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Abstract—Knowledge graphs (KGs) are emerging data models allowing data providers to share data. This data sharing might bring
new knowledge and collaborations, with evident benefits for providers. However, since KGs might contain sensitive information about
users, it is of utmost importance to ensure KG anonymization before publishing. Recently, some proposals have addressed the
problem of KGs’ anonymization based on the k-anonymity principle. These techniques propose to anonymize the whole dataset with
the same anonymization level. However, in a contest where data are collected from different users, it is crucial to consider also users’
preferences on the anonymization level to adopt for their data. To cope with this requirement, this paper presents the Personalized
k-Attribute Degree (p-k-ad) principle. It allows users to specify their anonymity levels (the k values) while preventing adversaries from
re-identifying them with a confidence higher than 1

k
with their specified k. Moreover, we design the Personalized Cluster-Based

Knowledge Graph Anonymization Algorithm (PCKGA) to generate anonymized KGs satisfying p-k-ad. We conduct experiments on four
real-life datasets and show that PCKGA greatly improves the quality of anonymized KGs comparing to previous algorithms.

Index Terms—Knowledge graphs, personalized privacy, k-anonymity.
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1 INTRODUCTION

KNOWLEDGE graphs (KGs) are getting popular among
data providers to share users’ properties and rela-

tionships. After the announcement of Google Knowledge
Graph in 2012, many giant tech companies (i.e., Microsoft1,
Amazon2) announced their applications for KGs. Data pro-
viders share their KGs with data recipients (e.g., researchers,
data analysts) for a variety of applications. For instance, to
accelerate fraud detection tasks, Amazon provides Fraud
Knowledge Graph3 modelling properties and relationships
of fraudsters. Since KGs may contain users’ sensitive data,
they must be anonymized before sharing them.

The problem of graph anonymization has been well
investigated in the past by using two main techniques: k-
anonymity and differential privacy (DP) [1]. k-anonymity
follows the non-interactive setting where data providers
modify users’ relationships in their graphs such that adver-
saries cannot re-identify a user in the modified graphs with
a confidence higher than 1

k even by exploiting background
knowledge on the target victim. For instance, k-degree, k-
neighborhood [1] modify the original graph such that the
degree or neighbor structure of any user in the anonymized
graph is indistinguishable from that of k − 1 other users.
Unfortunately, it has been shown in [2] that the above
approaches are not enough for KGs since adversaries can
exploit both attribute values and relationships.

On the other hand, DP anonymizes graphs under two
settings: interactive and non-interactive. The former [3]
creates a system interactively answering statistics queries
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from graphs while preventing adversaries from inferring the
existence of a user (i.e., a node) by looking at the extracted
statistics. The latter publishes graphs’ statistics once while
ensuring the same privacy protection as the former. For
example, [3] introduces an algorithm to generate statistics
of graphs and their nodes’ attributes (e.g., the number and
size of communities, the distribution of attributes’ values
in the communities’) while protecting users’ identities. [4]
uses DP to inject noise to data transferred between clients in
order to protect users’ privacy in federated learning settings.
Although DP solves some of the k-anonymity’s limitations
by not relying on assumptions about what information ad-
versaries can exploit, data providers must design a different
DP analysis algorithm for each type of statistics that data
recipients require. Having separate statistics on the same
KG might represent a limitation for KG analyses, as several
exploit the correlation between KGs’ attributes and relation-
ships (e.g., drug design, tax calculations, or financial report-
ing). As an example, in [3], the extracted statistics on graphs’
attributes (e.g., the distribution of communities’ attributes)
are not correlated to those of users’ relationships (e.g., the
size of communities). Moreover, many KGs’ analyses are
still not supported by DP (e.g., tax calculations). Therefore,
to enhance users’ privacy protection in the current devel-
opments of KGs’ analyses without sacrificing shared KGs’
utility, we focus on k-anonymity approaches.

Recently, some proposals appeared (e.g., [2], [5]) to ex-
tend k-anonymity to KGs. [5] has introduced an anatomy
approach to generate groups of at least k users and re-
turns the frequency of each sensitive value in these groups.
However, this approach restricts the utility of KGs, since
data recipients cannot use standard analytical tools (e.g.,
deep learning) to analyze KGs. k-Attribute Degree (k-ad)
[2] prevents users from being re-identified with a confidence
higher than 1

k even though adversaries exploit both attribute
values and relationship out-/in-degrees. To this end, k-ad
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requires to add/remove edges such that the information of
any user in the anonymized KG is indistinguishable from
that of k− 1 other ones in the KG. However, several studies
in academia [6] and industry,4, for instance those, based on
Westin’s privacy types [7], suggest that online users can be
classified into groups (typically 4) with different levels of
privacy concerns. Therefore, we believe that users’ privacy
types should also be considered when data are anonymized,
by allowing each user to set up their privacy levels.

Few k-anonymity and DP proposals for relational data
[8], [9], [10] and undirected graphs [11], [12] allow users
to specify personalized preferences for their data anony-
mization. Liu et al. [8] allow users to specify two thresh-
olds. The former prevents anonymized data to be more
detailed than the threshold. The latter is specified for each
sensitive value to ensure that a user cannot be associ-
ated with any sensitive value with a confidence higher
than his/her specified threshold for the value. In [11],
users can specify their preferences in anonymizing: (1)
only their attribute values, (2) their attribute values and
relationships, (3) their values, relationships, and neighbors.
[12] presents a similar approach but its supported prefer-
ences are: (high) anonymizing both users’ sensitive values
and neighbors, (medium) anonymizing only neighbors, and
(low) no anonymization. [9], [10] are DP-based approaches
allowing users to specify their own privacy parameters’
values (i.e., ε) and data providers must consider all of
the values when they generate statistics from the users’
attributes in relational data. However, we are not aware of
any proposals for KGs allowing users to set their personal-
ized preferences (e.g., k). All of the state of the art privacy
protection proposals for KGs [2], [5] apply the same k value
to all users. A naive solution to make each user able to
specify his/her k value is to select the maximum k among all
specified values, but this might result in poor data quality.

Therefore, in this paper, we present the Personalized k-
Attribute Degree (p-k-ad) principle, to protect users’ identi-
ties even if multiple k’s values are specified. p-k-ad requires
that, for every user u in an anonymized KG, his/her at-
tribute values and relationship out-/in-degrees are indistin-
guishable from those of at least ku−1 other users in the KG,
where ku is the k value set by u. Thus, adversaries cannot
re-identify a user u with a confidence higher than 1

ku
.

To generate anonymized KGs satisfying the p-k-ad prin-
ciple, following the approach presented in [2], we design
the Personalized Cluster-Based Knowledge Graph Anony-
mization Algorithm (PCKGA), which generates anony-
mized KGs according to two steps: Clusters Generation and
Knowledge Graph Generalization. The former allows data pro-
viders to specify their own clustering algorithm (e.g., k-
medoids [13], HDBSCAN [14]) to generate clusters. The
latter generates anonymized KGs such that the anonymized
attribute values and relationships’ out-/in-degrees of users
in the same clusters are identical. We formally prove that if
the clusters’ sizes are greater than or equal to the maximum
k values of their users, the generated anonymized KGs
satisfy p-k-ad principle. Here, the anonymized attribute
values of users in a cluster are the union of their attribute

4. https://www.cisco.com/c/dam/global/en uk/products/
collateral/security/cybersecurity-series-2019-cps.pdf

values. The out-/in-degrees of the anonymized relation-
ships of the users are the maximum out-/in-degrees of the
users’ relationships. To optimize the quality of anonymized
KGs, we must minimize (1) the difference between attribute
values and relationships’ out-/in-degrees of users in the
same clusters, and (2) the disparity among their k values.
(2) guarantees that users with smaller k values are not
anonymized with those with excessively high k values,
that leads to high information loss. Since these operations
are done in the Clusters Generation step, in this paper, we
focus on designing this step, and use the Knowledge Graph
Generalization step that we proposed in [2].

