weights of the edges that need to be added to
the graph due to its elimination (the weight of an edge is the
product of the weights of the nodes associated to that edge).

The use of VE for BAGs was previously proposed in [9]
using the algorithm from [21], where no elimination order-
ing is proposed. In the experiments described in Section 5,
we will show the impact of the elimination ordering in
terms of the time and memory required to compute the
unconditional probabilities.

Finally, as discussed in [13], the main disadvantage of
VE, in addition to the exponential scalability with the scope
of the biggest factor, is its inefficiency when we compute
multiple queries, e.g., when we calculate the unconditional
probabilities of all the graph nodes. In VE we need to com-
pute the elimination ordering and the factors each time we
make a query, whereas other algorithms like BP or JT cache
information (messages) that can be re-used to efficiently
compute the marginal probabilities as we explain below.

4.2 Belief Propagation

Like VE, BP allows to efficiently compute the unconditional
probabilities in BNs and MRFs when the graph is a tree or a
polytree. Although this is not the general structure of AGs,
this technique can be applied to Attack Trees (ATs) [31]. BP
is also referred to as the sum-product algorithm and is based
on probabilistic message passing. This also is the basis of
the JT algorithm which can be applied to any kind of BN
and that we describe in Section 4.3. The first version of BP
was proposed in [32] and, then, extended in [33] for the case
of polytrees, although its complete formulation is only
introduced in [34].

To describe the algorithm we follow an approach similar
to [35], based on factor graph representations [36], [37]. As
explained before, BNs (and MRFs) express the joint proba-
bility distribution of several random variables as the prod-
uct of factors over subsets of those variables. Factor graphs
make this decomposition explicit by introducing additional
nodes for the factors themselves in addition to those repre-
senting random variables. This results in a bipartite graph.

For example, the joint probability of the BAG shown in
Fig. 4 can be expressed as,

p(A17A27A3aB707D7E7F7G):H.fi(xi)v (9)

where the factors f;(X;) are,
fi(Ar, D) = p(A1) p(D|A)
f2(A2, B) = p(A2) p(B|As)
f3(A3, B, C) = p(As) p(C|As, B) (10)
fi(C, E) = p(E|C)
fs(D,E,F)=p(F|D,E)
fe(F,G) = p(G|F).

The factor graph is shown in Fig. 5, though note that several
factor graphs can exist for a given BN or MRF.

BP works by passing real valued functions called mes-
sages amongst neighbouring nodes in the tree or polytree
network. Since the factor graph induces a bipartite graph,
we can distinguish between two types of messages: from
variable to factor and from factor to variable. Messages
from a variable X; to a factor f; (in the neighbourhood of
X;) are given by,

T wpx o, (11)

Te€{Ei— [}

x5 (Xi) =

where 1y, v, (X;) are the messages from the factor nodes in
the neighbourhood of X; except f;. Similarly, messages
from a factor f; to a variable X in the neighbourhood of f;
are calculated as:

I’Lanj(Xj) = Z fi(Xivxs) H N’Xk.,fj(Xk’)

XpeXs X€Xs

(12)

where X; is the set of variable nodes in the neighbourhood
of f; except Xj.

When a variable X; is a leaf node, the corresponding
messages to the factors in its neighbourhood are equal to
one, i.e., pLXiyfj(Xi) = 1. On the contrary, if a factor f; is a
leaf node, messages to a variable node in its neighbourhood
are by, x; (X)) = 2oxpex, fil X, Xo).

BP computes messages from all the node variables to
their corresponding factors and vice versa, starting from the
leaf nodes and propagating the messages across the tree or
polytree graph according to the following rule: A node N
(variable or factor) cannot send messages to another node
M until it receives all the messages from its neighbours
except M. An example of the message passing process for
the factor graph in Fig. 4 is shown in the Supplementary
Material, available online.

