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Abstract—Device sharing among users is a common functionality in today’s IoT clouds. Supporting device sharing are the delegation
methods proposed by different IoT clouds, which we find are heterogeneous and ad-hoc — IoT clouds use various data (e.g., device
ID, product ID, and access token) as authorization certificates. In this paper, we report the first systematic study on how the
authorization-data are managed in IoT device sharing. Our study brought to light the security risks in today’s IoT authorization-data
management, identifying 6 authorization-data leakage flaws. To mitigate such flaws, we propose an approach to hide the
authorization-data from the delegatee (a.k.a., the user authorized to access the devices) without disrupting the device sharing services.
We propose SecHARE , an automated tool to patch the vulnerable IoT clouds. We applied SecHARE to 3 popular open-source IoT
clouds. Results have shown the compatibility, effectiveness, and efficiency of SecHARE . We have made SecHARE publicly available.
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1 INTRODUCTION

Today’s IoT (Internet of Things) cloud platforms are pro-
viding more and more functionalities to meet the users’
various requirements. Device sharing among multiple users
is one of the most popular functionalities supported by
the mainstream IoT clouds (e.g., AWS IoT [1], Samsung
SmartThings [2], Philips Hue [3] and MiHome [4]). Device
sharing allows the owner/admin-user to delegate the access
right to the device to other users and clouds (which we
call the delegatee). Prominent examples include that the
owner of a Philips Hue device inviting other Philips users to
control her device (by issuing a whitelistID for the delegatee
user [5]) and the owner of a SmartThings smart home autho-
rizing Google Home cloud to control her device (by sending
the device ID of the SmartThings device and an OAuth
token [6] to Google Home cloud). Serving this purpose
are the delegation mechanisms proposed by different IoT
vendors, which we found are heterogeneous and ad-hoc. In
specific, different IoT clouds use different types of data (e.g.,
device ID, product ID, OAuth token) as the authorization
certificates (which we call the authorization-data, see
Section 3). Also, different types of data are with different
changeability, for example, the device ID (set when the
device is created) is usually unchangeable, while access
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tokens are usually changeable (e.g., updated by the owner).
Previous researches have revealed that vulnerabilities in
these IoT delegation mechanisms could expose users to
security and safety risks [5]. However, little have done to
systematically study how the authorization-data are man-
aged (e.g., creation, distribution, and deletion) in the real-
world IoT clouds.

Risks in poor authorization-data management. Permis-
sion issues have always been one of the key concerns of
IoT security, and access control community has also been
studying delegation of authority issues, finding privacy
leaks, incomplete credential revocation, overprivileged au-
thorization, and incorrect policy enforcement [5], [7]–[9].
However, in today’s IoT cloud ecosystem, access control
is not only distributed but also heterogeneous and ad-hoc,
so authorization-data protection remains an open problem.
Fernandes et al. [9] found that the vulnerable event manage-
ment in SmartThings enables the attackers to obtain device
identifiers to send fake fire alarms. Bin et al. [5] found that
the insecure cross-cloud IoT delegation could also result
in the leakage of device information and OAuth token,
leading to unauthorized access to the victim devices. Given
the severe consequences of authorization-data leakage (e.g.,
privacy leakage and safety threats), it is emerging to under-
stand and mitigate this problem.

To secure the authorization in IoT, Fernandes et al. [10]
presented DTAP to prevent an untrusted trigger-action plat-
form from misusing compromised OAuth tokens, while An-
dersen et al. [11] presented WAVE, an authorization frame-
work supporting decentralized trust and transitive fine-
grained delegation/revocation. However, these approaches
require significant changes to the existing IoT cloud plat-
forms and devices. Real-world adoption and deployment
of DTAP [10] or WAVE [11] may take a long time, until
all compatibility and usability issues are resolved. A timely
solution that is lightweight, compatible with existing IoT
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clouds, and effective at securing the authorization-data is
needed.

Findings and impacts. In this paper, we report the first
systematical study on how the authorization-data are man-
aged in today’s IoT device sharing. Specifically, we studied 6
popular IoT clouds to investigate the life-cycle of the device
data, especially the authorization-related device data, which
we call authorization-data for short.

Our study shows that, in the absence of security stan-
dards/guidance, today’s IoT clouds usually develop their
homegrown mechanisms to support device sharing, result-
ing in heterogeneous and ad-hoc authorization-data man-
agement. In specific, we find IoT clouds use various types
of data with different changeability as authorization-data
(see Section 3). Moreover, our study shows that, due to the
lack of understanding on the security implications of the
authorization-data, today’s IoT clouds often adopt vulnera-
ble authorization-data management mechanisms.

We have identified 6 authorization-data leakage flaws in
the evaluated IoT clouds (see Section 4). Leveraging these
flaws, attackers can use the leaked authorization-data to
emulate the victim devices for device state and event forgery
attacks (e.g., a fake alarm event), privacy theft attacks (e.g.,
inferring the absence/presence of the victim via obtaining
the state of the victim’s devices) and deny of service (DoS)
attacks (e.g., disconnecting a sub-device). As shown in Table
1, we summarize the severe consequences of these attacks as
falsified data (FD), privacy breach (PB) and deny of service
(DoS). Moreover, we found the flaws identified could expose
a large number of IoT users and other IoT clouds, as well
as organizations, and vendors in various fields, to security
risks (Section 6.1). We report all flaws to the relevant parties
and have received 5 CNVDs [12] by the time we write this
paper.

Defense with shadow authorization-data. To mitigate such
flaws, we propose a method that can hide the actual
authorization-data from the delegatee to avoid leakage
without interrupting the device sharing services. Specifi-
cally, when delegating access right to the delegatee, we
generate a new copy of authorization-data (e.g., device ID’)
that is different from the actual authorization-data (e.g.,
device ID), and record the mapping relationship between
them (e.g., device ID → device ID’). We call the new copy
of authorization-data the shadow authorization-data.
Then, we send the shadow authorization-data (device ID’)
to the delegatee. Upon receiving the delegatee’s request
to access the delegated device, we transfer the shadow
authorization-data back to the actual authorization-data ac-
cording to the recorded mapping relationship (device ID’ →
device ID) , and then perform authorization check based on
the actual authorization-data (device ID). To revoke the del-
egatee’s access right, we delete the shadow authorization-
data and the mapping relationship between the shadow
and actual authorization-data. Such a workflow can avoid
leaking the actual authorization-data to the delegatee users.
Moreover, the malicious delegatee users will not be able use
the shadow authorization-data to gain unauthorized access
to the victim devices after his access right is revoked. In
addition, the whole process is made transparent to the users
— the delegator and delegatee users can use the device
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Fig. 1: IoT cloud architecture and its device sharing

sharing services as usual as they already do in today’s IoT
systems.

Automated patching. Further, we design and implement
SecHARE, a tool that automatically patches the vulner-
able IoT clouds. Specifically, SecHARE takes as input a
configuration file that specifies the names of the sen-
sitive methods operating the authorization-data (e.g., the
assignDeviceToCustomer() function in ThingsBoard
[13] used to share a device to a delegatee user), automat-
ically identifies such methods and inserts necessary op-
erations into the bytecodes for security enhancement (see
Section 5). Moreover, SecHARE implements an automatic
configuration file generator to reduce the manual efforts
needed to specify the configuration files (see Section 5.4).

We applied SecHARE to 3 popular open-source IoT
clouds, ThingsBoard [13], Kaa [14] and JetLinks [15]. Our
evaluation shows that SecHARE can effectively mitigate the
authorization-data leakage flaws with negligible/acceptable
overheads and can be easily deployed into today’s IoT
ecosystem. We have made SecHARE publicly available [16].