Although allowing providers to choose their clustering
algorithms increases flexibility, standard clustering algo-
rithms do not fit the scenario of personalized anonymization
since they only minimize the distance among users without
considering their k values. This might bring to have clusters
with very similar users but with too different k’s values,
thus resulting in high information loss. To address this
challenge, we propose a new clustering algorithm, called the
Varying-Anonymity Clustering Algorithm (VAC), that can
be used in the first step of PCKGA instead of current clus-
tering algorithms. VAC measures the anonymization distance
between two users by using not only their distance w.r.t.
their attributes and degrees, but also their k values. VAC
generates clusters such that the anonymization distances
among users in the same cluster are minimized. Moreover,
it removes users whose k values or distances to other users
are too high. To ensure that sizes of obtained clusters are
greater than or equal to the maximum among k values of
their users, we develop the Merge-Split Algorithm (MS). MS
modifies clusters generated from the clustering algorithm
by removing invalid clusters, whose size is less than the
required k. Then, MS adds users belonging to the invalid
clusters to nearest valid clusters such that and all clusters are
still valid. We formally prove that no matter what clustering
algorithm data providers exploit, by using MS, we always
generate anonymized KGs satisfying the p-k-ad principle.

We conduct experiments by using four real-life datasets
and compare anonymized KGs’ quality generated by exe-
cuting PCKGA with various settings: VAC, state-of-the-art
clustering algorithms (i.e., k-medoids [13], HDBSCAN [14])
with appropriate parameters’ values (i.e., max/min/mean
users’ k values), and a simple anonymization approach
using HDBSCAN (i.e., HDB*). HDB* gathers users whose
k values are equal into groups and anonymizes users in
the same group with their users’ k value. The experimental
results show that executing PCKGA with VAC results in
anonymized KGs whose information loss is 210% lower
than that of those generated by k-medoids and HDBSCAN
and 26% lower than that of HDB*. Furthermore, our results
indicate that PCKGA performance are good enough to be
used in practice. Our experiments also show that PCKGA
outperforms the previous anonymization algorithm for KGs
[2] and relational data [15].

The remainder of this paper is organized as follows.
Section 2 explains the adversary knowledge and our pro-
tection model. Anonymization algorithms are presented in
Section 3, while Section 4 explains their details. Privacy
guarantees of our proposal are analyzed in Section 5. We
illustrate the experimental results in Section 6 and conclude
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our paper in Section 7. Due to the lack of space, the
summary of notations, the complexity analysis, proofs of
theorems in Section 5, and some experimental results are
included in the supplementary material section.

2 PERSONALIZED ANONYMIZATION OF KGS

In this section, we introduce a new privacy principle to
support KG anonymization with personalized k values.
Before that, we briefly introduce KGs. We refer the reader
to the supplementary material section for a summary of the
notations used in this section and throughout paper.

2.1 Knowledge Graph
We model a KG as a graphG(V,E,R), where V,E,R are the
set of nodes, edges connecting these nodes, and relationship
types of these edges, respectively. Since this work focuses
on protecting users’ privacy in KGs, we categorize the set
of nodes V into the set of users V U and the set of attribute
values V A, where V U∪V A = V . Relationship types inR are
categorized into two subsets: user-to-user relationship types
RUU , representing users’ relationships (e.g., follows), and
user-to-attribute relationship types RUA, modelling users’
attributes (e.g., age). Thus, R = RUU ∪ RUA. We model
each edge e ∈ E as a tuple (u, r, v), where u, v ∈ V and
r ∈ R. We denote with EUA ⊆ E those e = (u, ra, va), such
that ra ∈ RUA, and EUU ⊆ E those e = (u, rr, vr), such
that rr ∈ RUU . Fig. 1(a) illustrates an example of KG.

(a) The original KG G.
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(b) The p-k-ad anonymized KG
G.

Fig. 1. Knowledge graphs (dashed lines denote added fake edges). k
values of Ken (u0), Mary (u1), Henry (u2), Tom (u3), and Jane (u4) are
2, 2, 2, 1, and 4, respectively. G is generated from two clusters {u0, u1}
and {u2, u3} while u4 is removed due to its high k value.

2.2 Personalized k-Attribute Degree Principle
This section introduces the Personalized k-Attribute Degree
principle. We start by characterizing the knowledge that an
adversary can exploit to perform re-identification attacks.

Let G(V,E,R) be a KG, and G(V ,E,R) be its anony-
mized version created by modifying G. Given a target
user u ∈ V

U
, the adversary’s goal is to re-identify u by

using the background knowledge he/she has on u and the
information he/she can extract from G. We formally define
the adversary knowledge as follows.
Definition 1 (Adversary Knowledge) Let G be an anony-
mized KG. The knowledge that an adversary can use to re-
identify a user u ∈ V U , denoted as AK(u), consists of:

• attribute values and relationship out-/in-degrees
that the adversary knows about u;

• attribute values and relationship out-
/in-degrees of user u in G, denoted as
I(G, u) = {Ia(G, u), Io(G, u), Ii(G, u)}, where:

– Ia(G, u) = {(ra, va)|(u, ra, va) ∈ E
UA} is

the set of attributes’ values contained in G
associated with u;

– Io(G, u) = {(rr, do(G, rr, u))|rr ∈ R
UU} and

Ii(G, u) = {(rr, di(G, rr, u))| rr ∈ R
UU} are

u’s out- and in-degree in G, for all relation-
ship types, respectively; being do(G, rr, u) =

|{(u, rr, vr) ∈ E
UU}| and di(G, rr, u) =

|{(vr, rr, u) ∈ E
UU}| the out-/in-degree of

relationship type rr of u.

Example 1. Let us consider the anonymized KG G shown
in Fig. 1b. Since u0 has one outgoing relationship of
type follows with u2 and no incoming relationships of
the same type, Io(G, u0) = {(follows, 1)}; Ii(G, u0) =
{(follows, 0)}. The knowledge about u0 that an adversary
can extract fromG is I(G, u0) = {{(age, 19), (age, 21), (job,
Student)}, {(follows, 1)}, {(follows, 0)}}.

The Personalized k-Attribute Degree principle is defined
as follows.

Definition 2 (Personalized k-Attribute Degree) Let
G(V ,E,R) be an anonymized KG. G satisfies the Person-
alized k-Attribute Degree (p-k-ad) if and only if for every
user u in V

U
, there is a set C(G, u) ⊆ V

U
such that

C(G, u) = {v ∈ V U |I(G, u) = I(G, v)} and |C(G, u)| ≥ ku,
where ku is a positive integer specified by u.

Fig. 1b illustrates the anonymized version of G (Fig. 1a)
satisfying p-k-ad. In this work, similarly to the state-of-
the-art personalized k-anonymity [8], [11], [12] and DP
proposals [9], [10], we assume that users’ personalized k
values are public. However, as point out in [10] the privacy
parameters could be used to infer personal information. For
instance, a user might select high parameters’ values based
on his job/function (e.g., politician). So, attackers could infer
user’s job based on selected values (e.g., politician could
be inferred by high values). To address this concern, we
follow [10] to assume that there is no relationship between
selected privacy values and any sensitive values embedded
in anonymized KGs. Therefore, even though adversaries ex-
ploit the public k values of target users, they cannot increase
the confidence of re-identifying users. Privacy protection
guarantees of p-k-ad will be described in Section 5.

3 PERSONALIZED CLUSTER-BASED KNOWLEDGE
GRAPH ANONYMIZATION

This section introduces the overall idea for the generation
of anonymized KGs satisfying p-k-ad (see Section 2.2). We
propose the Personalized Cluster-Based Knowledge Graph
Anonymization (PCKGA) algorithm (Algorithm 1) that
exploits clustering to generate anonymized data. PCKGA
takes as input a KG: G; a clustering algorithm: A; the
set of anonymity levels (k values) expressed by each user
in G: K; a threshold: τ ; and it generates the anonymized
version of G, i.e. G, ensuring the p-k-ad principle and
maximizing G’s quality. In general, adopting clustering
techniques for k-anonymization implies generating clusters
containing at least k similar users, that is, whose profile
data are not distant according to some distance metrics.
Then, the k-anonymity principle is satisfied by anonymizing
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users belonging to the same cluster with the same gener-
alization (e.g., same attribute values and relationship out-
/in-degrees). Therefore, PCKGA contains two main steps:
Clusters Generation (lines 1-4) and Knowledge Graph Gener-
alization (line 5). The first step generates clusters by calling
the clustering algorithmA received as input with the anony-
mization distance matrix Da and its parameters P5 (lines 1-
3). Subsequently, these clusters are adjusted to ensure their
validity, which requires that the number of users in each
cluster is greater than or equal to the maximum k value
of their users (line 4). Then, it calls the Knowledge Graph
Generalization Algorithm (KGG) [2] to generalize attributes
and relationships (line 5). Finally, it returns G (line 6).

