
1

Metadata-Based Detection of Child Sexual
Abuse Material

Mayana Pereira, Rahul Dodhia, Hyrum Anderson, and Richard Brown

Abstract—Child Sexual Abuse Media (CSAM) is any visual record of a sexually explicit activity involving minors. Machine
learning-based solutions can help law enforcement identify CSAM and block distribution. Yet, collecting CSAM imagery to train
machine learning models has ethical and legal constraints. CSAM detection systems based on file metadata offer several
opportunities. Metadata is not a record of a crime and, therefore, clear of legal restrictions. This paper proposes a CSAM detection
framework consisting of machine learning models trained on file paths extracted from a real-world data set of over 1 million file paths
obtained in criminal investigations. Our framework includes guidelines for model evaluation that account for data changes caused by
adversarial data modification and variations in data distribution caused by limited access to training data, as well as an assessment of
false positive rates against file paths from common crawl data. We achieve accuracies as high as 0.97 while presenting stable behavior
under adversarial attacks previously used in natural language tasks. When evaluating the model on publicly available file paths from
common crawl data, we observed a false positive rate of 0.002, showing that the model operating in distinct data distributions maintains
low false positive rates.

Index Terms—CSAM, Metadata, File Paths, Digital Crimes, Deep Learning, Machine Learning, Adversarial Examples

✦

1 INTRODUCTION

International law enforcement handles millions of child
sexual abuse cases annually. In 2022, the National Cen-
ter for Missing and Exploited Children (NCMEC) tip line
[12] received and reviewed over 32 million child sexual
abuse files, and over 99.5% of the reports received by the
NCMEC’s tip line regarded incidents of suspected CSAM.
Despite the 2008 Protect Our Children Act [33], the quantity of
CSAM in digital platforms has dramatically grown over the
last decade [12]. Online sharing platforms and social media
facilitated [38] the explosive growth of CSAM creation and
distribution [5]. Every platform for content searching and
sharing, including social material, likely has CSAM on it
[24]. Young teens are predominantly the target of predators,
where almost 7 in 10 instances of child sexual abuse involv-
ing 11-13 year olds [13]. Recent survey [11] reported that
over 15% of U.S. children have been exposed to online child
sexual abuse. These rates are even higher for high for girls
(23%) and transgender or gender-fluid children (20%) [11].

As the scale of the problem grows, technology plays
an essential role in CSAM identification. Companies that
manage user-generated data, such as Pinterest, Meta, Mi-
crosoft, Apple, and Google, have made detecting and re-
moving CSAM a top priority. Although several non-profit
organizations such as Project VIC International1, Thorn2 and

• M. Pereira is with Microsoft Corporation, AI for Good Research Lab,
Redmond, WA, 98052 and also with the Universidade de Brası́lia, Campus
Darcy Ribeiro, Brası́lia, Brazil.
E-mail: mayana.wanderley@microsoft.com

• R. Dodhia and H. Anderson are with Microsoft Corporation, Redmond,
WA, 98052.

• R. Brown is with Project VIC International.

1. https://www.projectvic.org
2. https://www.thorn.org

the Internet Watch Foundation3 focus on building tools to
combat CSAM proliferation, the creation and distribution of
CSAM is still a growing problem.

The COVID-19 pandemic triggered a significant increase
in the distribution of CSAM via social media and video
conferencing apps [39], and identification of CSAM is a
highly challenging problem. First, it can manifest in dif-
ferent types of material: images, videos, streaming, video
conferences, and online gaming, among others. Undiscov-
ered and unlabeled CSAM on the internet is estimated to
be magnitudes greater than the currently identified CSAM.
Second, discovering new material is still highly dependent
on human discovery. Despite the significant progress in ma-
chine learning models for CSAM identification with modern
deep-learning architectures [28], [42], [47], these models
rely on the availability of labeled images, which can lead
to technical limitations. As new material is created daily,
we understand that utilizing complementary signals can
advance the capability of digital platforms in detecting and
removing illegal content. The use of metadata, such as file
paths and file names, has been proposed by [37]. This is an
effective approach since distributors use coded language to
communicate and trade links of CSAM hosted in plain sight
on content-sharing platforms, websites, newsgroups, bul-
letin boards, peer-to-peer networks, internet gaming sites,
social networking sites, and anonymized networks 4. In
particular, peer-to-peer (p2p) file-sharing networks are an
environment where CSAM is actively hosted and shared
[14], [27], and searches in p2p networks usually work by
matching search terms with file names and file paths.

The lack of frameworks for evaluating machine learning
models for CSAM detection prevents a better understanding

3. https://www.iwf.org.uk
4. https://www.thorn.org/child-pornography-and-abuse-statistics/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.projectvic.org

2

of model performance under multiple scenarios that can
happen during deployment. Before deployment, organiza-
tions should test the CSAM detection model under different
conditions. An evaluation scenario needs a real-world data
set with similar data distributions to what the model will
be exposed to after deployment. A critical analysis is testing
the model on completely benign out-of-sample data sets.
The burden caused by a high false-positive rate can halt the
deployment of such systems. Furthermore, it is crucial to
understand how adversarially modified data impacts model
performance.

1.1 Our Contributions

Building machine learning systems for detecting CSAM me-
dia is a complex task. Due to the associated legal constraints,
systems that rely on metadata for detecting and blocking the
distribution of CSAM can expedite the hard work of NGOs
and content moderators.

This work proposes a framework for training and eval-
uating machine learning models for CSAM detection based
solely on file metadata. Our framework provides guidelines
for assessing CSAM detection models against adversarial
attacks and models’ ability to perform on different data
distributions.

The proposed models compute the likelihood that a file
depicts CSAM based on its file path. Our experiments show
that the resulting model achieves the desired performance
in challenging real-world deployment scenarios without
relying on the availability of CSAM images and videos for
training.

We list the contributions as follows:

• We propose a framework for evaluating machine
learning models for CSAM identification to prepare
for deployment. Our framework, illustrated in Figure
1, presents a testing pipeline that covers real-world
circumstances - expected when deploying a machine
learning model for CSAM detection: (i) test on CSAM
and non-CSAM samples; (ii) test on adversarially
modified CSAM samples to evade detection; (iii) test
on benign samples from open data sources.

• We train and compare several machine-learning
models that analyze file paths and file names from
file storage systems and determine a probability that
a given file has child sexual abuse content. Our
experiments include traditional machine learning al-
gorithms, deep neural network architectures, and
Transformer-based models. We train our models on
a real-world data set containing over one million
file paths from apprehended hard drives during in-
vestigations. It is the most extensive file path data
set composed solely of file paths from apprehended
hard drives. Our best classifier achieves recall rates
over 0.94 and accuracy over 0.97 on holdout sets; it
maintains a high recall rate in adversarially modified
inputs; when tested against benign samples from
other data distributions, it achieves a false-positive
rate of ≈ 0.01.

To our knowledge, our work is the first to propose a
framework for evaluating CSAM detection systems that

include adversarial examples in the evaluation stage. Our
results show that machine learning based on file paths can
detect CSAM in storage systems and achieve the desired
performance in all the proposed evaluation scenarios.

Finally, we remark that our solution is part of the
technology suite used by the non-profit Project VIC5 and
currently in use.