Contributions. We summarize our contributions as follows:
• New understanding. We performed the first systematic
study on how the authorization-data are managed in the
IoT clouds, which reveals the security-critical weaknesses in
today’s IoT authorization-data management.
• New findings. We investigated 6 popular IoT clouds and
identified 6 authorization-data leakage flaws, which expose
many IoT devices/users to realistic security risks with se-
vere consequences.
• New techniques. We proposed a new method to miti-
gate the flaws in IoT authorization-data management, and
developed/released support for automated securing IoT
authorization-data. We implemented our proposed method
and demonstrated its usability, efficiency, and compatibility
with existing IoT cloud systems. The insights and tech-
niques of our study can help secure not only today’s but
also future IoT authorization-data management.

2 BACKGROUND

2.1 IoT Cloud Architecture and Its Device Sharing

Device control and its automation. A typical IoT architec-
ture include the IoT devices, the cloud and the user console
(e.g., mobile app or web app). To control an IoT device,
as shown in Figure 1, the device owner first register her
device to the cloud, with the device bound to her user
account. To access the device, the owner initiates a request
through her user console. Upon receiving the request, the
cloud performs an authorization check on the user and
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send the command to the target device if the check passes.
Moreover, users can define automation rules (a.k.a., trigger-
action rules) for automated device control — when receiving
the trigger of the rule, the cloud automatically performs the
action. For example, a user can set an automation rule to
work in that if the motion sensor detects movement, turn
on the light.

Device types. As shown in Figure 1, there are three types of
IoT devices: (1) The end device, devices that connect to the
IoT cloud directly and do not manage sub-devices; (2) The
gateway device, a gateway device connects to the IoT cloud
directly and manages/connects to other sub-devices; (3) The
sub-devices, a sub-device is managed by and connected to a
gateway device. Note that, the sub-devices usually connect
to the gateway device through protocols like Zigbee [17],
Z-wave [18] and BLE [19], while the gateway device acts as
an agent for the sub-devices to communicate with the IoT
cloud. A sub-device usually can be added to and removed
from the gateway device under the user’s operation.

IoT messaging protocol. Many IoT messaging protocols
(e.g., MQTT [20], HTTP [21], CoAP [22], LwM2M [23]
and AMQP [24]) are used by today’s IoT clouds, among
which MQTT is the most widely used [25]. MQTT adopts a
publish–subscribe messaging pattern [26]. For two clients to
communicate with each other, the MQTT server (called the
MQTT broker) uses topics to define the message classes;
the message receiver (called the subscriber) subscribes to
the topics to show its interest in these message classes; the
message sender (called the publisher) publishes messages
to specific topic(s); upon receiving the published message,
the broker identifies the corresponding topic and transmits
the message to all its subscribers. To secure the messag-
ing process, before accepting/delivering messages from/to
the clients, the MQTT broker usually performs authenti-
cation and authorization check based on the Username,
Password or topic contained in the messages. Note that,
different implementations of MQTT broker might customize
such security checks — performing the checks based on
other information (e.g., customized tokens) or even per-
forming no check at all.
Device sharing in IoT clouds. Device sharing among mul-
tiple users is commonly supported by today’s IoT clouds,
which enables the admin-user/owner of the devices to
delegate access right to the devices to others.
• Device sharing within a single IoT cloud. The owner can share
her devices with other users under the same cloud (➀ and
➂ in Figure 1). For example, IoT clouds including HomeKit
[27], MiHome [4] and SmartThings [2] enables the owner
to invite other users to join the owner’s smart home system
and delegate access rights to the devices to the invited users.
• Cross-cloud device sharing. Cross-cloud delegation [5] is also
commonly seen in today’s IoT clouds for owners to share
the devices with users from third-party clouds (➁ in Figure
1). Cross-cloud device sharing is usually implemented with
OAuth protocol — the delegator cloud issues an OAuth
token to the delegatee cloud. In real world, the delegator
clouds are usually the clouds maintained by the device
manufacturers, such as Philips Hue [3], SmartThings [2] and
MiHome [4], while the delegatee clouds are the third-party
cloud services providers like Google Home [28] and IFTTT

[29].

2.2 Aspect-Oriented Programming
Aspect-oriented programming (AOP) was proposed by Gre-
gor et al. [30], which aims to address the cross-cutting
problem during effective application modularization. It can
add additional behaviors non-invasively without changing
the original design/code. “Weaving” is one of the terms
in AOP, which is the process of applying the functionality
that needs to be extended to the target object. “Weaving”
can be divided into four different types based on the
time when the behavior is woven into the target class: (1)
Compile-Time Weaving, which weaves the behavior at the
source code compilation with a special compiler; (2) Post-
Compile/Binary Weaving which weaves the behaviors into
the compiled file with a special compiler; (3) Load-Time
Weaving which uses a special class-loader to weave the
behavior when the class is loaded into the Java virtual
machine; (4) Run-Time Weaving which weaves the behavior
during the execution of the program. The two most popular
frameworks of AOP are AspectJ [31] and Spring AOP [32].
AspectJ supports the former three weaving types, while
Spring AOP supports the latter two types. In this paper, we
leveraged AspectJ to insert security-enhancement behaviors
into the vulnerable IoT clouds with Load-Time Weaving (see
Section 5.3).

3 LIFE-CYCLE OF AUTHORIZATION-DATA

To investigate how the authorization-data is managed in
today’s IoT device sharing, we studied over 10 mainstream
IoT clouds, including AWS IoT [1], Alibaba Cloud IoT [33],
Google Home [28], Tuya [34], SmartThings [2], IFTTT [29],
ThingsBoard [35], Kaa [14], [36], JetLinks [37], ThingsKit [38]
and ThingsPanel [39].
Definition of authorization-data. To enable the delegatee
user to access the delegated devices, the IoT cloud usually
would send certain data to the delegatee user. Such data
would then be used for authorization check when the del-
egatee user attempts to access the devices. We call the data
transmitted to the delegatee during device sharing and used
for authorization checks during the delegatee’s access to the
device the authorization-data.
Type of authorization-data. Recall that, in the absence of the
standard/guidance on how to securely share devices, the
implementation of device sharing by different IoT clouds are
heterogeneous. Specifically, various types of authorization-
data are used in today’s IoT clouds, including public avail-
able information (e.g., app-version-name), identifiers (e.g.,
device ID and product ID), access tokens, MQTT topics,
MQTT passwords and HTTP/CoAP URLs.
Changeability of authorization-data. Further, some types
of authorization-data (e.g., device ID and product ID) are
determined by the IoT clouds and are unchangeable by the
users, while other types of authorization-data are change-
able under the operations from the authorized users (in-
cluding both the device owner and the delegatee users). For
example, the “endpoint token” of a device under the Kaa
Enterprise cloud [36] can be changed by users via revoking
the old token and activating a new one.
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Life-cycle of authorization-data. Moreover, we find that
the authorization-data could be created, accessed, updated,
transmitted, deleted or deactivated in different phases of
the device management. We summarize the life-cycle of
authorization-data as follows.
• Add device. The life-cycle of authorization-data starts with
adding the device. Usually, when the owner registers/binds
a new device, the IoT cloud determines/generates the un-
changable information for the device, which are used as
unchangable authorization-data by some IoT cloud. For
example, the device ID and application version is used
as unchangable authorization-data by SmartThings [2] and
Kaa Enterprise [36] respectively.
• Share device. When the owner shares a device to the dele-
gatee user, the IoT clouds may generate new authorization-
data (e.g., issuing a new access token) or reuse the existing
data (e.g., device ID) as authorization-data. Then, the IoT
clouds would transmit the authorization-data to the delega-
tee.
• Unshare device. After the owner revokes the access right
from the delegatee user, the authorization-data would be
removed from the delegatee user’s system (e.g., her mobile
app). Moreover, the IoT clouds could deactivate/update
some of the changeable authorization-data, such as the
OAuth token.
• Query device information. An authorized user could query
the cloud for the device information. The responses to such
queries might contain authorization-data. For example, the
ThingsBoard [35] transmits the authorization-data of access
token to the querying user.
• Update device data. The authorized users are usually al-
lowed to update the device data, including both the ba-
sic device data (e.g., device name) and the changeable
authorization-data (e.g., access token).
• Access device. When a user attempts to access a device,
the user usually sends to the cloud an access request that
carries authorization-data, which is accessed and verified
by the cloud for authorization check.
• Delete device. When a device is deleted from the IoT cloud,
all its information including the authorization-data related
to the device would deleted or deactivated by the cloud.
• Delete user. Once a user is deleted from the cloud, the
data of all devices under the user would be deleted or
invalidated.