Algorithm 1 PCKGA(G, A, K, τ )
Input: G: the original KG, A: a clustering algorithm, K: k values of users in G;
τ : a threshold.
Output: The anonymized KG G.
1: Let Da be the anonymization distance matrix of users in G.
2: P ← Calculate the parameters’ values for A.
3: C ← A(Da, P)
4: C ← MS(Da, C, K, τ )
5: G← KGG(G, C)
6: return G

Clusters generation: Literature offers several clustering
algorithms (e.g., k-Medoids [13], HDBSCAN [14]), pro-
posed for the k-anonymization of both relational and non-
relational data that can be used by our PCKGA algorithm.
Clusters generation rely on the definition of the anonymity
level of a cluster, formally defined in what follows.

Definition 3 (Cluster anonymity level) Let c be a cluster of
users, where each user u ∈ c has specified an anonymity
level, denoted as ku ∈ N. The anonymity level of cluster c,
denoted as kc, is defined as the maximum value among the
anonymity levels specified by users in c, i.e., kc = max

u∈c
ku.

The PCKGA’s cluster generation step creates only valid
clusters, that is, clusters c whose number of users, i.e., |c|, is
greater than or equal to its anonymity level. This is done by
the Merge-Split Algorithm (MS) (Algorithm 3) that possibly
refines the output of the provided clustering algorithm A so
that all the generated clusters are valid.

Although PCKGA can work with any clustering algo-
rithm, previously defined algorithms do not fit well our sce-
nario of personalized anonymization, since they minimize
the distance among users without considering the values of
k they select. This could result in clusters with very similar
users but with very different k’s values, bringing therefore
the risk of big clusters. Indeed, even if only a few users
specify high k values, the cluster has to be enlarged so
that its cardinality is greater than or equal to the maximum
among all k’s values specified by its users. To cope with this
issue, we propose a new clustering algorithm for PCKGA,
called the Varying Minimum-Size Constraint Clustering Al-
gorithm (VAC) (Algorithm 2). VAC generates clusters useful
for personalized k-anonymization.

Knowledge graph generalization: The previous step
generates only clusters whose cardinality is always greater
than or equal to the maximum value among the anonymity
levels specified by their users. This satisfies only partially

5. We explain how P is calculated according to each clustering
algorithm in Section 6.2.

the requirements imposed by the p-k-ad principle intro-
duced by Definition 2. In particular, it ensures that, for each
user in G, there exists a set of users C(G, u), i.e., a cluster,
such that |C(G, u)| ≥ ku. To fully satisfy p-k-ad principle,
we have also to ensure that all users in C(G, u) have iden-
tical attributes’ values and the same out-/in-degree for all
relationship types.

For this purpose, we exploit the Knowledge Graph
Generalization Algorithm (KGG) presented in [2], which
has been designed to satisfy the k-Attribute Degree (k-ad)
principle [2]. This principle requires that, each user within
the anonymized graph must have a minimum of k−1 other
users having the same attribute values and out-/in-degree
for all relationship types. To this end, KGG first extracts the
union of the attribute values of all users in the target cluster.
Subsequently, it generalizes attribute values of users in the
cluster by adding fake user-to-attribute edges to make the
users’ values identical to those in the union. To generalize
the user-to-user relationships of users in a cluster, KGG finds
the maximum out-/in-degree of all relationship types of the
users belonging to the cluster. It then increases the users’
out-/in-degrees to match the maximum degrees by adding
user-to-user edges. If it is impossible to add edges, it reduces
the maximum out-/in-degree of the relationship types by
removing edges of the users whose degrees are equal to the
maximum ones. It then continue adding user-to-user edges.

However, KGG works under the assumption that k is
unique for the whole graph. Applying KGG in the context
of PCKGA implies executing it on each cluster c generated
by PCKGA’s first step with k set to kc.
Example 2. Let c0 = {u0, u1}, c1 = {u2, u3} be the
clusters generated by the Clusters Generation step from
the original KG G (Fig. 1a). Since their anonymity levels
(i.e., kc0 = max{2, 2} = 2 and kc1 = max{2, 1} = 2)
are higher than or equal to their cardinality, they are valid.
KGG adds 3 fake edges, namely, (u0, age, 19), (u1, age, 21),
(u1, follows, u3) to make attributes and relationships’ out-
/in-degrees of users in c0 (i.e., u0, u1) identical. Similarly,
it adds 2 fake edges, that is, (u2, age, 30), (u3, age, 21) to
make those of c1’s users (i.e., u2, u3) identical. The resulting
anonymized KG is showed in Fig. 1b.

In the following section, we will focus on the clusters
generation step, which is the one impacted by supporting
personalized k values. We refer interested readers to [2] for
more details on KGG.

4 CLUSTERS GENERATION

The Cluster Generation step generates a set of valid clusters.
It first calculates the parameters’ values P used to execute
the clustering algorithm A (line 2, Algorithm 1) and then
executes the clustering algorithm A with the calculated pa-
rameters P (line 3, Algorithm 1). For instance, in the case of
VAC, P includesK: k’s values of users inG. We explain how
we set parameters’ values for other clustering algorithms
(i.e., k-Medoids, HDBSCAN) in Section 6.2. This step creates
a preliminary set of clusters C. Then, we run the Merge-
Split algorithm (MS) that merges and splits clusters in C to
generate the set of valid clusters C (line 4, Algorithm 1).

We recall that even though data providers can use any
clustering algorithm as A, we propose a new clustering
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algorithm, namely VAC, which takes into account users’
k values. The main advantage of VAC is that providers
only need to specify an anonymization distance matrix and
users’ k values. In contrast, if k-medoids is used, it requires
specifying the number of generated clusters, whereas HDB-
SCAN needs the minimum size for all generated clusters.
Even though we present VAC as the clustering algorithm A
that generates clusters for PCKGA, the providers may have
different needs and want to develop their own clustering
algorithms. In such cases, the providers can still use their
own algorithms with PCKGA without any modification.

VAC aims to generate clusters while minimizing: (1) the
maximum distance between users in the same cluster, and
(2) the differences among these users’ k values. The key idea
is the definition of a novel distance metric that considers
both (1) and (2). In the rest of the section, we first present
the proposed distance metric, then VAC and MS.

4.1 Distance measure

The proposed distance measure aims to estimate the anony-
mization cost of a cluster by considering its users’ k values.
Given a user u and his/her k value, ku, we first estimate
the cost of finding ku − 1 users that are most similar to
u. Hereafter, we refer to these users as u’s nearest neighbors,
denoted as N(u). To measure the similarity between two
users and thus computing N(u), we use the Attribute and
Degree Information Loss (ADM) Distance [2], denoted as
dadm. This measure incorporates three components: the
attributes’ distance (dam), the distance of the target users’
out-degree (dodm), and the distance of their in-degree (didm).

dam estimates the information loss of generalizing at-
tribute values of user u (denoted as AL(u, v)), and those
of user v (denoted as AL(v, u)) to make attribute values’
of u and v equal. Given an attribute ra, the information
loss of generalizing ra’s values for a user u such that the
values are equal to those of a user v is the differences
between u’s generalized attribute values (denoted in what
follows as GV (G, u, v, ra)) and u’s original values (i.e.,
Ia(G, ra, u), Ia(G, ra, v)). If ra is a categorical attribute,
the differences are the number of values added by the
generalization step (i.e., |GV (G, u, v, ra) \ Ia(G, ra, u)|).
If ra is a numerical attribute, the differences are the
changes of minimum and maximum values after generaliz-
ing ra’s values (i.e., minGV (G, u, v, ra) − min Ia(G, ra, u)
and maxGV (G, u, v, ra)−max Ia(G, ra, u)). dam then takes
the average of the information loss of u and v. dam is
formally defined as follows:

Definition 4 (Attribute Information Loss Distance [2]) Let
u, v be two users in a KG G. The Attribute Information Loss
Distance (dam) measuring the information loss of making
u’s and v’s attribute values identical is computed as follows:

dam(u, v) =
AL(u, v) +AL(v, u)

2

AL(u, v) =
1

|RUA|
×
RUA∑
ra

{
ALc(u, v, ra), if ra is categorical
ALn(u, v, ra), if ra is numerical

ALc(u, v, ra) =
|GV (G, u, v, ra) \ Ia(G, ra, u)|
|dom(ra) \ Ia(G, ra, u)|+ 1

ALn(u, v, ra) =
|Imina (u, v, ra)|+ |Imaxa (u, v, ra)|
|Iminadom

(u, ra)|+ |Imaxadom
(u, ra)|+ 1

IMa (u, v, ra) =M(GV (G, u, v, ra))−M(Ia(G, ra, u))

IMadom(u, ra) =M(dom(ra))−M(Ia(G, ra, u))

where M is either the max or min function, Ia(G, ra, u) =
{va|(u, ra, va) ∈ EUA}, GV (G, u, v, ra) = Ia(G, ra, u) ∪
Ia(G, ra, v), and dom(ra) = {va|(u, ra, va) ∈ EUA}.