2 RELATED WORK

Identification of CSAM via statistical algorithms is a rea-
sonably recent approach. In the early 2000s, the US and the
UK introduced laws targeting online exploitation of minors
(COPA in the US, Crime and Disorder Act UK) [6]. However,
only in 2008 was the first widely used CSAM identification
technology released.

PhotoDNA Hash PhotoDNA Hash (PDNA) is a widely
used technique for the automated identification of CSAM.
The PDNA uses a fuzzy hash algorithm to convert a CSAM
image to a long string of characters. The converted hashes
are compared against others to find identical or similar
images. PDNA technology enabled a faster discovery of
CSAM while protecting the victim’s identity. This system
is still one of the most widely used methods for detecting
CSAM images worldwide. Search engines, social networks,
and image-sharing services utilize databases of hashed
CSAM images to eradicate harmful content from their plat-
forms. PDNA is a signature-based technology; it recalls
only known CSAM. Therefore, identifying new CSAM in
a PDNA-based system requires manual labeling.

Machine Learning for Image Identification Since
PDNA’s first development, computer vision models have
undergone a revolution resulting in novel machine learning-
based models for pornography and CSAM detection [28],
[32], [36], [47]. The current approaches either combine a
computer vision model to extract image descriptors [42],
train computer vision models on pornography data [16],
perform a combination of age estimation and pornography
detection [28] or synthetic data [47]. However, due to legal
restrictions in maintaining a database of CSAM images, all
current works are based on either unrealistic images [47] or
validated by authorities in small data sets [16], [28], [42] that
hardly represent the actual data distribution in the internet
[5].

Adversarially modified data samples Adversarial in-
puts are small perturbations intentionally crafted into data
to evade detection by a model. For text applications, this can
include injecting random noise that does not dramatically
alter human understanding of the text. Substitutions such
as replacing ”before” with ”b4”, homoglyph substitutions,
and other substitutions, such as using ”Lo7ita” instead of
”Lolita” [45]. The effects of adversarial modifications in text
classification have been explored for different NLP tech-
niques, including classification [1], machine translation [3],
and word embeddings [18]. Depending on the information
available to the adversary, it distorts portions of the text
most likely to contain a signal necessary to the classification
task.

5. ”A non-profit whose technologies are used by thousands of law
enforcement officers worldwide” - https://www.projectvic.org/vic-
point

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3

Fig. 1: Pipeline for model training and evaluation of machine learning models for CSAM detection. (i) During model
training, we train models utilizing several machine learning techniques, such as logistic regression, Naive Bayes, boosted
trees, deep neural networks, and Transformers. (ii) We construct different testing data sets to model performance in different
circumstances of practical relevance during the model evaluation. We propose a testing framework that tests the model
under three scenarios: File paths from out-of-sample hard drives, file paths intentionally modified by an adversary to evade
detection, and file paths from benign sources (open data).

CSAM File Metadata Classification While significant
efforts have focused on the images, some researchers have
looked for complementary signals to help identify CSAM.
Such measures include queries that return CSAM in search
engines, file metadata, and conversations that imply groom-
ing or exchange of CSAM [40]. Other efforts have used
textual signals to identify where CSAM might be located,
such as keywords related to website content [43], using
NLP analysis [2], [10], [34], [35], [37], conversations [4]. Our
work falls into this category. Previous works have found
that perpetrators use a specific CSAM vocabulary to name
files [37]. For this reason, using file paths, which is the
combination of the file location and file name, is a promising
approach for CSAM identification. Other related works aim
to identify CSAM based solely on file path [2], [2]. How-
ever, these works do not address important questions such
as classifiers’ robustness against adversarial examples and
performance in out-of-sample benign data sets.

Recent Works The recent publication of a survey on
detecting and preventing online child sexual abuse material
[31] compares over 35 studies on the topic. The findings
of this survey highlight the problem’s complexity and the
need to combine computer vision and natural language
processing techniques to combat this heinous crime. In [26],
the authors propose a pipeline for extracting signals from
data, which they claim is highly valuable in highlighting
essential aspects of the overall distribution of data. This

pipeline can provide valuable insights into databases that
cannot be disclosed. Moreover, in [46], the authors used real-
world data from the United Kingdom to study the behavior
and preferences of 53 anonymous CSAM suspects who were
active on the dark web and noticed by the police. This
research provides a unique perspective into the minds of
these dangerous individuals and can be used to develop
more effective strategies to prevent them from exploiting
innocent children online.

3 METHODS

This section describes our experiments’ data set, methods,
and algorithms.

3.1 Training data set
Our supervised learning approach to identify CSAM file
paths utilizes a binary labeled data set. To separate the data
set into independent training and test sets, we split the data
by storage system information (e.g., driver designations) to
not leak information from the training to test set, which is
also known as model leakage [23]. Our data set consists of
file paths collected by Project VIC International6. The data
consists of 1,010,000 file paths from 55,312 distinct storage
systems. File paths are strings that contain the location

6. https://www.projectvic.org

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4

information of a file (folders) in a storage system and the
file name. In Table 1, we present details on the different
types of content that constitute the data set and the number
of samples for each type.

TABLE 1: Project VIC data set description. Data set used for
model training and model testing. It contains non-pertinent
(negative class) file paths and different types of file paths of
child exploitative and child sexual abuse material (positive
class).

Content Type Samples Label

Non-pertinent 717,448 0

Child exploitative and child sexual abuse 292,552 1

The Project VIC data set used in our experiments con-
tains 717,448 non-pertinent file paths and 292,552 file paths
containing child exploitative and sexual abuse material. We
note that all the provenance of 1,010,000 file paths in our
data set is from hardware apprehended for investigations.
The training and testing data sets accurately represent the
data in a deployment scenario.

Due to ethical implications, the authors cannot share the
Project VIC file path data set or make it publicly available.
The data set contains real file paths and file names, which,
in the wrong hands, can be used to search for CSAM
files in search engines, discussion forums, and peer-to-peer
networks.

3.1.1 File Path Characteristics

The distribution of file path length helps us define the
size of the character embedding vectors in our deep neural
networks models and the size of the word vectors used as
input to the transformers-based model we fine-tune to the
task of CSAM file path identification.

When analyzing the distribution of file path lengths in
the data set, we observe that 95% of file paths have 300
characters or less. Limiting the size of the character embed-
ding layer helps increase the time and memory efficiency
of the model. We set our character embedding layer size to
300 characters. We truncate file paths with more than 300
characters by discarding the initial characters and keeping
only the last 300 characters. We pad with zeros on the left
all file paths with less than 300 characters.

The transformers-based model also takes a fixed-sized
vector, in this case, a vector of words, as input. We consider a
word to be a sequence of alphanumeric characters separated
by a dash, slash, colon, underscore, or period. By counting
the number of words in each file path, we see that over
99% of file paths have at most 64 words. More precisely, in
our data set, there is only one file path with more than 60
words. For this reason, we set the input vector size for the
transformers-based model to 64 words.

In addition to the file path size, the size of the set
of possible characters is a data attribute that influences
model architecture. Although over 96% of the file paths
are represented by alphanumerical characters and words in
English, the remaining 4% of the data contains multiple lan-

guages and characters from Chinese, Korean, and Japanese
alphabets.