Once all messages are computed, the unconditional prob-
ability for a node X; can be calculated as,

Xz) = H /’ij,X,(X

fieF;

(13)

where F; are the factor nodes in the neighbourhood of X;. In
MREFs, the same principle applies, but the product of the
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messages results in an unnormalized p(X;), though calculat-
ing the normalizing constant is straightforward.

In contrast to VE, where we need to run the whole algo-
rithm for each marginal probability we compute, BP can
efficiently calculate all the marginal probabilities by com-
puting all the messages once and storing them. So when we
observe evidence of compromise in some nodes, only the
factors that depend on the values that have changed need to
be recomputed. For example, if the attacker has compro-
mised node D, we take into account only the values of the
function for which D =7, when computing messages
involving factor fi, so that

fi(A1, D =T) = p(A) p(D = T|Ay). (14)
This requires us to consider only the elements of the condi-
tional probability table for p(D]A;) where D =T. On the
other hand, when computing the messages from factor to
variable nodes involving observed variables, i.e., variables
for which we observe new evidence, we do not need to sum
over these variables to obtain the corresponding message.

The computational complexity of BP will be discussed in
Section 4.3, as BP can be considered a especial case of the JT
algorithm.

4.3 Junction Tree

In this section we describe the JT (or clique tree) algorithm, a
method that takes the advantage of the message passing
scheme of BP to compute all the marginals of a BN or a
MREF, but is applied to general graphs rather than just trees
and polytrees. JT aims to create a tree structure where the
nodes represent clusters of the random variables in the
graph, and then, apply message passing as in BP, to com-
pute the unconditional probabilities. This method is equally
applicable to both BNs and MRFs.

Besides presenting the BP algorithm for polytrees, [34]
also describes a simple approach to cluster nodes in general
graphs. However, the technique produces very inefficient
trees [25]. In contrast, the two variants of JT algorithm,
namely the Shenoy-Shafer algorithm [38], [39] and the Hugin
algorithm [40], [41] produce more efficient trees by clustering
nodes. Both techniques rely on the same principles although
they differ in the way messages are computed. We will use
here the Shenoy-Shafer method which uses the same mes-
sage passing scheme as BP. A detailed comparison of Hugin
and Shenoy-Shafer can be found in [42].

The first step of the JT algorithm is to create a cluster
graph with a tree structure from the initial BN (or MRF). This
can be viewed as an extension of factor graphs that clusters
several random variables between two factors where each
random variable can appear in more than one cluster node.
The cluster or clique tree must also satisfy the running inter-
section property: if a random variable X; appears in two
cluster nodes, X; € C; and X; € C}, then, X; must also
appear in each cluster node in the unique path existing
between C; and C}, in the clique tree.

As shown in [25], an execution of VE induces a cluster
graph with a tree structure that satisfies the running inter-
section property. Other procedures similarly rely on creat-
ing a chordal graph by moralizing and triangulating the
original BN or MREF, so that each clique in the chordal graph

f1(A,B,C,D) 2 (B,C,D) f3(C,D,E)

6(F,G) '5(E,F)
(a)

2(C,D.E) 4(F,G)

f1(A,B,C,D) 3(D,E,F)

(b)

Fig. 6. (a) Initial factors for the JT of the BAG in Fig. 2 following the elimi-
nation order in Table 1. (b) Final factors for the JT after clustering factors
and adding the leaf variable nodes.

is a cluster node in the clique tree. However, for the sake of
clarity and since both solutions have a similar computa-
tional burden, we prefer to describe the use of VE as a
method to obtain the clique tree.