In contrast, dodm and didm measure the information loss of
user u and user v when generalizing their relationships. The
information loss of the target users on a given relationship
rr is computed by finding the differences between users’
generalized out-/in-degree (denoted as GDo(G, u, v, rr),
GDi(G, u, v, rr)) and original ones (denoted as do(G, rr, u),
di(G, rr, u)), respectively. Since the definition of dodm and
didm are similar, in what follows, we only present the formal
definition of dodm.
Definition 5 (Out-Degree Information Loss Distance [2])
Let u, v be two users in a KGG. The Out-Degree Information
Loss Distance (dodm) of making u and v having the same out-
degrees on all relationship types is computed as follows:

dodm(u, v) =
DLo(u, v) +DLo(v, u)

2

DLo(u, v) =
1

|RUU |
×
RUU∑
rr

GDo(G, u, v, rr)− do(G, rr, u)
|V U |

where GDo(G, u, v, rr) = max{do(G, rr, u), do(G, rr, v)}.
By combining the above defined distances, dadm esti-

mates the information we lose on generalizing two users u
and v’s attributes and relationships. The higher the distance
between two users is, the less similar they are. dadm is
formally defined as follows:
Definition 6 (Attribute and Degree Information Loss Dis-
tance [2]) Let u, v be two users in a KG G. The Attribute and
Degree Information Loss Metric (ADM ) of making u and v
having the same values on all attributes, and the same out-
/in-degree on all relationship types is computed as follows:

dadm(u, v) =
dam(u, v) + 0.5× dodm(u, v) + 0.5× didm(u, v)

2

where dam, dodm, and didm are the attribute, out-degree,
and in-degree information loss distance between u and v,
formally defined in Definitions 4-5.

Thus, the cost of finding ku − 1 users similar to u is
defined as cost(u) = max

v∈N(u)
dadm(u, v). We refer to this cost

as u’s core distance.
Example 3. Considering Fig. 1a, the nearest neighbors of
each user are: N(u0) = {u1}, N(u1) = {u0}, N(u2) =
{u3}, N(u3) = ∅, N(u4) = {u1, u2, u3}. N(u3) is empty
since u3 does not need any neighbors to be in a valid
cluster (ku3

= 1). Therefore: cost(u0) = cost(u1) =
max{dadm(u0, u1)} = max{0.108} = 0.108; cost(u2) =
max{dadm(u2, u3)} = max{0.108} = 0.108; cost(u3) = 0;
cost(u4) = {dadm(u4, u1), dadm(u4, u2), dadm(u4, u3)} =
max{0.208, 0.108, 0} = 0.208.

Given a user u, his/her core distance allows us to de-
termine the minimum information loss that a cluster con-
taining u will have to accommodate enough similar users
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to satisfy ku constraint. By using the user core distance, we
can now define the anonymization distance between two
users u and v as the cost to generate the smallest valid
cluster around them. To build a valid cluster we have to
insert a number of users equal to the maximum between ku
and kv . Moreover, to minimize the cost, we can insert u’s
and v’s nearest neighbors (i.e., N(u), N(v)). Thus, the cost
estimation of the obtained cluster depends on the maximum
of distances between its users. This can be seen as the
maximum among: the core distance of u (i.e., the maximum
distance between u and its N(u)), the core distance of v (i.e.,
the maximum distance between v and its N(v)), and their
ADM distance (i.e., dadm(u, v)). The total cost is given by the
maximum distance of its users multiplied by the number of
its users, this latter set as the maximum of ku and kv . This
multiplication allows us to measure not only the anonymity
level of the valid cluster containing both u and v but also
the distances between the cluster’s users. The higher either
their distances or their anonymity levels is, the higher their
anonymization distance is.

Definition 7 (Anonymization Distance) Let u, v be two
users in a KG G, and ku kv be their corresponding k values.
The anonymization distance between u, v is defined as:

da(u, v) = max{cost(u), cost(v), dadm(u, v)}×max{ku, kv}

Example 4. Given the KG in Fig. 1a, da(u0, u1) =
max{cost(u0), cost(u1), dadm(u0, u1)}× max{ku0

, ku1
} =

max{0.108, 0.108, 0.108}× max{2, 2} = 0.216, whereas
da(u3, u4) = max{cost(u3), cost(u4), dadm(u3, u4)} ×
max{ku3

, ku4
} = max{0, 0.208, 0} × max{1, 4} = 0.833.

Note that since u4 has high anonymity level, even though
the ADM distance of u3 and u4 is 0, their anonymization
distance (i.e., 0.833) is higher than that of u0 and u1 (i.e.,
0.216) whose ADM distance is 0.108.

We exploit the anonymization distance to compute the
cost of u’s anonymization. Intuitively, each user u must be
added to a valid cluster that have at least ku−1 other users.
To minimize the information loss of anonymizing user u,
his/her cluster must include u and his/her ku − 1-nearest
neighbors. So, the minimum anonymization cost of user u
can be considered as the maximum anonymization distances
among users in the cluster. We define the cost as follows.

Definition 8 (User Anonymization Cost) Let u be a user
in a KG G. The anonymization cost of u, denoted as
cost(u), is the maximum anonymization distance with
his/her ku − 1-nearest neighbors N(u), that is, cost(u) =
maxv∈N(u) d

a(u, v).

Example 5. Considering Example 4, the anonymization
costs of the involved users are: cost(u0) = cost(u1) =
max {da(u0, u1)} = max {0.216} = 0.216; cost(u2) =
max {da(u2, u3)} = max {0.216} = 0.216; cost(u3) = 0;
cost(u4) = max {da(u4, u1), d

a(u4, u2), d
a(u4, u3)} =

max{0.833, 0.833, 0.833} = 0.833.

4.2 The Varying-Anonymity Clustering Algorithm
The Varying-Anonymity Clustering Algorithm (VAC) (see
Algorithm 2) receives as input the anonymization distances
computed on each pair of users in G: Da; the set of

Algorithm 2 VAC(Da, K)
Input: Da: the anonymization distance matrix of users in the original KG G; K:
k values of users in G.
Output: The set of clusters C.
1: Let Uasc be the sorted set containing users in V U sorted in ascending order

by their anonymization cost
2: C ← ∅
3: while |Uasc| ≥ kUasc[0] do
4: u← get and remove at index(Uasc, 0)
5: c← find best cluster(u,Da,Uasc,K)
6: add(C, c)
7: end while
8: return C

Function 1 find best cluster (u,Da,Uasc, K)
1: Let Uc be the sorted array of users in Uasc who are sorted in ascending order

by the distance between them and u.
2: c← [u]
3: kc ← ku
4: i← 0
5: while kc − |c| > 0 ∧ i < |Uc| do
6: add(c, Uc[i])
7: kc ← max{kc, kUc[i]}
8: remove(Uasc, Uc[i])
9: i← i+ 1

10: end while
11: return c

users k values: K; and returns a set of clusters built by
leveraging on the user anonymization cost previously de-
fined. Distances are modelled as a matrix, called distance
matrix, Da ∈ R|V

U |×|V U |, whose element Da[i, j] contains
da(ui, uj), ui, uj ∈ V U . The usage of the distance matrix
allows our algorithm to be compatible with state-of-the-art
clustering libraries.6 In case the original KG is too big and it
is impractical to calculate the matrix, VAC’s scalability can
easily be improved by calculating distances at run-time and
caching them in a database.