3.1.2 Cross Validation Data Split
We use a K-Fold Cross Validation methodology in our
experiments with K=10. The file path contains information
about the storage system in our data set. If a storage system
contains a high volume of CSAM files, the model could learn
that files from specific storage systems are highly likely to
be CSAM. This is known as model leakage [23]. Leakage
in machine learning modeling consists of introducing infor-
mation about the target of a machine learning problem at
training time. To avoid model leakage, we split the data by
storage system information. We divide each cross-validation
fold into 80/10/10 for training, validation, and testing.

The information before the first backlash of a file path
specifies the external storage system or a laptop/desktop.
We use this information to partition the data set for cross-
validation.

3.2 Text Vectorization
We present the concepts utilized for text vectorization: term-
frequency inverse-document-frequency (TF-IDF), character-
based quantization, and word vectors that will serve as
input to the transformers-based model.

3.2.1 TF-IDF
This technique attributes weights to words (or sequences
of characters) in a text [22]. First, it computes the term
frequency (TF), which is the number of times a term occurs
in a given document. We calculate the inverse-document
frequency component (IDF) as follows:

IDF(t) = log
1 + n

1 + df(t)
+ 1

n is the total number of documents in the document set,
and df(t) is the number of documents in the document set
containing the term. For each term, we compute the product
of the TF and IDF components. The Euclidean norm then
normalizes the resulting TF-IDF vectors.

When vectorizing a text with TF-IDF, the terms in a text
can be words or sequences of characters. We investigate
both approaches in our work. When using words as terms
in TF-IDF, we refer to the text vectorization as bag-of-
words (BoW). When vectorizing the file paths as BoW, we
consider a word to be a sequence of alphanumeric characters
separated by a dash, slash, colon, underscore, or period.
We construct the bag-of-words model by selecting the 5,000
most frequent words from the training subset. We utilize this
text representation in combination with TF-IDF. The data set
of vectorized file paths is used as input to three different
learning algorithms: logistic regression, naive Bayes, and
boosted decision trees.

When using the sequence of characters as terms in TF-
IDF, we refer to the text vectorization as bag-of-n-grams or
n-grams. When vectorizing the text as n-grams, we extract
from each file path string its n-grams, for n ∈ {1, 2, 3}. The
set of n-grams of a string s is the set of all substrings in
s of length n. We construct the bag-of-n-grams models by
selecting the 50,000 most frequent n-grams (up to 3-grams)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5

from the training data set. We utilize this text representation
in combination with TF-IDF. The data set of vectorized file
paths is used as input to three different learning algorithms:
logistic regression, naive Bayes, and boosted decision trees.

3.2.2 Character-based quantization

This type of text representation defines an alphabet of size
m as the input language, quantized using 1-of-m encoding.
We transform each textual input of length l into a sequence
of such m sized vectors with fixed length l. We truncate texts
with more than l characters, discarding the exceeding initial
characters. If the text is shorter than l, we pad the string with
zeroes on the left. We represent characters that are not in the
alphabet as all-zero vectors. The alphabet used in our mod-
els consists of m = 802 characters, including English letters,
Japanese characters, Chinese characters, Korean characters,
and special alphanumeric characters. The alphabet is the set
of all unique characters in the training data.

3.2.3 Word vectors for pre-trained models

We use transformer-based models in our experiments. We
utilize bidirectional encoder representation from transform-
ers, BERT [9] pre-trained model. To prepare the text to serve
as an input to the pre-trained BERT model, we represent
the file path as a sequence of words by removing dashes,
slashes, colons, underscore, and periods. We limit the se-
quence of words to 64 as indicated in section 3.1.1.

3.3 Learning Algorithms

We use several learning algorithms that have been suc-
cessful at short-text classification. We consider two broad
approaches: i) Traditional machine learning models ii) and
Neural network models.

3.3.1 Traditional ML on extracted features

We chose a set of standard ML algorithms with distinct func-
tional forms: logistic regression, naı̈ve Bayes, and boosted
decision trees. We chose these machine learning models
because of their interpretability and simplicity.

Logistic Regression This discriminative classification
algorithm models the posterior probability P (Y |X) of the
class Y given the input features X by fitting a logistic curve
to the relationship between X and Y . Model outputs are
interpreted as probabilities of the occurrence of a class [30].

Naive Bayes Conditional probability model that as-
sumes independence of features: given a problem instance
to be classified, represented by a vector x = (x1, . . . , xn)
representing some n features, it assigns to this instance
probabilities P (Ck | x1, . . . , xn) for each of K possible
outcomes or classes Ck. The problem with the above for-
mulation is that if the number of features n is large or a
feature can take on too many values, basing such a model
on probability tables is infeasible. A reformulation of the
model makes the problem tractable. Using Bayes’ theorem
and assuming independence of the feature variables, the
conditional probability is decomposed as:

P (Ck | x) = P (Ck) P (x | Ck)

P (x)

Fig. 2: Diagram of the deep neural network architecture with
CNN layers used to train one of our CNN-based models.
The above diagram indicates all data dimensions and the
number of weights in each layer of our CNN model.

Boosted Decision Trees The base of the technique is tree
ensembles. The algorithm trains each tree using a boosting
process in which each subsequent tree is built with weighted
instances misclassified by the previous tree [15]. A simple
majority vote of the individual trees defines the classifica-
tion of a new instance with a trained ensemble of trees.

3.3.2 Deep Neural Networks on Learned Embeddings
All neural network architectures start with an embedding
layer representing each character by a numerical vector. The
embedding maps semantically similar characters to similar
vectors, where the notion of similarity is automatically
learned based on the classification task at hand. The variant
of LSTM architecture used in our work is the standard
”vanilla” architecture as used in [44].

Convolutional Neural Networks One-dimensional Con-
volutional Neural Networks (CNNs) are a good fit when
the input is text, treated as a raw signal at the character
level [48]. The CNN automatically learns filters to detect
patterns that are important for prediction. The presence (or
lack) of these patterns is then used by the quintessential
neural network (multilayer perceptron) to make predictions.
The algorithm learns the filters (also called kernels) during
backpropagation. Figure 2 shows detailed information on
the CNN-based architecture used in our experiments, in-
cluding data dimensions and weights in each layer.

Long Short-Term Memory network This flexible archi-
tecture generalizes manual feature extraction via n-grams,
for example, but instead learns dependencies of one or

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

6

Fig. 3: Diagram of the deep neural network architecture with
LSTM layer used to train one of our LSTM-based models.
The above diagram indicates all data dimensions and the
number of weights in each layer of our LSTM model .

multiple characters, whether in succession or with arbitrary
separation. The long short-term memory network (LSTM)
layer is an implicit feature extraction instead of explicit
feature extraction (e.g., n-grams) used in other approaches.
Rather than represent file paths explicitly as a bag of n-
grams, for example, the LSTM learns patterns of tokens
that maximize the performance of the second classification
layer. Figure 3 shows detailed information on the LSTM-
based architecture used in our experiments, including data
dimensions and weights in each layer.