To describe the procedure of generating the clique tree we
use the BAG shown in Fig. 2 and the corresponding execution
of VE following the elimination order Q = {A, B,C, D, E, F'}
shown in Table 1. First, we create a initial factor f/ for each ¢,
used in the computation of VE. Then, we draw an edge
between f; and f} if the factor generated from 7; is used in the
computation of 7;. In our example, we have an edge between
factors fi(A,B,C,D) and fy(B,C, D), corresponding to the
terms ¢, (A, B,C, D) and ¢,(B,C, D) respectively (because
¢o(B,C, D) depends on 71(B,C,D)). Next, we add cluster
nodes between each pair of factors considering all the ran-
dom variables that intersect the two adjacent factors. For
example, between f|(A, B,C, D) and f5(B,C, D) we include
a cluster node with the variables B,C, D. After these two
steps, we get the JT shown in Fig. 6a. However, we can reduce
the tree by removing redundant factors (those whose scope is
a subset of the scope of adjacent factors) removing also the
corresponding cluster nodes between the implied factors.
This is the case of factors f} and f; in our example, whose
scopes are a subset of the scopes of f| and f) respectively.
Finally, we add to each leaf factor node a cluster node, which
becomes a leaf node, with the random variables that are in
the scope of that factor but are not in the other cluster nodes
associated to it. For example, for f] we should add a cluster
node with the variables A and B, since the other cluster node
associated to fi contains C' and D and the scope of f is
{4, B, C, D}. The reduced final clique tree is shown in Fig. 6b.

Once we have defined the factors and obtained the
reduced JT, as in the case of BP, we associate each f; with
different factors from the joint probability distribution. This
can be done by simply assigning the set of factors used at
each step in VE to the corresponding factor in the clique
tree. Thus, in our example, one possible assignment is

fi(A, B,C, D) = p(A) p(B|A) p(C|A, B) p(D|A)
f(C. D, E) = p(E|C) (15)
(D, E, F) = p(F|D, E)
f1(F,G) = p(G|F)

To calculate the unconditional probabilities in the JT we
use the same message passing scheme as in BP. The only
difference is that the scopes of the messages from nodes to
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factors and from factors to nodes, given in equations (11)
and (12), depend on multiple random variables rather than
just one. For example, the scope of the message from cluster
node A, Bto fi is A, B, i.e., gy (A, B). The list of all mes-
sages needed to calculate the marginal probabilities are
shown in the Supplementary Material, available online.

The unconditional joint probability for the variables in
cluster node X,, assuming the graph is a BN, is given by,

X;) = H Mf]-,xs(xe)>

[j€Fs

(16)

where F; are the factor nodes in the neighbourhood of the
cluster node X,. To calculate the marginal probability for
one random variable in the set X from p(X;), we just sum
over the other variables in X,. For example, the expression
to calculate p(C), the probability that an attacker obtains
user privileges in Host 1, is given by,

0) :Zp(QD) :Zﬂfl7CD'Mf2,CD~ 17
D D

Evidence of compromise can then be included in infer-
ences using the JT algorithm in the same way as in BP, as
previously described.

Finally, as in the case of VE, the computational complex-
ity of the JT algorithm is exponential in the scope of the big-
gest factor in the clique tree. Concretely, if all variables in
the graph are discrete and have K possible values each (in
our case, K = 2), JT scales in time and space as O(|F|K?),
where |F| is the number of factors and s is the size of the
scope of the largest factor in the clique tree. JT therefore suf-
fers from the same scalability problems as VE. However, for
JT, we only need to run VE to create the clique tree once and
then compute and store all the messages, which is signifi-
cantly more efficient than VE, where the algorithm needs to
be run from the start each time we want to compute the
marginal probability for a single node.

5 EXPERIMENTS

In this section we present our experimental results compar-
ing the performance of JT to that of the VE algorithm used
in [9]. More broadly, the purpose of the experiments is to
analyse the performance of the VE and JT algorithms for
inference in BAGs in terms of both time and the memory
requirements. This allows us to examine their suitability for
static and dynamic analysis of AGs, as the BAG models pro-
posed in the literature [9], [12], [20] have not been evaluated
experimentally. Beyond the differences between VE and JT
when used for inference in BNs, we also want to highlight,
through these experiments, the impact of the elimination
ordering heuristic. For VE we establish the elimination
ordering at random, since in [9] no elimination ordering is
proposed, whereas for JT, we use the min-weight heuristic
[25] to find the elimination ordering needed to build the cli-
que tree. For the implementation of both algorithms we use
the Bayes Net toolbox for Matlab.’