To minimize the distances between users, VAC utilizes
the approach of prioritizing the creation of clusters for users
with lower anonymization costs over those with higher
costs. More precisely, the algorithm first sorts all users in V U

in ascending order by their anonymization cost and stores
the sorted users in a sorted set Uasc (line 1). A sorted set
ensures the uniqueness of users and the efficiency of users’
addition/removal as well as of the retrieval of the smallest-
anonymization-cost user (i.e., Uasc[0]). The set of clusters
C is initialized as the empty set (line 2). While Uasc’s size
is higher than or equal to the k value of the first user in
Uasc, the algorithm starts generating clusters (lines 3-7). It
removes the first element in Uasc and stores the element in u
(line 4). u is passed to function find best cluster() to create
its best valid cluster c, and insert c into C (line 5-6). Once the
cluster has been created, the function removes from Uasc all
users in c, so that in the next while iteration a new user is
considered. After the while cycle ends, if Uasc still contains
some users, they will not be included in any cluster because
the cluster containing them is invalid (i.e., |Uasc| < kUasc[0]).
In Section 6, we will show how these removed users impact
the obtained information loss. Finally, the algorithm returns
the set of generated clusters C (line 8).

Function find best cluster(). Given a user: u, the anony-
mization distance matrix: Da, the set of users: Uasc, and k
values of users in G: K, this function finds a cluster for
u such that the maximum anonymization distance between

6. Scikit-Learn: https://scikit-learn.org/
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pairs of users in the found cluster is minimized. First, it sorts
users in Uasc in ascending order by their anonymization
distance to u and stores them in the array Uc (line 1). Then,
it initializes a cluster c with only user u, whereas the cluster
anonymity level kc is set to u’s anonymity level (lines 2-3). It
initializes i as 0 (line 4). While c is not valid (i.e., kc−|c| > 0)
and Uc still has users (i.e., i < |Uc|), it starts finding u’s
nearest users to add into c (lines 5-10). In each iteration, the
function adds the i-th user in Uc (i.e., Uc[i]) to c (line 6).
Since Uc is sorted in ascending order by the anonymization
distance to u, the added user is the one closest to u. Then, it
updates kc (line 7), removes the user from Uasc (line 8), and
increase i by 1 (line 9). Finally, it returns cluster c (line 11).

Example 6. VAC initializes Uasc = [u3, u0, u1, u2, u4] accord-
ing to their costs, calculated in Example 5. First, it finds u3’s
cluster as {u3}, since u3’s anonymity level is 1. Then, VAC
considers u0. The cluster for u0 is {u0, u1}, since u1 is u0’s
closest user. VAC removes these users from Uasc, and creates
the last cluster {u2, u4} for the remaining users. Then,
all these clusters are returned. Note that, the last cluster
is invalid and it will be modified by the MS algorithm,
explained in the next section.

The complexity of VAC is O(n2 log n), where n is the
number of users in V U .7

4.3 The Merge-Split Algorithm

The set of clusters C generated by the provided clustering al-
gorithm A is possibly modified such that only valid clusters
are passed to the generalization phase. This is done by the
Merge-Split Algorithm (MS) (see Algorithm 3). This algo-
rithm takes as input the anonymization distance matrix: Da;
a set of clusters: C; k values of users inG:K; and a threshold:
τ . It returns the set of clusters C such that, for each c ∈ C, the
number of its users is: |c| ≥ kc (i.e., c is valid); |c| ≤ 2× kc.
The second condition ensures that the MS algorithm does
not generate too large clusters. This assurance allows MS to
reduce the greatness of the generalized attributes and the
out-/in-degrees of relationships. Thus, the number of fake
edges needed for generalization also decreases.

Algorithm 3 first selects from C only the valid clusters
(i.e., Cvalid), while users in the other clusters are collected
into U (lines 1-9). Then, it calls Procedure assign valid -
clusters() to assign these users to valid clusters in Cvalid
(line 10). As detailed later, each user u ∈ U is inserted
into a valid cluster c where the maximum anonymization
distance between u and other users in c is less than or equal
to the maximum distance calculated by threshold τ . Then,
Algorithm 3 refines each cluster c in Cvalid by splitting it if it
is too large, that is, if c’s size is higher than or equal to twice
its anonymity (lines 12-21). If this is the case, Algorithm 3
calls Function split big cluster() to split c into a set of smaller
clusters whose sizes are greater than or equal to kc and less
than |c| (line 16). The obtained set of clusters Cc is then
added to Cvalid (line 17). Otherwise, Algorithm 3 adds c to
C (line 19). Finally, it returns C (line 22).

Procedure assign valid clusters(). This procedure first cal-
culates the maximum anonymization distance τd, based on

7. The detailed analysis of the complexity can be found in the
supplementary material section.

Algorithm 3 MS(Da, C,K, τ )
Input: Da: the anonymization distance matrix of users in G; C: the set of clusters
returned from the cluster generation phase; K: k values of users in G; and τ : a
threshold.
Output: A set of valid clusters C.
1: Cvalid ← ∅
2: U ← ∅
3: for c ∈ C do
4: if |c| ≥ kc then
5: add(Cvalid, c)
6: else
7: add array(U, c)
8: end if
9: end for

10: assign valid clusters(Cvalid, U,Da,K, τ)
11: C ← ∅
12: while Cvalid 6= ∅ do
13: Let c be a cluster in Cvalid.
14: remove(Cvalid, c)
15: if |c| ≥ kc × 2 then
16: Cc ← split big cluster(Da, c,K)
17: remove set(Cvalid, Cc)
18: else
19: add(C, c)
20: end if
21: end while
22: return C

Procedure 1 assign valid clusters (Cvalid, U , Da, K, τ )
1: Let damax, damin be the maximum and minimum distance between all users.
2: τd ← τ × (damax − d

a
min) + damin

3: for u ∈ U do
4: mind ← +∞
5: cmin ← ∅
6: for c ∈ Cvalid do
7: d← −∞
8: for v ∈ c do
9: d← max{d, da(u, v)}

10: end for
11: kc ← max

v∈c∪u
kv

12: if d < mind ∧ |c|+ 1 ≥ max{kc, ku} ∧ d ≤ τd then
13: mind ← d
14: cmin ← c
15: end if
16: end for
17: if cmin 6= ∅ then
18: add(cmin, u)
19: end if
20: end for

the maximum and minimum anonymization distance of
users and threshold τ (lines 1-2). Then, for each user u in
U , it searches for a cluster c ∈ Cvalid where the maximum
anonymization distance between u and other users in c is
less than or equal to τd and c is still valid after adding u. If
it exists, u is assigned to c, otherwise it will be removed. In
particular, for every user u in U , it initializes mind to +∞
(line 4) and cmin to the empty set (line 5). Then, for each c
in Cvalid, it calculates the maximum distance between the
users in c and u, i.e., d (lines 7-10). If d is less than mind,
the number of users in c after adding u is greater than or
equal to the maximum anonymity of c and u, and d is less
than or equal to τd, it updates mind (line 13) and cmin (line
14). If there is a cluster cmin in Cvalid satisfying the above
conditions, it adds u to cmin (line 18). Then, it continues
finding a cluster for the next user in U (line 3).
Example 7. Let {u3}, {u0, u1}, {u2, u4} be the clusters
generated in Example 6 and suppose τ has been set to 0.5.
Since damax = 0.933, damin = 0.216, MS sets τd = τ×(damax−
damin) + damin = 0.5 × (0.933 − 0.216) + 0.216 = 0.575.
It initializes Cvalid = {{u3}, {u0, u1}} and U = {u2, u4},
since cluster {u2, u4} is invalid. Next, it starts finding valid
clusters for users in U . It merges u2 to cluster {u3} as the
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anonymization distance between u2 and cluster {u3} (i.e.,
da(u2, u3) = 0.216) is less than τd (i.e., 0.575) and the
resulting cluster is still valid. However, it cannot find any
cluster for u4 as adding it to any cluster will make the cluster
invalid. MS returns clusters: {u0, u1} and {u2, u3}.