4 SECURITY OF IOT AUTHORIZATION-DATA MAN-
AGEMENT

In this section, we report a security analysis on the manage-
ment of authorization-data in IoT device sharing of 6 lead-
ing IoT clouds, including ThingsBoard [35], Kaa Enterprise
[36], Kaa open-source [14], JetLinks [37], ThingsKit [38] and
ThingsPanel [39].

4.1 Problem Scope and Threat Model
As discussed in Section 2.1, the owner can share her devices
to other users under the same cloud of the owner or un-
der third-party clouds. In this paper, we mainly focus on
identifying and fixing the flaws in the former scenario. We

TABLE 1: Flaws discovered in popular IoT platforms

Flaw 1 Flaw 2 Flaw 3 Flaw 4 Flaw 5 Flaw 6

FD1 PB2 DoS3 FD PB DoS FD PB DoS FD PB DoS FD PB DoS FD PB DoS

KaaE
∗ ! ! ! !

KaaO
∗ ! !

ThingsBoard ! ! ! ! !

ThingsKit ! !

JetLinks ! ! ! ! !

ThingsPanel ! !
∗ KaaE is the enterprise version of Kaa. KaaO is the open-source version of
Kaa.
1 Falsified Data. 2 Privacy Breaches. 3 Denial of Service attacks.

further discuss how our work can help secure the cross-
cloud device sharing in Section 7.

To this end, we defined two user roles in the IoT system,
the administrator and the ordinary user. The administrator
(e.g., Airbnb host) is the owner or system admin-user who
can delegate other ordinary users (e.g., babysitters, Airbnb
guests and tenants) to access her IoT devices. The access
of ordinary user is subject to revocation and expiry. We
consider the administrator and the IoT clouds to be trusted,
while the ordinary user may be malicious and may try to
get unauthorized access to IoT devices — which is a well
accepted scenario [5], [11], [25], [40], [41]. We assume that
the malicious ordinary user will try his best to obtain useful
information from the system, such as extracting informa-
tion from official developer documentations, system logs,
network traffic captured by his mobile app. Moreover, we
assume that the user is unable to tamper or decrypt data
that was not originally intended for their authorized access.

4.2 Authorization-Data Leakage Flaws
Our goal is to systematically study the life-cycle of the
authorization-data (e.g., generation, transmission, invalida-
tion, etc.) and to identify authorization-data leakage flaws.
To this end, we run the cloud-ends of the aforementioned 6
cloud platforms in our testing servers. We used the MQTTX
[42] to simulate the devices supporting MQTT protocol
and used Postman [43] to simulate the devices supporting
HTTP. We then operated the simulated devices to commu-
nicate with the clouds and conducted different configura-
tions/operations in the user consoles of the cloud platforms,
simulating the real-world usage of controlling/managing
devices. During such simulations, we used Wireshark [44]
to collect the traffic between the devices and the cloud
platforms. Then, we mainly checked whether the data trans-
mitted to the delegatee users is critical to authorization and
whether we can use such data to gain unauthorized access
even after revocation. At last, we identified 6 flaws in these
IoT clouds. We elaborate on each of them as follows.
Flaw 1: MQTT topic leakage. Kaa Enterprise [36] is an
IoT cloud platform that supports device sharing among
users and supports multiple messaging protocols including
MQTT, CoAP and HTTP. When a device connects to the Kaa
Enterprise cloud using MQTT protocol, the MQTT topic is
used as authorization-data. That is, Kaa Enterprise autho-
rizes the device based on the topic contained in the messages
(see Section 2.1) — only the devices that could provide
valid topics are allowed to publish messages to the Kaa
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Fig. 2: Flaw 1 — MQTT topic leakage in Kaa Enterprise

Enterprise cloud. To construct a valid topic, Kaa Enterprise
requires the owner to set the “endpoint token” (a string) for
the device when adding the device. The endpoint token is
regarded as a secrecy that can only be accessed/updated
by authorized users (including the owner and the delegatee
user). With the endpoint token, Kaa Enterprise constructs
the topic for the device by adding other publicly available
information (e.g., the application version) to the endpoint
token. Hence, a typical MQTT topic in Kaa Enterprise could
be kp1/{application version}/dcx/{endpoint token}/json.

However, we found the the authorization-data of Kaa
Enterprise cloud (e.g., the MQTT topic) can be obtained by
the delegatee user. Recall that, the delegatee user is allowed
to update the endpoint token of the delegated device. There-
fore, the delegatee user can gain a valid endpoint token by
updating it. Using the updated valid token and other public
information, the delegatee user can obtain a valid copy of
MQTT topic. Note that, updates to endpoint tokens are
automatically handled and synced by the cloud and do NOT
notify the device owner or affect the owner’s use of the de-
vice. Moreover, the delegatee user’s updates to the endpoint
tokens remain valid even after his access right is revoked,
resulting in that, the MQTT topic leaked to the delegatee
remain valid and unchanged after the revocation. Therefore,
a malicious delegatee user could leverage the leaked MQTT
topic to send/receive unauthorized messages to/from the
Kaa Enterprise cloud after his access right is revoked.

PoC exploit on Flaw 1. To exploit Flaw 1, we used our test
account and a MQTT-enabled smart lock (a virtual device) to
implement an end-to-end PoC attack. Specifically, as shown
in Figure 2, the owner first set the endpoint token of the
smart lock on the Kaa Enterprise cloud platform for the
victim smart lock to communicate with the cloud. Then, the
owner shared the smart lock with the attacker. The attacker
then updated the smart lock’s endpoint token and obtained
a valid MQTT topic. After that, we let the owner revoked
the attacker’s access right. Then, we wrote a program using
Python (publicly available at [16]) to pretend to be the victim
smart lock to communicate with the Kaa Enterprise cloud.
As shown in Table 1, we were able to send forged messages
(FD) and receive unauthorized messages (PB) to/from the
cloud.

Flaw 2: MQTT username leakage. In addition to the MQTT
topic leakage (see Flaw 1), we found that the MQTT user-
name is also used as authorization-data and could be leaked
to the attackers in ThingsBoard [35] and ThingsKit [38].
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Fig. 3: Flaw 2 — MQTT username leakage in ThingsBoard

ThingsBoard is a popular open-source IoT platforms that
supports MQTT, HTTP, CoAP and LwM2M. When a MQTT-
enabled device communicates with the ThingsBoard cloud,
the device is required to provide a valid MQTT username,
which is used for MQTT’s authentication/authorization
check (see Section 2.1). Therefore, a valid and unique MQTT
username will be assigned to the device when the owner
adds the device to ThingsBoard. Specifically, during the
device adding, the owner or the cloud would set an “access
token” for the new device. The access token then is used
as the MQTT username for the device to communicate with
the ThingsBoard cloud.