Transformer-based model Transformer [41] is a model
architecture that dismisses recurrence and relies solely on an
attention mechanism to derive global dependencies between
input and output. BERT’s model architecture is a multilayer
bidirectional Transformer [9]. BERT’s framework comprises
two steps: pre-training and fine-tuning. Pre-trained BERT
models are trained on unlabeled data over different pre-
training tasks and can be easily fine-tuned to several down-
stream tasks. We utilize pre-trained bert-base-uncased
from the Hugging Face Transformer library 7. We use
BertForSequenceClassification class from the same
library for fine-tuning, which is the downstream task suit-
able for our classification problem. We fine-tune the BERT
model using the hyperparameters suggested by [9].

3.4 File Path-Based CSAM Classifiers
Our work investigates four approaches for CSAM file path
classification.

1 Bag-of-words This approach encodes the file path
string into a vector of words. The weights of the
words are attributed using TF-IDF. We utilize the re-
sulting vectors as input to traditional machine learn-
ing classifiers (logistic regression, boosted decision
trees, and Naive Bayes).

2 Character n-grams A list of character sequences
on size N encodes the file path. The weights of
the sequences are attributed using TF-IDF. We use
the resulting vectors of the character sequences with
traditional machine learning classifiers (logistic re-
gression, boosted decision trees, and Naive Bayes);

7. https://huggingface.co/bert-base-uncased

3 Character-based neural networks We use sequences
of encoded characters with a convolutional neural
network (CNN) and a long short-term memory net-
work (LSTM).

4 Pre-trained BERT model The bert-base-uncased
pre-trained model is fine-tuned for downstream se-
quence classification task .

4 MODEL EVALUATION

We present our results for all our classifiers in Table 2. All
performance metrics were measured using a 10-fold cross-
validation on the Project VIC data set.

For each of our classifiers, we report the mean and
the standard deviation over the folds for the area under
the ROC curve (AUC), accuracy, precision, and recall for
predicting CSAM files. We focus on two primary metrics for
model comparison: Recall and AUC. Additionally, we assess
all machine learning models’ generalizations by looking into
the standard deviations over the cross-validation folds.

4.1 Traditional Machine Learning Models
There are significant advantages of traditional machine
learning models compared to deep neural networks. Under-
standing how well these models perform can help scientists
and investigators leverage such models’ most remarkable
characteristic: feature interpretability. The most relevant pre-
dictive tokens, or n-grams, can give clues about vocabulary
words in the data set and utilize them in other CSAM detec-
tion systems. Table 2 shows that the model trained with bag-
of-words and bag-of-n-grams operates in similar AUC and
accuracy ranges. When analyzing recall rates of traditional
models, we note that both naive Bayes models have the
highest average rates and lowest standard deviations. The
naive Bayes with bag-of-n-grams features presents the best
recall of all traditional models, of about 0.91. Among the
other models trained using bag-of-n-grams, naive Bayes
shows a much smaller recall standard deviation (σ = 0.085)
when compared to logistic regression (σ = 0.20) and boosted
decision trees(σ = 0.20).

Although evaluating CSAM classification models relies
on recall rates, precision can become the most significant
metric when deploying a model in an environment that
potentially analyzes hundreds or thousands of file systems
and, consequently, millions of file paths. The burden of
having several thousands of false positives can result in an
inefficient process and potentially delay investigations and
the discovery of true positives. The AUC metric captures
the ability of a classifier to operate with high recall when
low false positive rates are necessary. By analyzing the
traditional models’ AUC, we observe that boosted decision
trees perform better than the two other techniques.

4.2 Deep Neural Networks and Transformers-based
Models
We achieved the best performance across all categories with
deep neural network architecture. We trained three archi-
tectures: a layered CNN, an LSTM-based model, and BERT.
The LSTM model achieves results very similar to the fine-
tuned BERT model. Both models present accuracy above

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

7

TABLE 2: Model evaluation. Experiments with traditional machine learning and neural networks using Project VIC’s data
set. We evaluate the AUC-ROC, accuracy, precision, and recall. We measured results across 10-fold in a cross-validation
setting. We report the mean (µ) and the standard deviation (σ) for each metric.

Model AUC Accuracy Precision Recall

µ σ µ σ µ σ µ σ

BoW Logistic Regression 0.967 0.035 0.922 0.062 0.904 0.090 0.787 0.202

BoW Naive Bayes 0.972 0.011 0.927 0.032 0.875 0.070 0.859 0.114

BoW Boosted Trees 0.982 0.013 0.934 0.062 0.903 0.096 0.827 0.203

N-grams Logistic Regression 0.980 0.021 0.931 0.060 0.919 0.088 0.793 0.202

N-grams Naive Bayes 0.958 0.023 0.929 0.032 0.839 0.083 0.913 0.085

N-grams Boosted Trees 0.983 0.015 0.931 0.060 0.906 0.094 0.822 0.203

Character-based CNN 0.990 0.011 0.968 0.019 0.938 0.034 0.943 0.060

Character-based LSTM 0.982 0.017 0.953 0.044 0.937 0.064 0.903 0.129

BERT 0.987 0.013 0.955 0.035 0.934 0.048 0.896 0.100

0.95, precision over 0.93, and recall ≈ 0.9. However, our
CNN model consistently outperforms all the other models
in mean performance metrics across all folds and the lowest
standard deviation.

4.3 Comparison with previous works

Although several previous works have proposed using file
paths for CSAM detection, they lack rigorous methodol-
ogy in which test data correctly emulates the data dur-
ing deployment. It is hard to evaluate the actual model
performance without a test data set with a similar dis-
tribution to the data during deployment. In [2], although
authors achieved a recall rate of 0.98, the training and
testing data utilized in the experiments do not accurately
represent data in a deployment scenario. CSAM and non-
CSAM file paths come from entirely different data sources
and do not accurately represent file paths’ data distribution
in real deployment scenarios. In [10], the authors propose
a sound methodology for collecting CSAM and non-CSAM
file paths from a pool of Windows disk images. However,
accuracy, precision, and recall rates equal to 1.00 indicate
model overfitting. A third work focuses on detecting CSAM
[34] using file names. Once again, it does not provide a
testing scenario that reasonably represents a deployment
setting. The work explores only traditional machine learning
techniques, achieving a maximum accuracy of 0.97.

5 MODEL EVALUATION WITH ADVERSARIAL EX-
AMPLES

In classical machine learning applications, we assume the
underlying data distribution is stationary at test time. How-
ever, a testing pipeline of models to detect illegal activities
should anticipate an intelligent, adaptive adversary actively
manipulating data. Perpetrators purposely add typos and
modifications to file identifiers [37] to evade blocklists and
machine learning-based detection mechanisms. As illus-
trated in Figure 4, we modify our test data set to simulate

an adversary actively changing the file paths to elude the
classifiers.

Our CSAM file path detector assumes that file paths con-
tain information about file contents; therefore, we can detect
CSAM files by only analyzing file paths. Perpetrators often
share CSAM files, using file names to identify file contents, a
practice common in peer-to-peer systems [14], [27]. In such
a case, the adversary wants to make the maximum possible
changes without compromising others’ ability to search the
file.