Function 2 split big cluster (Da, c, K)
1: nc ← b|c|/kcc
2: Let Da

c be distance matrix of c’s users.
3: Mc ← BanditPAM(Da

c , nc)
4: cr ← c \Mc

5: Cc ← ∅
6: for i ∈ {0...nc − 1} do
7: if i < nc − 1 then
8: cc ← find nearest elements(Da

c , cr,Mc[i], k
c − 1)

9: else
10: cc ← cr
11: end if
12: remove set(cr, cc)
13: add set(Cc, cc ∪ {Mc[i]})
14: end for
15: return Cc

Function split big clusters(). This function receives the
anonymization distance matrix: Da, a cluster: c, and users’
k values: K. First, it calculates the number of clusters to be
generated: nc (line 1) and finds the distance matrix of users
in c: Dac (line 2). Then, it calls Algorithm BanditPAM [16],
an efficient variant of k-Medoids, to find the set of users
who are the center of clusters to be generated: Mc (line 3).
Next, it finds the set of users who are not in Mc: cr (line 4)
and initializes the set of resulting clusters Cc as empty set
(line 5). It starts creating nc clusters of users in c and adding
the clusters to Cc (line 6-14). For every i between 0 to nc−1,
if i is less than nc−1, it calls Function find nearest elements()
to find kc− 1 users in cr who are the closest ones to the i-th
medoid user (Mc[i]): cc (line 8).8 In case i is greater than or
equal to nc − 1, it assigns cc of cr (line 10). Then, it removes
users in cc from cr (line 12) and adds the cluster containing
the medoid user and cc’s users to Cc (line 13). Finally, the
function returns Cc (line 15).

The complexity of MS is O(m × n2 log n), where m is
the number of clusters in C, and n is the number of users in
V U . We include the detailed time complexity analysis in the
supplementary material section.

5 PRIVACY ANALYSIS

In this section, we analyze how the p-k-ad principle and
the PCKGA algorithm protect user privacy. The following
theorem states that, if an anonymized KG G satisfies p-k-
ad, any user u inG cannot be re-identified with a confidence
higher than 1

ku
, where ku is specified by u.

Theorem 1. Let G be an anonymized KG. If G satisfies p-
k-ad, for every user u ∈ V

U
, an adversary cannot exploit

AK(u) to re-identify u with a confidence higher than 1
ku

.
The privacy protection of PCKGA relies on MS, which

generates valid clusters, and KGG [2], that generalizes
users’ attributes and relationships. As the following theorem
proves, MS always generates a set of valid clusters.

8. Interested readers can check Function find nearest elements()’s im-
plementation in popular source code sharing platforms (e.g., Geeks-
ForGeeks).

TABLE 1
Properties of datasets used for experiments.

Dataset |VU| |VA| |RUA| |RUU| |EUA| |EUU|

Freebase [17] 5,000 4,016 10 3 41,067 2,713
Yago [18] 8,917 4,386 21 4 94,472 1,894
Coil [19] 5,822 41 86 0 500,692 0
Credit [20] 1,000 1,046 21 0 21,000 0

Theorem 2. Let G be a KG and C be a set of clusters
generated by Algorithm 3 when its input is G. Every c in
C is valid.

By applying KGG [2] on the set of valid clusters gener-
ated from MS, PCKGA always generates anonymized KGs
satisfying p-k-ad.
Theorem 3. Let G be a KG, C be the set of clusters generated
by Algorithm 3 over G, and G be the anonymized version
of G created by KGG algorithm, executed with G and C. G
satisfies p-k-ad.

The supplementary material includes theorems’ proofs.

6 EVALUATION

We conduct experiments on four real-life datasets to evalu-
ate the proposed algorithms (i.e., VAC and MS). The first
experiment aims to show the effectiveness of VAC over
state-of-the-art clustering algorithms (i.e., k-Medoids [13]
and HDBSCAN [14]). The second experiment is designed
to evaluate the impact of MS in improving the quality of
anonymized KGs. The third experiment shows the perfor-
mance of VAC and MS. In the final experiment, we conduct
a comparison between the anonymized KGs produced by
our algorithms and those generated by k-ad’s algorithm [2].
Since KGs can illustrate relational data, we also compare our
algorithm against a cluster-based anonymization algorithm
designed for this type of data [15].

6.1 Datasets
We use four popular real-life datasets, namely Freebase [17],
Yago [18], Credit [20], and Coil [19]. Freebase and Yago are
selected since they are the most widely used in state-of-
the-art KGs’ deep learning publications. Freebase and Yago
store attributes’ values (e.g., nationality, location) and re-
lationships (e.g., spouse, parent) of famous people (e.g., the
film director Anthony Asquith) derived from Wikipedia,
WordNet, and other data sources. Even if they present
semantically similar attributes/relationships, they have dif-
ferent types of attributes/relationships and different sizes.
Credit stores properties of real bad credits in Germany and
Coil contains information on customers of an insurance com-
pany. For each dataset, we manually categorize its nodes
into the set of users (i.e., V U ) and set of attributes’ values
(i.e., V A). Since Freebase has 5,000 users and 4,016 values,
it has 9,016 nodes. Yago has 13,303 nodes including 8,917
users and 4,386 values. Coil has 5,863 nodes containing
5,822 users and 41 values while that of Credit is 2,046
including 1,000 users and 1,046 values.

These datasets represent a valid benchmark to test our
algorithms as they contain different numbers of users, at-
tributes and relationships (see Table 1 for datasets’ proper-
ties). However, they do not contain users’ anonymity lev-
els, which we generated synthetically following two main
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strategies. As first strategy, we adopt the approach used to
generate anonymity levels to evaluate state-of-the-art per-
sonalized k-anonymity methods for location data [21], [22],
[23]. Here, anonymity levels are generated using Zipf distri-
bution, with α parameter set to 2. As the second strategy, we
consider that individuals do not set their anonymity levels
randomly. To model users’ behavior, we assume that users
who share more information are more willing to protect
their data and thus require a higher anonymity level. This
assumption comes from a recent survey run by CISCO9 that
pointed out that users who actively set their privacy settings
are those that exploit more online services and thus those
that expose more information. According to this second
strategy, the anonymity level of a user u is determined by
the number of u’s edges. The greater the number of edges
is, the greater the associated k value is.

In both the strategies, we assume that anonymity levels
are taken from fixed intervals. State-of-the-art personalized
anonymization techniques for location data specified these
levels to be from 2 to 5 [21], from 3 to 15 [22], and from
10 to 50 [23]. In this paper, we therefore use two intervals
containing these levels. The first contains levels between
2 and 5 with an increment by 1 (denoted hereafter as
2, 5, 1); the second contains levels between 5 and 50 with
an increment by 5 (denoted as 5, 50, 5 in what follows).
Thus, the maximum anonymity levels of users are 5 and
50, respectively for the two considered intervals.

We generate users’ anonymity levels for every dataset
following the above-described strategies, zipf and te,
and the two intervals 2, 5, 1 and 5, 50, 5. The obtained
datasets are referred hereafter as: zipf#2, 5, 1, zipf#5,
50, 5, te#2, 5, 1, and te#5, 50, 5. Since the second interval
has higher k values, zipf#5, 50, 5 and te#5, 50, 5 settings
give stronger privacy protection to users than the others.

6.2 Clustering settings
The first experiment aims to show the effectiveness of VAC
over two state-of-the-art clustering algorithms: k-Medoids
[13] and HDBSCAN [14]. However, these two algorithms
do not support personalized k values. k-Medoids receives
as input only the number of clusters to be generated, say κ,
whereas HDBSCAN receives the minimum size of clusters
to be generated, say kunique. This last parameter represents
the k-anonymity level that has to be applied to the whole
dataset, i.e., all the clusters. In order to exploit them in
PCKGA, as an alternative to VAC, we have to specify κ
in k-Medoids and kunique for HDBSCAN, included in the
parameters’ values P (line 2, Algorithm 1).

In particular, to define kunique, we adopt three strategies,
according to which kunique is set as the max, min, average
of all anonymity levels of users in the considered datasets.
As such, we run HDBSCAN (k-Medoids, resp.) with k
fixed as max, denoted as hdbscan#max (km#max, resp.);
min, e.g., hdbscan#min (km#min, resp), and average,
e.g., hdbscan#mean (km#mean, resp.). κ is defined as the
number of users in the dataset divided by the minimum
number of users in each cluster, that is, the adopted kunique.
Moreover, since HDBSCAN ensures the minimum size of

9. https://www.cisco.com/c/dam/global/en uk/products/
collateral/security/cybersecurity-series-2019-cps.pdf

its generated clusters, we develop a basic HDBSCAN’s
extension, namely HDB*, to generate clusters with multiple
kunique and compare it with VAC. In particular, we first
gather users into clusters such that users in the same cluster
have the same k values. Then, we execute HDBSCAN on
each of these clusters with kunique equal to its users’ k value.
Therefore, each user is only anonymized with users sharing
the same k value.