The problem we identified here is that the access token
is accessible to the delegatee user — when the delegatee
user queries the ThingsBoard cloud for the information
about a device delegated to him, ThingsBoard would send
information that contains the device’s access token to the
delegatee user. Moreover, the access token does NOT change
or become invalid after the owner revokes the access right
from the delegatee user. Consequently, a delegatee user
with malicious intentions could obtain the MQTT username
(a.k.a., the access token) when he is authorized and reuse
the leaked MQTT username to stealthily communicate with
the cloud after he loses access right to the device.

PoC exploit on Flaw 2. We conducted a PoC attack to exploit
the Flaw 2 in ThingsBoard. In specific, we configured a
virtual gateway device connected to other sub-devices in the
ThingBoard cloud (Figure 3). We then temporarily shared
the gateway device to the attacker. At this point, the attacker
can obtain the access token from the ThingsBoard cloud to
form the authorization-data (e.g., MQTT username). After
we revoked the attacker’s permission, we tried to use our
attacking programs ( [16]) to communicate with the Things-
Board cloud. We found that, with the leaked MQTT user-
name, we were able to send forged messages and receive
messages to/from the ThingsBoard cloud. In addition, we
were able to publish messages to the v1/gateway/disconnect
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topic to disconnect the sub-devices under the victim gate-
way from the cloud (DoS in Table 1).

Note that, We found the exact same problem discussed
above in the ThingsKit [38] platform. An attacker can
leverage Flaw 2 to send falsified data and receive private
information of the victim to/from the ThingsKit cloud (see
Table 1).
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Using MQTT password to control sub-devices

Victim's gateway device Malicious user 
(attacker)

Delegate  user

Revoke permission

Uploading fake device data/events to cloud

Eavesdropping on messages sent to 

sub-devices

Fig. 4: Flaw 3 — MQTT password leakage in JetLinks

Flaw 3: MQTT password leakage. JetLinks [37] is an-
other open-source IoT cloud platform that supports MQTT
protocol and uses the MQTT password as authorization-
data [45] for devices to communicate with the cloud.
Specifically, when adding a new device, the owner
needs to set a “secureKey” and a “secureId” for the
device. To communicate with the cloud, the device
sends MQTT packages with the MQTT password set
to md5(secureID+“|”+timestamp+“|”+secureKey) and another
field filled with the timestamp in plaintext. Upon receiving
such a package from the device, JetLinks checks the cor-
rectness and freshness of the MQTT password using the
timestamp received and its own copy of secureId and se-
cureKey. Only the devices that pass such checks are allowed
to communicate with the cloud.

The problem in JetLinks cloud is similar to that in
ThingsBoard (Flaw 2). The authorization-data (e.g., the se-
cureId and secureKey) is obtainable to the delegatee user
and does NOT change after the owner revokes the delegatee
user’s access rights. Therefore, a malicious delegatee user
can use the leaked authorization-data to communicate with
the cloud even after his access right is revoked.

PoC exploit on Flaw 3. Exploiting Flaw 3 is also similar to
the exploitation of Flaw 2, as shown in Figure 4. The key
challenge was for the attacker to obtain the secureId and se-
cureKey. This was done by capturing the traffic between the
attacker’s user console (the web-based application provide
by JetLinks) and the JetLinks cloud. In our PoC attack, the
attacker successfully extracted the secureId and secureKey
from the packets/traffic sent from the JetLinks cloud to the
user console. Then, with our PoC attacking programs [16],
the attacker was able to conduct all the three attacks (e.g.,
FD, PB, and DoS in Table 1).

Flaw 4: URL leakage. Recall that, ThingsBoard sup-

Authorization-data

URL

IoT cloudOwner (victim) Analogous device

Authorization-data

URL

Victim's smart bulb Malicious user 
(attacker)

Delegate  user

Revoke permission

Uploading fake device data/events to cloud

Eavesdropping on messages sent to 

smart bulb

Using URL to control smart bulb

Fig. 5: Flaw 4 — URL leakage in ThingsBoard and Kaa
Enterprise

ports HTTP for the devices to communicate with the
cloud. We identified the problem of URL leakage
in the HTTP messaging of the ThingsBoard. Specifi-
cally, in ThingsBoard’s HTTP messaging, the URL (e.g.,
http(s)://host:port/api/v1/access token/telemetry) is used as the
device’s authorization-data and is unique for each device.
Anyone who knows the URL can communicate with the
cloud on behalf of (or pretend to be) the device. The problem
here is that the URL could also be leaked to the attacker,
who then could use the URL to communicate with the
ThingsBoard cloud maliciously.

To make matters worse, even an attacker who has never
been authorized to access the device before can obtain the
URL and conduct the attacks (see Table 1). For example,the
attacker could monitor all the traffic in the victim’s home
WiFi network to extract the URL.
PoC exploit on Flaw 4. The PoC exploitation of Flaw 4 is
rather straightforward. As outlined in Figure 5, we let the
victim owner shared the virtual smart bulb to the attacker.
The attacker was able to extract the URL from the traffic
between his user console and the ThingsBoard cloud. After
the owner revokes the attacker’s access right, we found the
attacker was able to communicate with the ThingsBoard
cloud using our PoC attack programs [16].

Note that, we found the same problem (Flaw 4) in the
Kaa Enterprise platform (see Figure 5), which also supports
HTTP messaging. We omit the detailed discussion for sim-
plicity.
Flaw 5: Device identifier leakage. We found that the device
identifier is used as authorization-data in JetLinks’s HTTP
messaging and ThingsPanel’s MQTT messaging, both of
which are vulnerable.

In JetLinks’s HTTP messaging, JetLinks exposes a public
URL (http://server-address/report-property) for the de-
vices to communicate with the cloud (Figure 6). To authen-
ticate and authorize a device, JetLinks requires the device
to provide a valid device ID (which is created when the
device is added to the cloud and is unchangeable) in the
packets sent to the URL. However, such an unchangeable
authorization-data (e.g., device ID) is accessible to the del-
egatee users (by querying the device data from the cloud),
which leads to the FD and PB attacks in JetLinks as shown
in Table 1.

Moreover, in ThingsPanel’s MQTT messaging,
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Fig. 6: Flaw 5 — Device identifier leakage in JetLinks and
ThingsPanel

ThingsPanel uses the same MQTT topic for all the
devices and requires each device to provide its unique
identifier (e.g., the token set by the owner when adding
the device) for authorization check. However, as shown in
Figure 6, when a device is shared to the delegatee user, the
delegatee user can obtain the device’s token in message
push log of the device. Such data leakage could lead to the
FD and PB attacks in ThingsPanel as shown in Table 1.
PoC exploit on Flaw 5. We confirmed Flaw 5 in both
JetLinks and ThingsPanel with our PoC attacking programs
[16].