The proposed adversarial analysis has limitations, as
criminals could adopt alternate coding methods or ran-
domly name their CSAM files to evade detection. However,
the alarming reality is that the online search for CSAM
content has significantly increased in recent years, with
CSAM content being openly advertised online 8. Given the
widespread nature of this issue, it is reasonable to assume
that adversaries will opt for subtle modifications and obfus-
cation in the file paths rather than completely concealing
them. Our experiments incorporate the most commonly
observed adversarial techniques in evading text-based clas-
sification, as documented in previous works [7], [25]. It is
important to acknowledge that this is not an exhaustive
list of possible attacks but provides a solid foundation for
understanding the threat landscape.

5.1 Threat Model
In our threat model, the attacker is unaware of the model
architecture and parameters and cannot access the confi-
dence scores predicted by the model. The attacker attempts
to cause an integrity violation in the model by modifying
the input under bounded perturbation size [17]. The only
knowledge the adversary has about the model is the input
space and the output space. Notably, the attacker cannot
immediately observe the output for a given input, so it
cannot directly optimize for a worst-case outcome. But,

8. https://www.thorn.org/child-sexual-exploitation-and-
technology/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

8

since the attacker generally understands that file names are
being monitored, they use randomly applied heuristics that
attempt to evade the model, as illustrated by the random
character replacement attack in Figure 4.

We assume the adversary has access to a list of CSAM
and non-CSAM trigger words, similar to the adversarial
attacks proposed in [25] to evade spam email detection
models. Using odds ratio, we create a list of trigger words,
i.e., words highly correlated with CSAM and non-CSAM file
paths. Odds ratio is a widely used technique in information
retrieval for feature selection and interpretation of text clas-
sification models [29]. The CSAM word spacing attack in
Figure 4 illustrates the type of attack.

We calculate the odds of the keyword being part of a
CSAM file path and the odds of the keyword being part of
a non-CSAM file path for all keywords. The Odds ratio of a
word w is computed as:

Odds Ratio =
odds of w appear in CSAM file
odds of w appear in non-CSAM

The CSAM lexicon comprises all keywords with Odds
Ratio greater than two. An analogous process identifies the
non-CSAM trigger words. We assume the list of trigger
words is available to the adversary.

5.2 Random Character Replacement
The adversarial examples are generated by randomly select-
ing a position in the file path string and substituting the
character in the chosen position with a random alphanu-
meric character. This technique has been previously used
to attack language models [3]. We evaluate our models for
three character replacement rates: 10%, 15%, and 20% of file
path length.

5.3 Homoglyph Replacement
The homoglyph replacement attack [20] obfuscates words
by modifying words in a text while keeping them readable.
This attack replaces characters of CSAM trigger words in
file paths with homoglyphs, i.e., a character with identical
or similar shapes. We utilize the homoglyph dictionary from
[7] to make the character replacements. This attack is also
known as leetspeak attack [19].

5.4 Synonym Replacement
In [25], authors presented this attack as an effective way
to evade spam classification models. The synonym replace-
ment attack finds trigger words in CSAM file paths and
replaces them with synonyms. We use nltk module to find
word synonyms. This attack intends to modify the file path
without changing its meaning.

5.5 CSAM Word Spacing
In [25], authors propose the spacing attack. The spacing
attack adds spaces between characters of trigger words. In
our attack, since file paths comprise our data, we add an
underscore ” ” between every character of words from the
CSAM trigger word list. Intuitively, the text parser and n-
gram sequences of the trigger words would not recognize
the new modified word, while a human could still read and
recognize the keyword.

5.6 non-CSAM Word Injection

Manipulating the file paths by adding words more likely to
appear in non-CSAM file paths was adapted from the ham
word injection attack presented in [25]. This attack consists
of selecting a word from the non-CSAM trigger word list
and injecting this word into the file path. We evaluate
our models when injecting one, two, and three non-CSAM
words in the file paths.

5.7 Experimental Results

We evaluate the impact of adversarial modifications in test
samples on the model’s performance. We perform adver-
sarial modifications in the test fold of the cross-validation
on the Project VIC data set. Details on how we conducted
cross-validation are in section 3.1. We are interested in i)
understanding which machine learning techniques are more
robust when an adversary modifies the data at test time ii)
and how much the performance of the models changes.

When evaluating models under attack, the precision of
the models will not change (There is no manipulation of
non-CSAM files during the attack). The attack’s objective
is to reduce model recall or increase the incidence of false
negatives; consequently, we only assess changes in recall
rates.

Under the random character replacement attack, an ad-
versary randomly modifies a percentage of the file path
by randomly selecting characters and replacing them with
random characters. A reasonable adversary budget in this
scenario is between 10 % and 15%. Previous works have also
considered this same percentage range for perturbing text
strings [21]. Since most file paths have a length between 40
and 200 characters, this changes between 6 and 30 characters
in each file path. To stress-test our models, we also analyze
the performance of our models under a 20% change.

Table 3 demonstrates the variation in recall rates for
different categories of adversarial attacks. In the presence
of file paths generated via the character replacement attack,
both variations of logistic regression models will present
a slight decay in recall rates when 10% of the file path is
modified. We see the recall rates decrease as we increase
the percentage of modified file path. Logistic regression
combined with bad-of-words text representation achieves
a decrease of almost 25 points percentage in the recall rate,
compared to the original recall when 20% of the file path
is modified. Boosted tree models also see a sharp decrease
in recall rates as we increase the percentage of modified file
path. Compared to the original recall rate of 0.83, A drop of
16 points percentage is observed in the lowest level of the
attack, when 10% of the file path is modified. Recall rates
get to 0.43 at the highest level of the attack when 20% of the
file path is modified. At a recall rate of 0.43, more than half
of the modified file paths evade the classifier. CNN, LSTM,
and BERT models also present decreases in recall rates as
we increase the number of modifications in the file paths.
The BERT model shows the smallest overall decrease of the
three models. The naive Bayes model presents surprising
results. The recall rates did not decrease for any level of
the attack. In addition, we notice a slight recall increase as
the number of modifications in the file paths increased. The

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

9

Fig. 4: Example of adversarial inputs generation. We generate adversarial inputs based on several different adversarial
attacks. Here, we illustrate two attacks: (1) In the random character replacement attack, the adversary chooses random
positions in the file path string and replaces the character with a randomly chosen character. (2) The CSAM word spacing
attack allows the adversary access to a CSAM lexicon. The adversary adds spacing between characters in words in the
CSAM lexicon.

randomness added to the CSAM file paths helped the naive
Bayes classifier identify better which file paths were CSAM.

The homoglyph attack is typical in scenarios where an
adversary wants to evade spam email classifiers [8]. We
evaluate the performance of all models to understand which
models are more resilient to this kind of attack. Logistic
regression and boosted tree models all see a significant
reduction in recall rates. We observe that n-grams boosted
tress recall rate achieve 0.40 under the homoglyph attack,
which leads us to conclude that this model is susceptible to
this attack. CNN and LSTM models also present a decline in
recall rate, going down to 0.71 and 0.74, respectively. Once
again, the n-grams naive Bayes model performs best under
attack, showing a recall rate of 0.88, followed by BERT,
which presented a recall rate 0.84.

The synonym attack was the attack that overall impacted
less the models’ performance. Most models did not see a
decrease, and several models experienced a small increase
in recall rates. The spacing attack affected logistic regres-
sion and boosted trees, decreasing the recall rates of these
models by more than 20 points. CNN, LSTM, and BERT
suffered decreases in recall rates of approximately 10 points
percentage. N-grams naive Bayes presented, once again, the
smallest decrease in recall rates, with a reduction of 3 points
percentage.