3. Implementation available at https://github.com /bayesnet/bnt
Our code implementation with the experiments for the BAG model
can be found at http:/ /rissgroup.org/
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Fig. 7. Example of a network representative of an SME.

To provide a comprehensive evaluation of the algorithms
we have used synthetic AGs, as many graphs of different
sizes and structure are needed to provide meaningful per-
formance results. Such a broad range of empirical AGs is
not available especially as generating AGs for real systems
is far from trivial. Furthermore, typical structures for AGs
are not clear from the examples encountered in the litera-
ture, and we expect them to vary significantly since they
depend on both the network topology and the number of
vulnerabilities. In view of these limitations and in order to
give a good characterisation of the performance of VE and
JT we have considered two kind of structures for our syn-
thetic AGs: Random graphs, where we control the in-degree
of the nodes (which is related to the number of vulnerabil-
ities on each network node), and cluster graphs, where we
explore the behaviour of the algorithms with respect to the
size of the clusters. We expect real use-cases to have a range
of structures between these two kind of graphs depending
on the network topology. We also include in our discussion
an AG generated using a realistic use-case representative of
the corporate network of an SME.

The values for the probabilities of exploitation of vulner-
abilities needed to build the conditional probability tables
are drawn at random, as well as the kind of logical conditions
to build these tables: AND/OR. It is important to note that
this does not have an impact on the time or memory required
to calculate the unconditional probabilities with VE and JT,
but only on the values of the probabilities of the nodes.

5.1 AG Example

For our first example, we have built a realistic small use-
case scenario, to show the results of our proposed techni-
ques in a understandable way. Later, we will show more
tests performed on larger AGs generated synthetically.

Fig. 7 shows a typical network for an SME. In detail, we
have two internal LANSs (one for finance/accounting, one for
technicians), a Wireless LAN for visitors (but that, if compro-
mised, can be also used to reach the internal network), and
finally a DMZ hosting the SME servers (in the example, a
public Web Server, a Mail Server, and a Local Database used
to store public and private data). In Fig. 7 we show for each
node its reachable ports and the nodes from where they are
reachable (this includes those ports open/filtered by the
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Fig. 8. BAG for the network in Fig. 7 showing the unconditional probabili-
ties that an attacker can successfully reach a security state for all the
nodes in the BAG.

firewall as well as those open/closed by local firewalls,
switches, routers, etc.). Additionally, we have highlighted
vulnerabilities that may be present on the nodes, the port on
which they can be exploited (if remote), their CVE identifier,
the type of vulnerability (DoS, elevation of privilege, etc.),
and the likelihood of exploiting it. We have based this likeli-
hood on the CVSS Exploitability Subscore (divided by 10),
which is in line with existing use in the literature. Although,
as discussed in Section 3, this fails to account for the resour-
ces/skills of the attackers and the knowledge of the existence
of an exploit among others. In our example, when the CVSS
Exploitability Subscore is 1.0 (i.e., an easy to use exploit
already exists), we have lowered its value to 0.95. A probabil-
ity of successful exploitation of 1.0 would mean that the
attacker has already reached the next security state without
necessarily exploiting the vulnerability, which is not true.

In Fig. 8 we show the BAG obtained when the goal of the
attacker is assumed to be to compromise the Database
Server. Note that we have clustered all (similar) users in one
single node in the BAG, and similarly for the system admin-
istrators. From an AG perspective, compromising one or
several machines with the same behaviour (in terms of con-
nectivity, services running, and vulnerabilities) can be con-
sidered the same in terms of privileges acquired towards
compromising a given target. In contrast, the number of
similar machines compromised is important when consider-
ing more generic targets such as information leakage or bot-
net recruitment. Furthermore, although in our example
clustering similar machines is a simplification of the reality
(we assume their behaviour to be exactly the same, which is
not necessarily the case) the approximation still depicts in
quite a realistic way the kind of AG we can produce for typ-
ical corporate networks. In our example, we do not consider
insider attackers, and we assume that attackers start the
attack from the Internet or from the visitors Wireless LAN.