IoT cloudOwner (victim) Analogous device

Authorization-data

SDK token

Victim's smart lock Malicious user 
(attacker)

Delegate  user

Revoke permission

Uploading fake device data/events to cloud

Eavesdropping on messages sent to 

smart lock

Using SDK token to control smart lock

OPEN-SOURCE

Download the SDK 

to obtain 

authorization-data

Fig. 7: Flaw 6 — SDK token leakage in Kaa open-source

Flaw 6: SDK token leakage. Kaa open-source [14] is a open-
source IoT cloud platform that supports flexible device def-
inition and creation. Specifically, Kaa open-source provides
the owners an endpoint SDK (a library that exposes many
useful APIs for the device to use) for them to create devices
with various functionalities. Each time a device is created,
the cloud would generate a unique token (which we call
the SDK token) for the device and store the SDK token
into the device’s own copy of SDK. The SDK token is then
used for the cloud to perform authorization check when a
device attempts to communicate with the cloud (Figure 7).
Moreover, when the owner authorizes a delegatee user to
access a device, the delegatee user is allowed to download
the SDK of the delegated device. As a result, the delegatee
user can further obtain the device’s SDK token from the

TABLE 2: Received CNVD IDs

IoT cloud platform CNVD ID

ThingsBoard (Flaw 2, Flaw 4) CNVD-2022-27848
JetLinks (Flaw 3, Flaw 5) CNVD-2022-38276
Kaa Enterprise (Flaw 1) CNVD-2022-41097

ThingsKit (Flaw 2) CNVD-2022-56053
ThingsPanel (Flaw 5) CNVD-2022-84690

Kaa open-source (Flaw 6) CNVD-2023-38442

downloaded SDK. Besides, the SDK token does NOT change
when the owner revokes the delegatee user’s access right.
Therefore, a malicious delegatee user can leverage this flaw
to stealthily communicate with the cloud, resulting in FD
and PB attacks (see Table 1).

PoC exploit on Flaw 6. In our PoC attack, as outlined
in Figure 7, the owner used the Kaa open-source SDK
to create a virtual smart lock (whose SDK token is set
as 2wXVH-wXD6TR cAdr5RoWal6K0Q by the cloud). Then,
the owner delegated the smart lock to the attacker. The
attacker downloaded the smart lock’s SDK and wrote an
attacking program [16] that used the SDK along with the
SDK token in it to connect to the cloud. We found that the
attacking program can still successfully communicate with
the Kaa open-source cloud after the attacker’s permission
was revoked.

Responsible disclosure. We report all flaws to relevant par-
ties, who all acknowledged the seriousness of the problems.
We have received 6 CNVDs [12] (see Table 2).

Ethical consideration. The PoC attacks are conducted us-
ing our own accounts/devices in our testing environment,
without disrupting the real-world IoT services or users.

5 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we elaborate on the design and implementa-
tion of SecHARE, an automated tool to patch the vulnerable
IoT clouds for authorization-data protection, which can
be easily applied to today’s IoT clouds. We have made
SecHARE publicly available [16].

5.1 Overview

IDs

IDs

IoT cloud User

(a) Without our proposed de-
fense

IDs

IDs

IDs

IDs

IoT cloud User

SecHARE

(b) With our proposed defense

Fig. 8: The authorization-data transmission between the
cloud and the users (with and without our proposed de-
fense)

At a high level, the IoT clouds should ensure that the
authorization-data transmitted in device sharing will not
be leaked to attackers, preventing the unauthorized access
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to the devices from the attackers. To fix the authorization-
data leakage flaws (discussed in Section 4), we propose
a usability preserving protection method that replaces the
actual authorization-data with the shadow authorization-
data and transmits the shadow authorization-data to the
delegatee user without interrupting the device sharing ser-
vices — the owner and the delegatee users can use the
IoT services as normal as they already do in today’s IoT
systems. The security enhancement is achieved by hiding
the actual authorization-data from the delegatee users. In
specific, as illustrated in Figure 8a, without our protection,
the actual authorization-data (e.g., IDs) is transmitted to the
delegatee user during device sharing, which could lead to
the problems discussed in Section 4. In contrast, SecHARE
works as a proxy during authorization-data transmission:
1) when the cloud sends authorization-data (e.g, ID) to
the delegatee user, SecHARE generates a shadow copy of
the authorization-data (e.g., ID’) and send it to the user;
2) when a message from the user arrives at the cloud,
SecHARE converts the shadow authorization-data to the
actual authorization-data and the inner process logic of the
cloud uses the actual authorization-data for further process-
ing. Notably, the shadow authorization-data is generated
using the same format of that of the actual authorization-
data (e.g., a 20-bit string). As a result, impacts on the normal
functionalities introduced by SecHARE can be minimized.
To this end, we developed SecHARE to automatically patch
the vulnerable codes of the IoT clouds.

NoSQL / SQL

Aop.xmlAop.xml

Configuration

Configuration 

Operator (CO)

Configuration Auto 

Generator (CAG)

Database Operator 

(DO)

Patch Generator

(PG)

Dynamic AspectJ Agent

(DAA)

Classes Loader

Security Enhanced 

Classes

auto

weaving

Source codes

Vulnerable (original) Classes

SE Code Templates 

(SECT)

Fig. 9: The architecture of SecHARE

Architecture. Since different IoT clouds use different
types of authorization-data and define different meth-
ods/functions to create, access, update, transmit, delete and
deactivate the authorization-data. We need a method to
automatically identify the methods/functions that operate
the authorization-data and patch these methods/functions
to fix possible authorization-data leakage in a way that does
not impact the usage of IoT services.

To this end, as shown in Figure 9, we built SecHARE,
which is composed of 5 components: a Configuration Op-
erator (CO), a Database Operator (DO), a Patch Generator
(PG), a Dynamic AspectJ Agent (DAA), and a Configuration
Automatic Generator (CAG). Essentially, SecHARE gener-
ates patches for the vulnerable cloud with the predefined
Security Enhancement Code Templates (SECT) based on our
usability preserving defense (see Section 5.2) and leverages
the AspectJ [31] (an AOP framework, see Section 2.2) frame-
work to insert these patches into the IoT cloud when the
classes are loaded into the Java virtual machine.
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relative 
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methods/

functions

The database 
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parameters

Loading the 

names of 
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Generalized 
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end

DAA

Compiling the 

patching code

Fig. 10: The workflow of SecHARE

Specifically, to apply SecHARE to patch an IoT cloud,
we need to deploy and execute SecHARE along with the
IoT cloud. Then, as shown in Figure 10, CO takes as in-
put the configuration file (which specifies the meth-
ods/functions operating the authorization-data) to generate
the Aop.xml file for the DAA to use1. CO also outputs
information (e.g., the specified authorization-data to protect
and the names of methods need to be patched) to the PG.
Along with the database operation APIs provided by DO,
the PG then generates the patch codes. Taking as input the
Aop.xml and the patch codes generated by PG, the DAA
leverage the AspectJ framework to compile the patching
codes and weave the additional/security-enhancement be-
haviors (defined by the patch codes) into the IoT cloud’s
original vulnerable classes at loading time, allowing the IoT
cloud to use Security Enhanced Classes to manage/operate
the authorization-data.

MQTT Username
MQTT Username'

MQTT Username'

MQTT   Username'

MQTT Username

MQTT   Username'

Delegatee user 

has permission

Delegatee user 

Permission 

revoked

IoT Cloud Patch (by SecHARE) Delegatee user Device/Simulator

MQTT Username'

Fig. 11: Usability preserving defense to Flaw 2

5.2 Usability Preserving Defense

IoT device sharing is vital to today’s IoT cloud. Almost
all IoT clouds support such functionality, for users widely
require it (e.g., sharing devices to family members, Airbnb
guests, babysitter, etc.). Therefore, the key to authorization-
data leakage solution is how to avoid disrupting the normal
IoT device sharing service. Our solution is to provide a

1. The Aop.xml and the configuration file contains the same
information. The Aop.xml is organized in the format supported by
AspectJ, while the configuration file is with better readability.
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usability preserving defense that is made transparent to the
users — they can use the device sharing services as normal
as they already do.