Non-CSAM word injection was the attack that most im-
pacted the n-gram naive Bayes model. By injecting only one
word highly correlated with non-CSAM files, we already see
a drop in the recall rate to 0.80. As we increase the number
of words, the recall rate decreases to 0.49 when injecting
three non-CSAM words into a file path. Logistic regression
boosted trees, and BERT models also presented a reduction
in recall rates by adding non-CSAM words. Even though we
see a decrease in recall rates in all models, CNN and LSTM

models showed the most stable behavior under this attack.
By exploring multiple attacks and evaluating the perfor-

mance of different models under these attacks, we can iden-
tify which learning techniques produce models sensitive to
the attacks, such as logistic regression and boosted trees, and
which models are more resilient, such as n-gram naive Bayes
and CNN models. Although the attacks explored in our
experiments were primarily aimed at file paths containing
English words and sequences of alphanumerical characters,
adapting the proposed attacks to include other alphabets
and special characters is straightforward. We leave the im-
provement of the performance of models under non-CSAM
word injection attacks and attack generalization to multiple
languages as a future extension of this work.

6 MODEL EVALUATION WITH FILE PATHS FROM
COMMON CRAWL

Our training data set perfectly represents the deployment
scenario for model deployment: our model is currently used
to identify CSAM files in apprehended hard drives. Our
training data comprises positive and negative examples
from apprehended hard drives. The training data contains
only file paths from hard drives that were suspect in the first
place.

The Common Crawl dataset, containing text data from
publicly available web sources, is used in our experiment to
evaluate our models’ false positive rate. We extract file paths
from this dataset9, assuming they are benign. It’s important
to understand our models’ performance with ’suspect’ hard
drives and benign file paths. The false positive rate (FPR) is

9. https://commoncrawl.org

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

10

TABLE 3: Recall model performance evaluation in the presence of adversarial examples. We evaluate changes in the
recall rate of several machine learning models under the following attacks: random character replacement, homoglyph
replacement, synonym replacement, CSAM word spacing, and non-CSAM word injection. For all experiments, we report
the average recall.

Character replacement non-CSAM word injection

Model 10% 15% 20% homoglyph synonym spacing one word two words three words

BoW Logistic Regression 0.75 0.66 0.54 0.61 0.81 0.62 0.78 0.71 0.63

BoW Naive Bayes 0.85 0.83 0.80 0.81 0.90 0.81 0.80 0.68 0.58

BoW Boosted Trees 0.66 0.55 0.43 0.42 0.85 0.42 0.78 0.71 0.69

N-grams Logistic Regression 0.78 0.74 0.69 0.64 0.83 0.63 0.80 0.73 0.65

N-grams Naive Bayes 0.92 0.93 0.94 0.88 0.92 0.88 0.80 0.64 0.49

N-grams Boosted Trees 0.69 0.61 0.53 0.40 0.85 0.39 0.80 0.73 0.66

Character-based CNN 0.86 0.83 0.79 0.71 0.91 0.80 0.89 0.86 0.84

Character-based LSTM 0.82 0.79 0.76 0.76 0.90 0.77 0.87 0.84 0.81

BERT 0.85 0.83 0.82 0.84 0.91 0.77 0.83 0.74 0.65

Fig. 5: Model confidence scores when evaluating file paths from the common crawl data set. Our best-performing model,
a CNN-based model, exhibits a low number of files with a confidence score of over 0.2. The false positive rate (FPR) is
0.03 for a confidence threshold of 0.5 but achieves an FPR of 0.002 for a confidence threshold of 0.9. The model presents a
higher FPR on Linux file paths, where at a confidence level of 0.5, it exhibits an FPR of 0.24. However, it drops significantly
for a higher confidence threshold, achieving an FPR of 0.008 at a confidence level 0.9. At this confidence level, out of 73k
file paths from the Linux set, only 584 would be identified as CSAM by our model.

our metric, as it triggers human data review. A poorly un-
derstood or calibrated FPR can burden content moderators
and risk system deployment.

6.1 Common Crawl data set

We constructed a data set of benign samples using the
publicly available common crawl data set. We collected
data from the Common Crawl index CC-MAIN-2021-10. The
WARC files utilized to construct our data set are:

• Linux file paths: we parsed the first 200 WARCs
(00000-00199, inclusive), resulting in over 73k unique
paths.

• Windows file paths: we parsed 11821 WARCS (00000-
12000, inclusive), resulting in 32K unique paths.

We parsed the raw HTML, treating it as a Latin-encoded
string. In each HTML, regular expression functions for iden-
tifying Windows and Linux file paths are the following:

Windows_file path_with_ext = r"([a-z]:\\
([a-z0-9()]*\\)*[a-z0-9()]*\.(jpg|jpeg|
png|gif|mp4|mov|m4a|m4v|mpg|mpeg|wmv|avi|
flv|3gp|3gpp|3g2|3gp2|doc|docx|xls|xlsx|
ppt|pptx|pdf))"

Linux_file path_with_ext = r"(/([a-zA-Z0-9
()]*/)*[a-zA-Z0-9()]*\.(jpg|jpeg|png|gif|

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11

mp4|mov|m4a|m4v|mpg|mpeg|wmv|avi|flv|3gp|
3gpp|3g2|3gp2|doc|docx|xls|xlsx|ppt|pptx|
pdf))"

After collecting the data set using the functions above,
we filtered Windows file names to exclude ”:\u002F”. In
Linux file names, we only keep the paths that begin with:
/usr/, /home, /etc, /tmp, and /var.

6.2 Analysis
Evaluating model performance in independent data sets is
essential to understand model generalization. We test our
best-performing model against a data set containing only
benign file paths. We measured the false positive rate for
the best-performing model, CNN, at different confidence
thresholds.

As we can observe from Figure 5, there is a small number
of files for which the model attributes a confidence score
above 0.8. For example, for Linux file paths, a decision
threshold of 0.8 results in an FPR of ≈ 0.03, whereas a
decision threshold of 0.95 results in an FPR of ≈ 0.001.
For Windows file paths, a threshold of 0.8 prompts an FPR
less than 0.01, while a decision threshold of 0.95 leads to an
FPR less than 0.001. High decision thresholds are common
design choices in detection systems, where only the high-
confidence samples are flagged and sent for human review.

Based on this evaluation, we recommend carefully
choosing the model threshold when using the model in
general scenarios, i.e., scenarios where file paths do not
come exclusively from suspect hard drives. The volume of
data to be analyzed is also a decision factor when defining
the model threshold.

7 CONCLUSION

This paper proposes a novel CSAM detection framework
consisting of

• Machine learning models trained on file paths ex-
tracted from a real-world data set containing over 1
million file paths obtained in criminal investigations.

• Guidelines for model evaluation that account for
data changes caused by adversarial data modifica-
tion and variations in data distribution caused by
limited access to training data.

• An assessment of false positive rates against file
paths from common crawl data.