Using the JT algorithm, the time required to create the cli-
que tree and to compute the marginal probabilities for each
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Fig. 9. Average time to compute the unconditional probabilities for VE
and JT. The notation VE-m and JT-m stands for the value of m, the max-
imum number of parents of each node, used to generate the graphs in
each case.

node in the BAG, shown in Fig. §, is less than 0.05 seconds
on a common desktop computer, which makes JT suitable
as a tool for the analysis of this AG. Although this example
intends to be representative of a small corporate network, in
some practical situations we can expect more complex and
much larger AGs. To assess the suitability of JT for the anal-
ysis of AGs, we use, in the rest of the experiments, synthetic
AGs with varying numbers of nodes and topologies.

5.2 AGs with Pseudo-Random Structure

For this kind of graphs we build the BAG directly by generat-
ing random DAGs where we limit the maximum number of
parents for each node. This corresponds to limiting the maxi-
mum number of vulnerabilities that can allow an attacker to
obtain a certain security condition. In our opinion, this
assumption is reasonable as on real (managed) corporate net-
works we expect to have a limited number of vulnerabilities
on each host. Then, for each node X in the graph, we ran-
domly select the number of parents by drawing an random
integer n, in the interval [1, m| uniformly, where m is the max-
imum number of parents. After that, we randomly select n,
parent nodes for X; from the set of nodes in the BAG for
which X is not a parent node (to avoid directed cycles). For
m, we have explored the values 2, 3, and 4. These values are
selected on the assumption that the number of vulnerabilities
to reach a security state is expected to be reduced. For the
number of nodes 7 in the graph we have explored values in
the range [10, 220]. However, depending on the algorithm and
the value of m we have limited the value of n because of phys-
ical memory limitations. For example, VE could only be
applied to random networks with m = 4 up to n = 60 nodes.
For each value of n and m, we have generated 20 random net-
works and, for each network, we compute the unconditional
probabilities for all the nodes with VE and JT.

We show in Fig. 9 the average time required to compute
all the unconditional probabilities for VE and JT. In the case
of JT, the reported time includes the time required to find
the elimination order, build the clique tree, compute all the
messages, and calculate the marginal probabilities. The dif-
ference in performance between the algorithms is remark-
able: JT is much faster than VE in all the cases considered.
For example, for n =130 and m = 2, the average time to
compute the unconditional probabilities is less than 1 sec-
ond for JT, whereas it is almost 1000 seconds for VE. As
described in Section 4, JT only needs to build the clique tree
and compute the messages once, while in VE we compute



MUNOZ-GONZALEZ ET AL.: EXACT INFERENCE TECHNIQUES FOR THE ANALYSIS OF BAYESIAN ATTACK GRAPHS 241

n
o

n
o
T

0N
%]
o]
Q
£
o]
(]
ot
B 15f --e-VE2 |
5 —e—JT2
S ol --0---VE-3 §
W ——JT-3
5 - % VE-4
E 5 —x—JT-4
- - Baseline
> Il Il Il 1
< 0
0 50 100 150 200

Number of nodes

Fig. 10. Average number of nodes of the biggest factor for VE and JT.
The notation VE-m and JT-m stands for the value of m, the maximum
number of parents of each node, used to generate the graphs in each
case. The black-dotted line indicates the memory required when apply-
ing brute force.

everything each time we want to calculate the unconditional
probability in one network node, thus much less efficient.
Besides, the elimination ordering also plays an important
role: a good elimination ordering can reduce the scope of
the factors appearing in the clique tree (or the ¢, factors in
VE), and thus reduces the size of the tables that need to be
computed and requires less memory.