Specifically, our proposed defense leverages a simple yet
effective data mapping scheme to prevent authorization-
data leakage. In specific, after the owner shares her de-
vice to a delegatee user, the IoT cloud needs to trans-
mit the authorization-data to the delegatee user. Instead
of transmitting the authorization-data directly to the del-
egatee user (as today’s IoT clouds do), we generate a
shadow copy of authorization-data, record the mapping
relationship between the actual authorization-data and the
shadow authorization-data and then transmit the shadow
authorization-data to the delegatee user. The delegatee
user then uses the shadow authorization-data to access
the delegated device. Upon receiving the access request
from the delegatee user, the cloud extracts the shadow
authorization-data from the request, transfers the shadow
authorization-data to the actual authorization-data based on
the mapping records stored by the cloud, and uses the actual
authorization-data for authorization check. When the owner
revokes the delegatee user’s access right, the cloud delete
the shadow authorization-data and its corresponding map-
ping record. Hence, even if the shadow authorization-data
is leaked to and preserved by the malicious delegatee users,
he will not be able to leverage the shadow authorization-
data to gain unauthorized access to the device. Note that, all
the operations (e.g., data-mapping, data-storage and data-
deletion) are performed automatically by the backend cloud,
which are transparent to the users. Therefore, we could
fix the authorization-data leakage problems in today’s IoT
clouds while preserving their usability.
Example. Taking Flaw 2 (Section 4) as an example, Figure
11 illustrates how our defense operates the authorization-
data and shadow authorization-data. Recall that, Things-
Board uses the MQTT Username as authorization-data in its
MQTT messaging. Therefore, to share the device to the dele-
gatee user, ThingsBoard generate the shadow authorization-
data (MQTT Username’) for the actual authorization-data
(MQTT Username). Then, the MQTT Username’ is trans-
mitted to the delegatee user, instead of MQTT Username.
When the delegatee user is authorized, he can use MQTT
Username’ to access the device normally. After the dele-
gatee user’s permission is revoked, ThingsBoard removes
the MQTT Username’. As a result, the delegatee user can
no longer access the device, even if he preserved the MQTT
Username’ when he was authorized.
Discussion. Recall that, today’s IoT clouds use both
changeable and unchangeable authorization-data. When the
changeable authorization-data is leaked to the attacker,
the owner might help to mitigate the problem by chang-
ing/updating the authorization-data each time he revokes
access right from a delegatee user. However, this approach
relying on users to ensure the security may not be ideal.
First, real world owners might not be aware of the problem
or forget to update the authorization-data. Second, the de-
vice might be shared to multiple delegatee users. Updating
the authorization-data when revoking one of the delegatee
users might cause the other delegatee users cannot access
the device, either. If the unchangeable authorization-data is
leaked to the attacker, the owner has little to do to ease the

problem since she cannot update the authorization-data.

5.3 Automated Patching

How to adapt to different IoT clouds’ implementations
of device sharing and keep the performance overhead to
minimal are vital to automated patching.

Adaptability and scalability. The implementations of de-
vice sharing in today’s IoT clouds are heterogeneous —
defining multiple methods/functions to operate the various
types of authorization-data. Hence, it is particularly impor-
tant for the patch scheme to adapt to most (if not all) of
the IoT clouds and even scale to new IoT clouds. For better
adaptability and scalability, we consider the follow aspects.
• Configuration guided patching. Based on our under-
standing on the lifecycle of authorization-data (see Section
3), we cannot generate a single unified patch for all of
the clouds. Instead, we leverage a configuration that
specifies the methods/functions operating authorization-
data defined in a specific IoT cloud to generate the unique
patch for the cloud. Note that, our patch scheme is general
and scalable. To patch another IoT cloud, we simply ask for a
new configuration file and patch the cloud accordingly.
We further developed CAG to reduce the manual efforts for
specifying the configuration file (see Section 5.4).
• Minimal changes to the system. It is also essential to ensure
easy deployment and minimal changes to existing systems.
To this end, we adopt the AOP (see Section 2.2) technique to
only weave security-enhancement behaviors into the orig-
inal system without breaking the overall workflow/logic
design. Moreover, the weaving is done automatically by
our tool at the loading time of the classes, requiring min-
imal (or no) manual intervention from the IoT cloud man-
ager/developer.
• Supporting SQL/NoSQL database. Our scheme stores the
mapping relationships between the authorization-data and
shadow authorization-data in the database. Also, such data
are stored in concordance with the data managed within
the cloud platform, and are inaccessible to users. Consider
the usage of different types of databases, we develop DO to
provide universal APIs for database access and implement
DO to support both SQL and NoSQL databases.

Minimal performance overhead. Low end-to-end latency is
important in IoT device control. To minimize the latency
overhead, we only introduce additional computation to
the cloud-side while the client-side (the device and user
console) remains unchanged. Since the clouds are usually
with strong computing capabilities, the overhead should be
negligible (see Section 6.2).

5.4 Automatic Generation of Configuration Files

Essentially, the configuration file specifies the im-
plementation details of device sharing, including which
data/variables are used as authorization-data and which
methods/functions operate the authorization-data. We ex-
pect the users of SecHARE (e.g., a developer/manager of
the IoT cloud) to provide the configuration file, for they
would already know the implementation details. Never-
theless, we develop CAG to help the users to specify the
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TABLE 3: Common words/affixes at some phases of the life-
cycle of authorization-data

Phase1 Common Words2

Add Device add, save, create, regist-
Delete Device/User del-, remove, cancel

Share Device auth-, right, permission, assign,
claim, grant, deploy, delegate

Unshare Device auth-, right, permission, revoke,
unassign, disclaim, undeploy

1 Some phases of the life-cycle of authorization-data.
2 The key words/affixes within the phase.

configuration file, reducing the manual efforts needed
to use our tool.

CAG mainly focuses on automatically identify the names
of methods/functions that operate the authorization-data.
Note that, it is possible for CAG to identify a non-related
method/function as method/function that operates the
authorization-data. Hence, we let CAG list all the meth-
ods/functions it identified and let the user to delete or add
methods/functions from/to the list.

Specifically, we investigated 50 IoT cloud projects on
Github to learn the naming pattern/habit of the IoT pro-
gramming. We found that the methods/functions defined
in the 8 different phases of the authorization-data’s lifecycle
(see Section 3) can be divided into two categories: (1) The
methods/functions that have a common naming pattern,
including Add device, Delete device, Delete user, Share device
and Unshare device; (2) The methods/functions that do not
have a common naming pattern, including Query device
information, Update device data, and Access device.

For the methods/functions in the former category, CAG
can quickly identify them based on the common key
words/affixes used in them (as listed in Table 3) via simple
string matching. For the methods/functions in the latter cat-
egory, we conduct static source code analyses to obtain the
information of each method/function to determine whether
its parameters or return values contains authorization-data.
Notably, Natural language processing (NLP) can help to
identify the method/function names, which is discussed
in Section 7. Moreover, we build an AST model for the
source code to obtain the calling relationship of the meth-
ods/functions. With the calling relationship, we could re-
move (some of) the caller methods/functions from the
configuration file, since we only need to insert/weave
the callee method/function for authorization-data protec-
tion.

5.5 Implementation of SecHARE
We present the implementation of SecHARE as follows with
its source codes released online [16].
The configuration and CAG. As aforementioned, the
configuration (provided by the user of SecHARE) spec-
ifies the names of the variables/methods/functions related
to the authorization-data. To help automatically generate the
configuration file, CAG uses the QDox [46] to extract
the definitions of the classes/interfaces/methods from the
source code and uses Spoon [47] to build the AST model.

Note that, the configuration also specifies the informa-
tion needed to connect/access the database (e.g., the name
of the database, the username and the password needed to
connect the database), which is used to store the relationship
between the authorization-data and shadow authorization-
data.