Due to the lack of space, this section only presents the
results for k-Medoids, HDB*, and VAC, whereas the Sup-
plementary Material reports HDBSCAN’s settings’ results.

6.3 Metrics
To evaluate the quality of generated KGs, we use two
metrics: the average information loss (AIL), and the ratio
of removed users (RRU ). AIL of a user is estimated as the
differences between his/her attributes’ values and out-/in-
degrees in anonymized KG G with his/her original ones. If
the user is removed, his/her information loss is 1.

AIL(G,G) =
1

|V U |
∑
u∈V U

AL′(G,G, u) +DL′(G,G, u)

2

where AL′ and DL′ are u’s information loss on his/her
attributes and relationships. We define AL′ as follows:

AL′(G,G, u) =
1

|RUA|
∑

ra∈RUA

|Ia(G, ra, u) ∩ Ia(G, ra, u)|
|dom(ra) ∩ Ia(G, ra, u)|

where Ia(G, ra, u) ⊆ Ia(G, u) (Ia(G, ra, u) ⊆ Ia(G, u),
resp.) represents values of u’s attribute ra in original KG G
(anonymized KG G, resp.); and dom(ra) = {va|(u, ra, va) ∈
EUA}. DL′ is defined as follows:

DL′(G,G, u) =
1

|RUU |
∑

rr∈RUU

|drro (G,G, u)|+ |drri (G,G, u)|
2× |V U |

drro (G,G, u, rr) = do(G, rr, u)− do(G, rr, u)

drri (G,G, u, rr) = di(G, rr, u)− di(G, rr, u)

where do(G, rr, u) and di(G, rr, u) (do(G, rr, u) and
di(G, rr, u), resp.) are the out- and in-degree of relationship
rr of u in original KG G (anonymized KG G, resp.).

Since removed users have a high impact on AIL, we
use RRU to analyze these impacts in detail. RRU measures
the percentage of users in the original KG G that are not
included in its anonymized version G.

In case the dataset exploits user anonymity levels gen-
erated by using zipf , we generate the levels three times
and run our experiments separately. The metrics’ results are
given as average of the three executions.

6.4 VAC Algorithm
This experiment compares the quality of anonymized KGs
generated by running PCKGA with VAC, k-Medoids [13],
and our extension of HDBSCAN (HDB*). To evaluate the im-
pact of the clustering algorithms, we only execute VAC (k-
Medoids, HDB*, resp.) without the Merge-Split Algorithm.
Among the obtained clusters, we only keep those that are
valid to generate anonymized KGs. Table 2 illustrates the
average information loss of users and the ratio of removed
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TABLE 2
Anonymized KGs’ quality generated with: k-Medoids, HDB*, and VAC.

k-Medoids HDB* VAC
Data Settings min mean max

Freebase

te#2, 5, 1 0.404 0.407 0.134 0.221 0.0013
te#5, 50, 5 0.566 0.349 0.193 0.290 0.0137
zipf#2, 5, 1, 2 0.479 0.475 0.175 0.221 0.0018
zipf#5, 50, 5, 2 0.689 0.698 0.267 0.222 0.0168

Yago

te#2, 5, 1 0.474 0.476 0.188 0.260 0.0005
te#5, 50, 5 0.242 0.249 0.117 0.336 0.0022
zipf#2, 5, 1 0.496 0.496 0.215 0.189 0.0008
zipf#5, 50, 5 0.392 0.397 0.158 0.212 0.0070

(a) Average Information Loss

k-Medoids HDB* VAC
Data Settings min mean max

Freebase

te#2, 5, 1 0.400 0.403 0.119 0.000 0.0006
te#5, 50, 5 0.551 0.311 0.097 0.008 0.0040
zipf#2, 5, 1 0.475 0.478 0.159 0.000 0.0005
zipf#5, 50, 5 0.667 0.661 0.193 0.008 0.0040

Yago

te#2, 5, 1 0.466 0.467 0.160 0.000 0.0001
te#5, 50, 5 0.215 0.217 0.024 0.000 0.0008
zipf#2, 5, 1 0.487 0.487 0.187 0.000 0.0001
zipf#5, 50, 5 0.362 0.369 0.067 0.000 0.0025

(b) Ratio of Removed Users

users in anonymized KGs, for both the considered datasets.
VAC helps PCKGA to always generate the highest quality
KGs compared to k-Medoids and HDB*, even though VAC
does not require any additional input parameter. With the
setting te#5, 50, 5 for Yago, k-Medoids generates the highest
quality KGs whose information loss is 0.117 while the
information loss of those generated by VAC is 0.0022. The
main reason is that VAC removes outliers. In this setting,
VAC only removes a few number of users: 0.08%, while the
lowest ratios of removed users among all executions of k-
Medoids, and HDB* are 0% and 2.4%, respectively.

Table 2 also shows how the adopted set of anonymity
levels impact. In general, the higher values of k (i.e.,
stronger privacy protection) result in lower anonymized
KGs’ quality. The information loss of KGs generated for
settings te#5, 50, 5 and zipf#5, 50, 5, whose maximum k
value is 50, is higher than that of those generated for settings
te#2, 5, 1 and zip#2, 5, 1, whose maximum k value is 5, in
most clustering settings (i.e., VAC, km#min, hdb∗). It is
not the case for the other clustering settings (i.e., km#min,
km#mean), because k-Medoids generates many invalid
clusters whose users are removed from anonymized KGs.
With clustering setting km#mean, the ratio of removed
users in Yago is 46.7% (21.7%, resp.) for setting te#2, 5, 1
(te#5, 50, 5, resp.). These huge amount of removed users
make anonymized KGs to loose much information. More-
over, it is relevant to note that anonymized KGs generated
using levels generated according to te have higher quality
than those generated with zipf . We recall that according to
te, users who have a similar number of edges have similar
anonymity levels. Then, since users in the same cluster
might have a similar number of edges, they also have similar
anonymity levels. This prevents users with small anonymity
levels to be anonymized with high anonymity levels. As a
result, they do not lose too much information.

As VAC considers different k values, it generates high-
quality anonymized KGs in both the real-life scenario (i.e.,
te) and the random simulation scenario (i.e., zipf ) for the
highest range of k values (i.e., 5, 50, 5). The advantages
of VAC over HDB* indicate that simple customization of
current clustering algorithms does not fit the scenario of
personalized anonymization.

6.5 MS Algorithm

This experiment aims to evaluate the effectiveness of MS.
We consider the zipf#5, 50, 5 setting, as using this setting,
k-Medoids, HDB*, and VAC generate the high-information-
loss KGs. We recall that MS removes invalid clusters and

adds their users to valid ones. This is done only if the
anonymization distances between these users and valid
clusters are less than or equal to the maximum distance
measured by τ . We also run MS by varying τ , to measure the
impact of τ on the quality of generated anonymized KGs.
Table 3 illustrates MS’ effectiveness on Freebase and Yago.

By increasing τ , MS decreases the number of removed
users, which leads to the decrements of users’ information
loss, since AIL of a removed user is 1. MS decreases the
information loss of users in KGs generated by k-Medoids
executed with all the settings. As an example, in case of
km#min in dataset Yago, increasing τ from 0 to 1 decreases
the information loss of the generated KGs from 0.368 to
0.016, whereas the ratio of removed users is decreased from
36.2% to 0%. MS improves the quality KGs generated by
executing with HDB* to be closer to that of those generated
by VAC. On Freebase, increasing τ from 0 to 1 decreases
the information loss of HDB* (VAC, resp.) from 0.017 to
0.011 (from 0.0168 to 0.0087, resp.). Consequently, the in-
formation loss of users in original KGs is decreasing when
increasing τ . Even though VAC does not generate big clus-
ters, whose cardinality is higher than or equal to twice their
anonymity, MS can still add some removed users to valid
clusters and increase the quality of the generated clusters.
As a result, the information loss of KGs using VAC is also
decreased from 0.0070 to 0.0048 when increasing τ from 0 to
1 on Yago. Moreover, the maximum ratio of removed users
of clusters generated by MS is at most those generated by
removing invalid clusters. Therefore, MS is effective enough
to improve the quality of anonymized KGs if data providers
decide to choose clustering algorithms which do not support
personalized anonymization (e.g., k-Medoids, HDB*).