We report in Fig. 10 the average number of nodes in the
scope of the biggest factor for both VE and JT, as a function
of the number of nodes. This corresponds to the number of
variables of the biggest ¢, and f; for VE and JT respectively.
We first note the big computational savings of VE and JT
when compared to applying brute force, i.e., computing the
joint probability on all the nodes. We further appreciate,
that, again, JT is more efficient than VE in all the cases.
However, the difference between them here is only due to
the elimination ordering algorithm. As mentioned before,
we have not used any elimination ordering for VE, as none
was proposed in [9], whereas for JT we have used the min-
weight heuristic. When using the same elimination order-
ing, we should expect similar results for VE and JT. We can
observe the computational savings in terms of memory
(and then, also in time) when using an elimination ordering
heuristic. Note that the tables needed to compute the factors
in VE and JT grow exponentially with the number of varia-
bles in the scope of the factors. For example, for n = 130 and
m = 2 the average number of nodes in the biggest factor for
VE is approximately 23, whereas for JT is 14. This means
that the average memory required to store these factors
(considering that we use 8 bytes to store each entry in the
table) is 2%373/1024° = 64 Megabytes for VE without an
elimination ordering heuristic and only 2'*™3/1024% = 0.125
Megabytes for JT using the min-weight heuristic.

As described in Section 4, when evidence of compromise
is observed in some of the graph nodes, the JT algorithm
does not need to build the clique tree again but only to
recompute the messages taking into account the evidence. In
this sense, static analysis with the JT algorithm consists in
building the clique tree, computing all the messages and cal-
culating the unconditional probabilities in the absence of any
evidence of compromise. In contrast, dynamic analysis con-
sists only in recomputing all the messages and recalculating
the marginal probabilities (conditioned on the evidence).
This scenario is frequent in AG analysis when correlating
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Fig. 11. Time to compute the unconditional probabilities with the JT for
pseudo-random graphs with m = 4 for the static and the dynamic analy-
sis of the BAGs (when we observe evidence at one node).

with compromise evidence from IDS and SIEM at run-time.
Fig. 11 shows the difference in time between the static and
the dynamic analysis using the JT for graphs with m = 4 and
nodes n varying from 10 to 90. For the dynamic analysis we
randomly select one node where we consider the evidence
has been observed. It is interesting to note that, although the
time to recompute the probabilities is lower, the difference is
not very significant. This means that, for pseudo-random
graphs, the bottleneck of the JT algorithm is the computation
of the messages rather than the elimination ordering algo-
rithm used to build the tree, since the number of variables
for each factor is high (at least for some factors), as we can
observe in Fig. 10. This is due to the fact that the generated
graphs are highly connected. This observation does not
apply in the case of VE as the steps to compute the marginal
probabilities are the same for static and dynamic analysis.

5.3 AGs with Cluster Structure

To generate synthetic graphs with a cluster structure, we
have considered networks with clusters of the same size, n,.
For each cluster, we have generated pseudo-random sub-
graphs limiting the maximum number of parents for each
node to m. Finally, we have included dependencies between
clusters by adding one edge from one node in each cluster to
one node in other clusters provided that the added edge pre-
serves the DAG structure required for BNs. For the first
experiment we have set n, = 10 and varied the nodes in the
network from 100 to 1000. Then, we have measured the
time required to compute the unconditional probabilities
using VE (with random elimination ordering) and JT (using
min-weight to build the clique tree) for both the static and
the dynamic analysis, considering that we observe evidence
at one node. The results in Fig. 12 show again a significant
difference in performance between JT and VE, as in the case
of pseudo-random graphs. The difference here is mainly due
to the fact that in VE we need to recompute everything each
time we calculate the marginal probability for a node rather
than the lack of an elimination ordering heuristic for VE.