The CO. Taking the configuration file as input, CO gen-
erates the Aop.xml file in the format required by AspectJ
[48]. The Aop.xml file would then be input to the DAA.
Also, from the configuration file, CO extracts the names
of relative variables and methods/functions and sends them
to the PG. At last, CO sends the database-related parameters
(e.g., database username, password, etc.) to DO.

The DO. DO provides generalized database operation APIs,
supporting both SQL and NoSQL databases. Currently, DO
supports most SQL databases (a.k.a., Relational Database
Management Systems) and the popular NoSQL database
MongoDB [49].

The PG. Based on our defense (see Section 5.2), we create
the SECT to include all the possible behaviors needed to
insert/weave into the vulnerable IoT clouds. Specifically,
we define code templates for data transferring, database
read, database write and database deletion. Then, PG locates
the vulnerable methods/functions in the original classes
based on the input from CO, and automatically gener-
ates the patching codes using the templates in the SECT
and the APIs provided by DO. Example-1 illustrates how
PG patches the shareDeivce() method. Specifically, share-
Deivce() calls the getDevice() to obtain the authorization-
data (e.g., device ID) and transmit the authorization-data
to the delegatee user with the sendToDelegateeUser() method.
PG patches such a progress in that: (1) adding line 10
to randomly generate the shadow authorization-data to
ensure data uniqueness (in specific, we used the Random-
StringUtils.randomAlphanumeric() API [50] to generate the
data); (2) adding line 11 to store the mapping relationship
of the authorization-data, shadow authorization-data and
user’s identity; (3) replacing line 13 with line 12 to return the
shadow authorization-data (instead of authorization-data).
Note that, we maintain the data mapping at the user-level.
Since a single user typically possesses a limited number of
devices, collisions between device mappings are expected to
be infrequent.

The DAA. The DAA is an AspectJ agent [51] that can be loaded
into the running Java virtual machine. It takes inputs as
the Aop.xml and the patching codes from PG to weave
the patches into the original vulnerable classes when the
Class Loader of the Java virtual machine loads the class files,
forming the Security Enhanced Classes.

6 EVALUATION

In this section, we discuss the impacts of authorization-data
leakage flaws and evaluate the performance of SecHARE.

6.1 The Impacts of Authorization-Data Leakage

Prevalence of vulnerable authorization-data management.
Bin et al. [5] identified several authorization-data leakage
flaws in cross-cloud delegation, while we focused on the
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Example 1: Patching shareDevice()
1 shareDevice (device, delegateeUser) {
2 ...
3 deviceID = getDevice(device, delegateeUser);
4 sendToDelegateeUser(deviceID, delegateeUser);
5 ...
6 }
7

8 getDevice(device, delegateeUser) {

9 ...
10 shadowData = generateShadowData(device.ID);
11 storeMapping(device.ID, shadowData,

delegateeUser.ID);
12 return shadowData;
13 return device.ID;

14 }

security issues of authorization-data management within a
single IoT cloud. As shown in Table 1, we identified 6 new
flaws with 3 of them (Flaw 2, Flaw 4 and Flaw 5) affecting
more than one IoT cloud, which shows the prevalence of the
authorization-data leakage problem.

Scope of the impact. The 4 open-source IoT clouds we
analyzed (i.e., ThingsBoard [13], JetLinks [15], Kaa open-
source [14] and ThingsPanel [52]) are among the most
popular IoT projects in the open-source community, with
over 17K stars on GitHub in total. The other 2 commercial
IoT cloud platforms (i.e., Kaa Enterprise [36] and ThingsKit
[38]) serve many enterprises (including Lenovo, Alibaba
cloud and NET4.IO [36], [38]) and customers, and connect
millions of devices in various field (e.g., smart energy, smart
agriculture, smart home, and industrial Internet of Things
[53], [54]). Therefore, security loopholes in these IoT clouds
can bring huge damage to the real world IoT applications.

6.2 Performance Evaluation

Selecting IoT clouds for flaw identification. Since we fo-
cused on the security issues in the IoT device sharing within
a single cloud, we only studied the clouds that support
such functionality and enforce access control mechanisms.
Also, we prioritized the general IoT clouds — the clouds
can be applied to multiple IoT scenarios (e.g., smart home,
smart city, smart energy, etc.). At last, we prioritized the
clouds with better popularity — more GitHub stars for the
open-source clouds and more customers for the commercial
clouds.

Selecting IoT platforms for defense evaluation. SecHARE
fixes the flaws by patching the source codes of the clouds.
Hence, we only evaluated SecHARE upon the open-source
clouds. Further, multiple programming languages (e.g.,
Java, Go, C++, C, etc.) are used to implement the open-
source IoT clouds. However, according to the Eclipse Foun-
dation IoT survey [55], Java is the top choice with a popu-
larity of 66.5%. Therefore, we applied SecHARE to the three
open-source IoT clouds written in Java (e.g, ThingsBoard,
JetLinks, and Kaa open-source).
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Fig. 12: Cost assessment of SecHARE applied to 3 cloud plat-
forms (Kaa open-source platform cannot accurately measure
the latency of creating a device).

Efficiency. To evaluate the efficiency of SecHARE, we de-
ployed 3 popular open-source IoT platforms (i.e., Things-
Board, Kaa open-source, and JetLinks) in our test server
(with Intel Core i7-9700 cpu, 16GB memory). With each
cloud, we carried out multiple operations (including sys-
tem startup, device creation, device connection, and de-
vice control) before and after it is patched by SecHARE
(experimental programs and data are publicly available
at [16]). We repeated the system startup operation for 20
times and measured the time. As shown in Figure 12a, the
overhead on startup time introduced by SecHARE is 400 ms
averagely. For the device creation, device connection and
device control operations, we repeated the experiments for
2000 times. As shown in Figure 12b, Figure 12c and Figure
12d, the average overheads are 10.39 ms, 3.17 ms and 14.25
ms respectively. We believe such overheads is negligible.
Performance overheads. In order to assess the impact of
deploying SecHARE on a real-world cloud platform, we
also conducted a series of performance evaluations on our
test server. Specifically, we measured the CPU and run-time
memory usage for 1000 device creation and data querying
operations on the ThingsBoard both before and after deploy-
ing SecHARE, respectively. We observed an increase of only
0.14% in CPU usage and 0.16% in memory usage, indicating
that the performance overheads introduced by SecHARE is
negligible.

6.3 Security benefit
As discussed in Section 4, the attacker can leverage the
leaked authorization-data to communicate with the cloud
even after his access right is revoked. We evaluated whether
the attacker can achieve that in the cloud that has been
patched by SecHARE.

Specifically, we set up 3 different devices: the temper-
ature sensor, the smart window, and the gateway device.
Each device was assigned a specific operation, such as up-
loading device data/events, receiving remote control com-
mands, and managing gateway sub-devices. As depicted in
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TABLE 4: The authorization-data transmitted to the user
with and without our protection

Device Access token
(without protection)

Shadow access token
(with protection)

Tempeature 7G1o5tuLlioLrkTs6s5d 9KCsJanYJ0XaRsMijQyk
SmartWindow K0BC07q02zj1E06byFU5 11IreMrM1bVaOfHwc8vh

Gateway EWXzP88urDF1twim4KIEE xSnIgvaRozojurfD8mgn

TABLE 5: The logs output by the cloud platform under
different operations before and after the patch

Event Log

upload device
data/events

1Connecting to the cloud-host with an access token.
Client connected!
Uploading device data with interval 3 (sec). . .