We highlight the framework’s model assessment that
accounts for adversarial interaction and changes in data
distribution at test time. Previous works focus on proposals
of model architecture and evaluate proposed models on
data originating from the same distribution as the training
data and do not consider potential data changes after de-
ployment. Our work is the first in the CSAM literature to
propose a model evaluation framework.

Because the proposed models utilize only file paths for
CSAM identification, it avoids direct handling of CSAM
content. This results in an easy-to-maintain detector with
fewer legal restrictions for training data collection.

Our best classifiers achieve precision and recall rates
over 0.90 in out-of-sample hard drives and maintain a low
False Positive Rate (FPR).

It is also noteworthy how well the models can handle
adversarial attacks and data distribution changes at test
time. We evaluated our models under five distinct adver-
sarial attacks, and we used Common Crawl data to assess
the performance of our model on distinct data distributions.

Finally, by assessing the false positive rates of our mod-
els against file paths from common crawl data, we show
that our proposed character-based Convolutional Neural
Networks (CNNs) significantly reduce human evaluation
needs, reducing the occurrence of false alarms.

Used alongside tools like PhotoDNA hash and computer
vision techniques, our CSAM file path classifier creates a
comprehensive toolset helping organizations combat CSAM
distribution.

REFERENCES

[1] Sumeet Agarwal, Shantanu Godbole, Diwakar Punjani, and
Shourya Roy. How much noise is too much: A study in automatic
text classification. In Seventh IEEE International Conference on Data
Mining (ICDM 2007), pages 3–12. IEEE, 2007.

[2] Mhd Wesam Al Nabki, Eduardo Fidalgo, Enrique Alegre, and
Rocı́o Alaı́z-Rodrı́guez. File name classification approach to iden-
tify child sexual abuse. In ICPRAM, pages 228–234, 2020.

[3] Yonatan Belinkov and Yonatan Bisk. Synthetic and natural
noise both break neural machine translation. arXiv preprint
arXiv:1711.02173, 2017.

[4] Dasha Bogdanova, Paolo Rosso, and Thamar Solorio. Exploring
high-level features for detecting cyberpedophilia. Computer speech
& language, 28(1):108–120, 2014.

[5] Elie Bursztein, Einat Clarke, Michelle DeLaune, David M. Elifff,
Nick Hsu, Lindsey Olson, John Shehan, Madhukar Thakur, Kurt
Thomas, and Travis Bright. Rethinking the detection of child
sexual abuse imagery on the internet. In The World Wide Web
Conference, WWW ’19, page 2601–2607, New York, NY, USA, 2019.
Association for Computing Machinery.

[6] J Davidson and P. Gottschalk. Internet Child Abuse: Current Research
and Policy. Routledge-Cavendish, 2010.

[7] Rob Dawson. Homoglyhps. Codebox GitHub Repository, 2022.
https://github.com/codebox/homoglyph, Last accessed on 2023-
01-30.

[8] Perry Deng, Cooper Linsky, and Matthew Wright. Weaponizing
unicodes with deep learning-identifying homoglyphs with weakly
labeled data. In 2020 IEEE International Conference on Intelligence
and Security Informatics (ISI), pages 1–6. IEEE, 2020.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[10] Xiaoyu Du and Mark Scanlon. Methodology for the automated
metadata-based classification of incriminating digital forensic arte-
facts. In Proceedings of the 14th International Conference on Availabil-
ity, Reliability and Security, pages 1–8, 2019.

[11] David Finkelhor, Heather Turner, and Deirdre Colburn. Preva-
lence of online sexual offenses against children in the us. JAMA
network open, 5(10):e2234471–e2234471, 2022.

[12] National Center for Missing Exploited Children. Cybertipline
2022 report. Last accessed on 2023-09-23.

[13] Internet Watch Foundation. Cthe annual report 2021. Last accessed
on 2023-09-23.

[14] Raphaël Fournier, Thibault Cholez, Matthieu Latapy, Isabelle
Chrisment, Clémence Magnien, Olivier Festor, and Ivan Daniloff.
Comparing pedophile activity in different p2p systems. Social
Sciences, 3(3):314–325, 2014.

[15] Y. Freund and R. E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. J. Comput. Syst.
Sci., 55(1):119–139, 1997.

[16] Abhishek Gangwar, E Fidalgo, E Alegre, and V González-Castro.
Pornography and child sexual abuse detection in image and
video: A comparative evaluation. In 8th International Conference
on Imaging for Crime Detection and Prevention (ICDP 2017), pages
37–42. IET, 2017.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

12

[18] Georg Heigold, Günter Neumann, and Josef van Genabith. How
robust are character-based word embeddings in tagging and
mt against wrod scramlbing or randdm nouse? arXiv preprint
arXiv:1704.04441, 2017.

[19] Nora Hofer, Pascal Schöttle, Alexander Rietzler, and Sebastian
Stabinger. Adversarial examples against a bert absa model–fooling
bert with l33t, misspellign, and punctuation. In Proceedings of the
16th International Conference on Availability, Reliability and Security,
pages 1–6, 2021.

[20] Francisco Jáñez-Martino, Rocı́o Alaiz-Rodrı́guez, Vı́ctor González-
Castro, Eduardo Fidalgo, and Enrique Alegre. A review of spam
email detection: analysis of spammer strategies and the dataset
shift problem. Artificial Intelligence Review, pages 1–29, 2022.

[21] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. Textfool: Fool your model with natural
adversarial text. http://groups.csail.mit.edu/medg/ftp/psz-
papers/2019%20Di%20Jin.pdf, 2019.

[22] Karen Sparck Jones. A statistical interpretation of term specificity
and its application in retrieval. Journal of documentation, 1972.

[23] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitel-
man. Leakage in data mining: Formulation, detection, and avoid-
ance. ACM Transactions on Knowledge Discovery from Data (TKDD),
6(4):1–21, 2012.

[24] Michael H Keller and Gabriel J X Dance. The internet is overrun
with images of child sexual abuse. what went wrong? New York
Times, Sep 2019.

[25] Bhargav Kuchipudi, Ravi Teja Nannapaneni, and Qi Liao. Adver-
sarial machine learning for spam filters. In Proceedings of the 15th
International Conference on Availability, Reliability and Security, pages
1–6, 2020.

[26] Camila Laranjeira da Silva, João Macedo, Sandra Avila, and Je-
fersson dos Santos. Seeing without looking: Analysis pipeline for
child sexual abuse datasets. In 2022 ACM Conference on Fairness,
Accountability, and Transparency, pages 2189–2205, 2022.

[27] Matthieu Latapy, Clémence Magnien, and Raphaël Fournier.
Quantifying paedophile activity in a large p2p system. Information
Processing & Management, 49(1):248–263, 2013.

[28] Joao Macedo, Filipe Costa, and Jefersson A dos Santos. A bench-
mark methodology for child pornography detection. In 2018 31st
SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI),
pages 455–462. IEEE, 2018.

[29] Dunja Mladenić. Feature subset selection in text-learning. In
European conference on machine learning, pages 95–100. Springer,
1998.

[30] A. Y. Ng and M. I. Jordan. On discriminative vs. denerative
classifiers: A comparison of logistic regression and naive bayes.
In Advances in neural information processing systems 14, Proceedings
of the 2001 NIPS conference, pages 841–848. MIT Press, 2001.