We can observe in Fig. 12 that the time required by VE to
calculate the marginal probabilities is almost the same for the
static and the dynamic analysis. This is not surprising as VE
basically performs the same operations in both. In contrast, JT
shows a noticeable difference between the time required for
the static and the dynamic analysis. In this case, the propor-
tion of time required to build the clique tree is significantly
higher than the proportion of time needed to compute all the
messages and calculate the probabilities. Note that this
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Fig. 12. Time to compute the unconditional probabilities for VE and JT for
cluster BAGs with clusters of size 10 and m = 4: (a) for the static analysis
and (b) for the dynamic analysis (when we observe evidence at one node).

behaviour is just the opposite of that observed for pseudo-ran-
dom networks and can be explained by the clustered structure
of the graph, which leads to smaller factors in the clique tree.

In Fig. 13 we show the average number of nodes in the
scope of the biggest factor for VE and JT. Note that, again,
the difference of applying VE or JT with respect to the base-
line (applying brute force) is huge. Also, as in the case of the
pseudo-random BAGs, we observe a signifcant difference
between JT and VE. In particular, the average number of
nodes in the scope of the biggest factor increases slowly
with the number of nodes in the graph for JT, in contrast to
VE. As before, these differences can be explained by the use
of the min-weight heuristic to find an elimination ordering
when using JT.

In Fig. 14 we show the performance of JT for the static and
the dynamic analysis in cluster graphs whilst varying the
size of the clusters (from 10 to 50) and the size of the graph
(from 100 to 1000), setting m = 4. As in Fig. 12, the difference
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Fig. 13. Average number of nodes of the biggest factor for VE and JT for
the cluster BAGs. The black-dotted line indicates the memory required
when applying brute force.
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Fig. 14. Time to compute the unconditional probabilities for JT algorithm
for cluster BAGs with different cluster sizes (10, 30, and 50) and m = 4:
(a) for the static analysis and (b) for the dynamic analysis (when we
observe evidence at one node).

in time between the two analyses is significant. Moreover we
can appreciate a different behaviour: Whilst the time
required for static analysis still scales exponentially with the
number of nodes, that required for dynamic analysis broadly
scales linearly. The exponential behaviour of the static analy-
sis is due to the elimination ordering algorithm used to build
the clique tree. However, the clustered structure of the graph
combined with weak dependencies between clusters result
in factors of a similar size regardless of the network size. This
allows the computation of the messages and of the probabili-
ties to scale nearly linearly.

It is important to highlight the reduced time (less than 1 s)
required by JT to recompute the unconditional probabilities
when we observe evidence of compromise. This makes JT an
appealing choice to perform dynamic analysis on real AGs, to
select and apply risk mitigation strategies at run-time. In con-
trast, the high cost of recomputing the same probabilities for
VE renders it unusable in practice. For static analysis, the
exponential memory and time scalability of JT (and so, VE)
still limits their application to medium-size graphs, although
this analysis can be done off-line and also depends on the
topology of the AG. Furthermore, modelling with AGs can be
performed at different levels of granularity. For example, the
AG model in [43] only considers vulnerabilities that let an
attacker move from one subnetwork to another. From the AG
perspective this means that compromises within a subnet-
work are considered equivalent for the risk assessment of the
whole network. In this sense, intermediate levels of granular-
ity can be adopted to achieve better accuracy when modelling
the AG. In any case, taking into account the cluster structure
of networks in AG modelling is a key aspect to be considered
to perform a tractable dynamic risk assessment of networks
with BAGs using the JT algorithm.
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when applying brute force.

In Fig. 15 we show the average number of nodes in the
scope of the biggest factor as a function of the total nodes
when applying JT and varying cluster size. Similarly to
Fig. 13, we observe that the increase in size of the biggest
factor is slow. Thus, the factor that affects most the memory
required to apply JT is the size of the clusters rather than
the total number of nodes in the graph.