2Connecting to the cloud-host with an access token.
Disconnecting. . .

receive remote
control commands

1Connecting to the cloud-host with an access token.
Client connected!
Receive: {

timestamp: 1656328161692
topic: v1/devices/me/rpc/request/1
body: {”method”: ”setStatus”,

”params”: ”{\”set status\”:\”close\”}”
}

}

2Connecting to the cloud-host with an access token.
Disconnecting. . .

management gateway
sub-devices

1Connecting to the cloud-host with an access token.
Client connected!
Timestamp-1656328417946: gateway subdevice 1
disconnected!
Timestamp-1656328417946: gateway subdevice 2
disconnected!

2Connecting to the cloud-host with an access token.
Disconnecting. . .

1 Attack on the ThingsBoard cloud not patched by SecHARE.
2 Attack on the ThingsBoard cloud patched by SecHARE.

Table 4, we ensured that the authorized user did not have
access to the actual authorization-data, which remained
undisclosed to them within the SecHARE-patched cloud.
Next, we assessed the scenario in which a malicious user
(e.g., an attacker), possessing retained authorization-data
(access token), attempts to exploit vulnerabilities in an un-
patched cloud platform, as illustrated in Table 5. Through
our evaluation, we observed that the attacker could engage
in data forgery attacks by uploading device data, privacy
leakage attacks by receiving remote control commands,
and denial-of-service attacks by disconnecting/logging out
the gateway device, thereby disrupting the service of sub-
devices. However, when these operations were attempted
within the SecHARE-patched cloud platform, the system
effectively denied all unauthorized access attempts, pre-
venting harm caused by the leakage of authorization-data.
This indicates that our proposed defense can effectively
mitigate the flaws.

7 DISCUSSION AND FUTURE WORK

Manual efforts to secure an IoT cloud. As discussed
in Section 5.3, SecHARE requires the user to provide a
configuration file. Specifying the configuration file
requires manual efforts. Although we developed CAG to
reduce such manual efforts, certain efforts are still needed
when CAG is not able to determine the exact meth-
ods/functions.

Towards fully automated analyses. To further improve the
automation of SecHARE, NLP techniques can be used to
automatically locate/identify the method/function names
in the source code. By parsing functions and extracting
features from the source code, NLP can make SecHARE
more accurate and efficient. Therefore, in future work, we
aim to explore the feasibility and effectiveness of integrating
NLP techniques into SecHARE to improve its automation
and accuracy.

Protection of cross-cloud device sharing. Although we only
applied SecHARE to secure the device sharing within a
single IoT cloud, our general defense can also help to secure
the cross-cloud device sharing. For example, Bin et al. [5]
found that the deviceID of the SmartThings device (which
is treated as a credential in SmartThings) could be leaked to
a malicious delegatee user in the Google Home. Leveraging
the leaked deviceID, the malicious user can control the vic-
tim’s SmartThings devices that he is not entitled to access.
This problem can be also fixed with our data mapping
scheme. When the SmartThings transmits the deviceID to
the Google Home, the SmartThings could generate a new
deviceID (denoted as deviceID’) and send the deviceID’ to
Google Home. Upon receiving a request from Google Home
carrying deviceID’, the SmartThings can transfer the devi-
ceID’ to deviceID, and perform authorization check based
on deviceID. When revoking the access right of Google
Home, SmartThings can delete the deviceID’, thus to fix the
problem without disrupting the normal IoT service. Note
that, SmartThings should NOT delete deviceID, since it is
also used by other users/applications in the SmartThings.
Also, SmartThings can NOT refuse to send the identifier
of the delegated device to the Google Home, since the
access delegation protocol of Google Home requires such
information.

Supporting more languages. Diverse programming lan-
guages, including Java, Go, and C#, are employed in
the implementation of contemporary IoT clouds. Presently,
SecHARE has adopted the AspectJ framework specifically
to support Java programming language. Notably, analogous
frameworks are available for other programming languages,
such as GoAOP or Go-Aspect for Go, and AspectDNG for
C#. In future work, we aim to explore the applicability of
these frameworks to accommodate diverse programming
languages. It is worth noting that the fundamental concept
underlying our proposed defense mechanism is general in
nature, thus facilitating its extension to other IoT clouds.

8 RELATED WORK

IoT platform security. In the rapid development of the
IoT, the IoT cloud plays an important role. Chen et al.
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[56] and Zhou et al. [57] have reported flaws found in
device management for IoT clouds, demonstrating that
leakage of device identity can have serious consequences.
However, they only discovered the vulnerabilities without
proposing any defense mechanisms. Yuan et al. [5]
proposed a semi-automated tool to detect cross-cloud IoT
delegation vulnerabilities. In contrast, our work focuses
on authorization issues within individual cloud platforms
and provides an automated protection tool (SecHARE) to
mitigate the authorization-data leakage problem. Moreover,
most of the existing work is mainly for specific platforms,
such as SmartThings [7], [9], [58]–[65], IFTTT [10], [66],
[67] and AWS Alexa [68], [69]. By contrast, our work is
to provide a tool to protect different cloud platforms.
Besides that, some works [7], [62], [66], [70] provide
methods to protect sensitive information or data flow
in IoT apps, whereas our work is focuses on protecting
authorization-data only in the cloud.

IoT permission sharing. Permission issues have always
been one of the key concerns of IoT security and have
been widely studied [9]–[11], [58], [59], [71]–[74]. Fernandes
et al. [9] first reported that the coarse-grained capability
design leads to over-privileged and the inability of the event
subsystem to adequately protect events carrying sensitive
information in SmartThings. Additionally, access control is
not only distributed but also heterogeneous and ad-hoc in
today’s IoT cloud ecosystem.

To cope with the new application scenario, Jia et al.
[58] focused on permission protection and proposed Con-
texIoT, a fine-grained context-based permission system for
SmartThings to provide context integrity for IoT programs
at runtime. Tian et al. [59] presented a user-centric, semantic-
based authorization design called SmartAuth to help users
avoid overly privileged applications in SmartThings. These
researches primarily focus on the permission management
of the applications, without consideration of dynamic user
authorization scenarios or proposing methods to secure the
authorization-data.

Fernandes et al. [62] proposed a privacy-preserving
system called FlowFence, which attempts to address the
ineffectiveness of existing permission-based access controls
in controlling sensitive data flows in applications by em-
bedding the data flow patterns expected by users. However,
this work mainly tries to prevent malicious IoT applications
from abusing the sensitive data (e.g., data collected by the
IoT sensors). In contrast, SecHARE focuses on securing the
data used for authorization and preventing unauthorization
access in a shared IoT scenario.

Furthermore, Fernandes et al. [10] introduced Decen-
tralized Action Integrity to prevent an untrusted trigger-
action platform from misusing compromised OAuth tokens.
Andersen et al. [11] presented WAVE, an authorization
framework offering decentralized trust, which supports tran-
sitive fine-grained sharing and revocation. However, these
efforts, while meeting the current complex IoT authorization
needs, require all parties to work together following the
same framework APIs and are more difficult to apply and
deploy to the real world. In contrast, our work only adds
a few changes to the cloud platform to realize automatic
protection of authorization-data. Moreover, our tool can

adapt to a variety of authorization-data and is compatible
with different cloud platforms.

9 CONCLUSION

In this paper, we systematically study how the
authorization-data are managed in the real-world IoT
device sharing and its security implications. Our research
reveals that authorization-data leakage is prevalent in
the IoT clouds, with 6 flaws identified in 6 popular IoT
clouds. To mitigate the problem, we proposed SecHARE to
automatically patch the vulnerable codes of the IoT clouds.
We applied SecHARE to 3 open-source IoT clouds. Our
evaluation shows that SecHARE is easy to use by the IoT
vendors, effective and efficient in securing authorization-
data. Our new understanding and new techniques will
provide better protection for today’s IoT cloud platforms,
as well as those to be built in the years to come.
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