[31] Vuong M Ngo, Christina Thorpe, Cach N Dang, and Susan Mc-
keever. Investigation, detection and prevention of online child
sexual abuse materials: A comprehensive survey. In 2022 RIVF In-
ternational Conference on Computing and Communication Technologies
(RIVF), pages 707–713. IEEE, 2022.

[32] Fudong Nian, Teng Li, Yan Wang, Mingliang Xu, and Jun Wu.
Pornographic image detection utilizing deep convolutional neural
networks. Neurocomputing, 210:283–293, 2016.

[33] Department of Justice. S.1738 - protect our children act
of 2008. https://www.congress.gov/bill/110th-congress/senate-
bill/1738, 2008.

[34] Alexander Panchenko, Richard Beaufort, Hubert Naets, and
Cédrick Fairon. Towards detection of child sexual abuse media:
categorization of the associated filenames. In Advances in Informa-
tion Retrieval: 35th European Conference on IR Research, ECIR 2013,
Moscow, Russia, March 24-27, 2013. Proceedings 35, pages 776–779.
Springer, 2013.

[35] Claudia Peersman. Detecting deceptive behaviour in the wild: text
mining for online child protection in the presence of noisy and adversarial
social media communications. PhD thesis, Lancaster University, 2018.

[36] Claudia Peersman, Christian Schulze, Awais Rashid, Margaret
Brennan, and Carl Fischer. icop: Automatically identifying new
child abuse media in p2p networks. In 2014 IEEE Security and
Privacy Workshops, pages 124–131. IEEE, 2014.

[37] Claudia Peersman, Christian Schulze, Awais Rashid, Margaret
Brennan, and Carl Fischer. icop: Live forensics to reveal previously
unknown criminal media on p2p networks. Digital Investigation,
18:50–64, 2016.

[38] Ethel Quayle and Nikolaos Koukopoulos. Deterrence of Online
Child Sexual Abuse and Exploitation. Policing: A Journal of Policy
and Practice, 13(3):345–362, 04 2018.

[39] Olivia Solon. Child sexual abuse images and online exploitation
surge during pandemic. NBC News, 2020.

[40] Thorn. Meet the new anti-grooming tool from microsoft, thorn,
and our partners. https://www.thorn.org/blog/what-is-project-
artemis-thorn-microsoft-grooming, Last accessed on 2020-05-08.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
Attention is all you need. Advances in neural information processing
systems, 30, 2017.

[42] Paulo Vitorino, Sandra Avila, and Anderson Rocha. A two-tier
image representation approach to detecting child pornography. In
XII Workshop de Visão Computational, pages 129–134, 2016.

[43] B. Westlake, M. Bouchard, and R. Frank. Comparing methods
for detecting child exploitation content online. In 2012 European
Intelligence and Security Informatics Conference, pages 156–163, 2012.

[44] Jonathan Woodbridge, Hyrum S Anderson, Anjum Ahuja, and
Daniel Grant. Predicting domain generation algorithms with long
short-term memory networks. arXiv preprint arXiv:1611.00791,
2016.

[45] Jonathan Woodbridge, Hyrum S Anderson, Anjum Ahuja, and
Daniel Grant. Detecting homoglyph attacks with a siamese neural
network. In 2018 IEEE Security and Privacy Workshops (SPW), pages
22–28. IEEE, 2018.

[46] Jessica Woodhams, Juliane A. Kloess, Brendan Jose, and Cather-
ine E. Hamilton-Giachritsis. Characteristics and behaviors of
anonymous users of dark web platforms suspected of child sexual
offenses. Frontiers in Psychology, 12, 2021.

[47] E. Yiallourou, R. Demetriou, and A. Lanitis. On the detection
of images containing child-pornographic material. In 2017 24th
International Conference on Telecommunications (ICT), pages 1–5,
2017.

[48] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional
networks for text classification. In Advances in neural information
processing systems, pages 649–657, 2015.

Mayana Pereira Mayana Pereira is a Senior
Data Scientist at Microsoft AI for Good Re-
search Lab. Mayana is currently working to-
wards her PhD degree in Electrical Engineer-
ing at the University of Brasilia. Her research
is currently focused on the intersection of digi-
tal safety/cybersecurity/software security and ar-
tificial intelligence, as well as the impacts of
privacy-preserving techniques in machine learn-
ing.

Rahul Dodhia Rahul Dodhia is the deputy di-
rector of the AI for Good Lab Microsoft. With his
team of AI research scientists, he focuses on
building AI solutions for the world’s most press-
ing problems, with a focus on the Global South.
After getting his PhD from Columbia University,
where his research centered on mathematical
psychology, he moved to the NASA Ames Re-
search Center to continue work on hu[1]man
memory and decision making.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

13

Hyrum Anderson Hyrum Anderson is CTO at
Robust Intelligence. He received his PhD in
Electrical Engineering from University of Wash-
ington, with an emphasis on signal processing
and machine learning, and BS and MS degrees
in Electrical Engineering from Brigham Young
University. Much of his career has been focused
on defense and security, having directed re-
search projects at MIT Lincoln Laboratory, San-
dia National Laboratories, Mandiant, as Chief
Scientist at Endgame (acquired by Elastic), and

Principal Architect of Trustworthy Machine Learning at Microsoft.

Richard Brown Richard W. Brown is the Co-
Founder and Director for a domestic / interna-
tional child rescue organization called ”Project
VIC International”. Project VIC champions a
transformation in the approach to child exploita-
tion investigations internationally by developing
and adopting innovative technologies and victim-
centric forensic workflows. Project VIC’s global
outreach has resulted in a sharp increase in law
enforcement’s ability to detect illegal video and
imagery as it traverses global networks. Richard

has had a long career in the areas of intelligence / law enforcement
networks in first and developing countries. Rich’s work with the State
Department, Homeland Security, United Nations, ICAC’s UNICEF, UN-
ODC, FBI International and others have created opportunities to assist
developing countries by donating and licensing technologies and train-
ing their specialists. Within the New Jersey State Police, he has held
positions in the High Technology Crimes Unit, Electronic Surveillance
Unit, Training Bureau, Internal Affairs, and retired as Chief of Intelligence
Management for New Jersey. Most of his 25 years of law enforcement
have been in the capacity of serving technology focused investigations
or support of such investigations.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3324275

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Our Contributions

	Related Work
	Methods
	Training data set
	File Path Characteristics
	Cross Validation Data Split

	Text Vectorization
	TF-IDF
	Character-based quantization
	Word vectors for pre-trained models

	Learning Algorithms
	Traditional ML on extracted features
	Deep Neural Networks on Learned Embeddings

	File Path-Based CSAM Classifiers

	Model Evaluation
	Traditional Machine Learning Models
	Deep Neural Networks and Transformers-based Models
	Comparison with previous works

	Model Evaluation with Adversarial Examples
	Threat Model
	Random Character Replacement
	Homoglyph Replacement
	Synonym Replacement
	CSAM Word Spacing
	non-CSAM Word Injection
	Experimental Results

	Model Evaluation with file paths from Common Crawl
	Common Crawl data set
	Analysis

	Conclusion
	References
	Biographies
	Mayana Pereira
	Rahul Dodhia
	Hyrum Anderson
	Richard Brown