6 EXTENSIONS OF THE BAG MODEL

The BAG model presented in Section 3 can be extended to
analyse more complex aspects of an attack.

The effect of zero-day vulnerabilities can be considered by
adding one extra node (with no parents) connected to each of
the security condition nodes in the graph. The difficulty lies in
estimating a reasonable score to rate their probability of suc-
cessful exploitation when building the conditional probability
tables. In [12] the network administrator is required to quan-
tify it, but this is not a trivial task. The same reasoning applies
when considering insider or social engineering attacks.

To model the uncertainty about the evidence that a node
may be compromised (based on IDS and SIEM information)
we should include correction terms in equations (3) and (4).
One possible solution is to add one extra parent node for
each existing node in the BAG, setting the prior probabilities
of these added nodes to 1 (as in the case of the attacker’s ini-
tial state node). Then, we can use the error probability of the
IDS as a parameter to build the conditional probability
tables of the corresponding nodes. The modification of (3)
to compute the probability table in the AND case including
this uncertainty results in,

Des X epalX;=F

1= (1 —pe)x
(1 =TII,x, pv;),  otherwise.

p(Xilpa,) = (18)

In the OR case, the modification of expression (4) is given
by,

Pe; VX, € pai|X7 = F
1—(1=pe)x

H.,:X],(l - pvj)7 otherwise,

p(Xilpa,) = (19)

where p, is the error probability of the IDS.

In [10] a dynamic BN is proposed to consider variations
in time of the CVSS scores. Although the theoretical model
in [10] is correct, scores do not change rapidly over time,

while additional complexity of the dynamic BN limits its
application in real scenarios. In terms of computational
complexity, it would perhaps be more reasonable to update
the conditional probability distributions in the model we
propose and recompute. To support this claim, the experi-
mental results in Section 5 show the computational cost
implications of augmenting the complexity of the BAG.

7 CONCLUSIONS

We have proposed in this paper a BN model for AGs and
efficient exact inference techniques for their static and
dynamic analysis. These techniques allow to assess the risk
of the nodes in a network against cyber-attacks by calculat-
ing the probabilities that an attacker can compromise each
node given the nodes that have been already compromised.
These can help system administrators to respond to an
attack or to take the corresponding countermeasures to an
ongoing intrusion.

We have reviewed and proposed solutions to the short-
comings of existing BAG models in the literature, such as
the implications of adding prior probabilities in the
attacker’s capabilities. In this sense, although some of our
assumptions are still restrictive, we have proposed and
sketched some direct extensions of the Bayesian model that
we will consider in our future work.

We have also shown the limitations of previous state-of-
the-art techniques to perform static and dynamic analysis of
BAG, and the importance of using efficient algorithms to
calculate the marginal probabilities. To support this, we
have presented an extensive experimental evaluation with
synthetic AGs to measure the time and memory required to
calculate them. This stands in contrast with the related
work where such analysis is missing. Our results show the
advantages of the JT algorithm to perform static and
dynamic analysis of AGs for graphs with hundreds of
nodes, which in most cases would correspond to corporate
networks of thousand of nodes. We have shown the impor-
tant improvements of the JT algorithm in terms of time and
memory with respect to the VE algorithm proposed in [9].

We have further shown the importance of modelling
AGs taking into account the subnetwork structure of typical
corporate networks. Network clustering enables the
dynamic analysis with the JT algorithm to become tractable
and scales linearly in the number of nodes. This allows to
rapidly integrate new evidence in the analysis and enables
administrators to respond to an ongoing attack.

Further directions include exploring more scalable infer-
ence techniques, extending the BAG model to make it less
restrictive, and investigating more accurate means of esti-
mating the probability of exploitation of vulnerabilities. Fur-
thermore, beyond static and dynamic analysis, we can
extend our model to other uses, such as prioritising forensic
investigations and evidence collection as suggested in [44].
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