6.6 Overall performance

We measure the performance of VAC by monitoring the
execution time of VAC when running it with varying k
values’ generation strategies. MS’ performance is computed
by tracking the execution time of MS when running it with
clusters generated by VAC with the strategy zipf#5, 50, 5.
Both algorithms have been implemented in Python 3 and
run on a Debian 4 server, with 128 GB of RAM and its CPU is
Intel Xeon with 128 cores. Table 4 illustrates the performance
on the two datasets. The performance of VAC depends
on the size of the datasets and the users’ k values. The
execution times of VAC running on Yago with zipf#5, 50, 5
and te#5, 50, 5 settings (523.93 and 469.86 seconds, respec-
tively) are higher than those of VAC running on Freebase
(150.14 and 183.21 seconds, respectively). The execution
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TABLE 3
Anonymized KGs’ quality generated by MS executed with clusters generated by k-Medoids, HDB*, and VAC.

k-Medoids HDB* VAC
Data τ min mean max

Freebase

0.00 0.680 0.691 0.210 0.017 0.0168
0.25 0.019 0.033 0.030 0.011 0.0087
0.50 0.019 0.029 0.028 0.011 0.0087
0.75 0.019 0.030 0.028 0.011 0.0087
1.00 0.019 0.030 0.027 0.011 0.0087

Yago

0.00 0.368 0.375 0.079 0.004 0.0070
0.25 0.016 0.016 0.015 0.004 0.0051
0.50 0.016 0.016 0.015 0.004 0.0049
0.75 0.016 0.016 0.015 0.004 0.0048
1.00 0.016 0.016 0.015 0.004 0.0048

(a) Average Information Loss

k-Medoids HDB* VAC
Data τ min mean max

Freebase

0.00 0.667 0.661 0.193 0.008 0.0040
0.25 0.003 0.003 0.003 0.000 0.0000
0.50 0.000 0.000 0.000 0.000 0.0000
0.75 0.000 0.000 0.000 0.000 0.0000
1.00 0.000 0.000 0.000 0.000 0.0000

Yago

0.00 0.362 0.369 0.067 0.000 0.0025
0.25 0.001 0.001 0.001 0.000 0.0003
0.50 0.000 0.000 0.000 0.000 0.0001
0.75 0.000 0.000 0.000 0.000 0.0000
1.00 0.000 0.000 0.000 0.000 0.0000

(b) Ratio of Removed Users

time of VAC running with zipf#5, 50, 5 (150.14 seconds) is
higher than that of VAC running with zipf#2, 5, 1 (110.10
seconds). However, the number of users in the datasets
has a higher impact on VAC’s performance than the users’
k values. Even though VAC has a higher execution time
than k-Medoids, HDBSCAN, HDB* (i.e., on Yago, with
zipf#5, 50, 5, they have 32, 36, and 54 seconds, resp.,
where VAC is about 524 seconds), the information loss
with k-Medoids and HDBSCAN (0.267, 0.334, and 0.222,
resp., with zipf#5, 50, 5 setting) is much higher than the
information loss of VAC (0.0168). On the other hand, MS
performance mostly relies on datasets’ number of users
instead of its parameter τ . On Freebase dataset, increasing
τ from 0 to 0.25 decreases the execution time from 32.19 to
31.75 seconds. However, when it reaches 0.5, the execution
time increases to 32.81 seconds. The standard deviations of
execution times on varying values of τ are 0.71 seconds on
Freebase, and 1.92 seconds on Yago that are small compar-
ing to their execution times. Nevertheless, changing from
Freebase to Yago increases the execution time. The average
execution time on Freebase (i.e., 32.01 seconds) is smaller
than the one on Yago (i.e., 99.52 seconds).

The complexity of VAC and MS are O(n2 log n) and
O(m× n2 log n), respectively (see Appendix 2). In practice,
data providers do not need to anonymize their KGs in
real-time. Instead, they will anonymize their KGs once and
publish the anonymized versions. Therefore, MS and VAC
are feasible with KGs’ real-life applications.

6.7 Comparison with the Simple Knowledge Graph Per-
sonalized Anonymization
This experiment aims to compare the quality of anonymized
KGs generated by PCKGA (i.e., using VAC/MS and KGG)
and state-of-the-art anonymization algorithms in common
usages. First, we compare PCKGA with the cluster-based
anonymization algorithm, i.e., the Cluster-Based Knowl-
edge Graph Anonymization Algorithm (CKGA) [2] in

TABLE 4
Execution time of VAC and MS (seconds).

Settings Freebase Yago

zipf#2,5,1 110.10 363.41
zipf#5,50,5 150.14 523.93
te#2,5,1 106.63 330.05
te#5,50,5 183.21 469.86

(a) VAC

τ Freebase Yago

0.00 32.19 97.24
0.25 31.75 99.73
0.50 32.81 98.28
0.75 30.89 99.37
1.00 32.42 102.46

(b) MS
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Fig. 2. Average information loss in KGs from CKGA and PCKGA.

anonymizing KGs. Secondly, we compare it with Primule
[15], the cluster-based anonymization algorithm for rela-
tional data which is used to anonymize users’ profile. Unlike
PCKGA, CKGA and Primule impose a unique anonymity
level for all users. We use the most challenging setting
(i.e., zipf#5, 50, 5) to generate k values, and we choose
the highest anonymity level present in the dataset as the k
value for the execution of CKGA and Primule while PCKGA
considers all k values.

Since PCKGA and CKGA [2] supports similar param-
eters (i.e., clustering algorithm A and τ ), we evaluate the
impact of the parameters on the information loss of anony-
mized KGs generated from Freebase and Yago. Fig. 2 and
Table 5 illustrate the quality of anonymized KGs generated
by our algorithm and CKGA. Across all values of τ , PCKGA
generates higher quality KGs. As τ increases from 0 to 1,
the average information loss of anonymized KGs generated
by PCKGA remains lower compared to CKGA. For exam-
ple, Fig. 2a shows that the anonymized KGs of Freebase
generated by CKGA exhibit a minimum and maximum
average information loss of 0.027 and 0.244, respectively.
In contrast, PCKGA achieves lower values: 0.009 and 0.013,
respectively. Table 5 further demonstrates that the minimum
and maximum ratios of removed users in Freebase’s KGs
generated by CKGA are 0 and 0.223 respectively, while
PCKGA achieves significantly lower values of 0 and 0.008.
Similar trends are observed in the experimental results
obtained from Yago. The reason is that CKGA does not
consider the different users’ anonymity levels and applies
the maximum one to all users. Therefore, PCKGA can
generate better quality anonymized KGs in the scenario of
personalized anonymization.

Primule [15] is designed to anonymize relational data,
we use two real-life relational datasets (Credit [20] and Coil
[19]) to compare our work with Primule. Since Primule does
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TABLE 5
Ratio of Removed Users in KGs from PCKGA and CKGA executed with

HDBSCAN(hdb.) and k-Medoids(km.).
τ

Data Algorithms 0.00 0.25 0.50 0.75 1.00

Freebase
CKGA(hdb.) 0.003 0.003 0.001 0.000 0.000
CKGA(km.) 0.223 0.003 0.000 0.000 0.000
PCKGA 0.008 0.000 0.000 0.000 0.000

Yago
CKGA(hdb.) 0.000 0.000 0.000 0.000 0.000
CKGA(km.) 0.074 0.001 0.000 0.000 0.000
PCKGA 0.002 0.000 0.000 0.000 0.000

not remove any outliers from the datasets; to ensure that
PCKGA also does not remove outliers, we executed it with
τ = 1. PCKGA’s anonymized KGs show 40.41% and 31%
lower information loss (0.137 on Credit and 0.067 on Coil)
compared to Primule’s (0.339 on Credit and 0.213 on Coil) in
both datasets. This difference is attributed to the fact that
Primule creates large clusters that exceed the required k
value by at least two times and applies the maximum k
value to all users, while PCKGA considers all values.

7 CONCLUSION

In this paper, we proposed the Personalized k-Attribute
Degree principle to allow users to specify their own pro-
tection level (k) and PCKGA to generate anonymized KGs
satisfying the proposed principle. We conducted experi-
ments by using two real-life datasets to show that running
PCKGA with our clustering algorithm (VAC) generates
high-quality anonymized KGs compared to those gener-
ated by running with state-of-the-art clustering algorithms.
PCKGA has good performance to be used in practice, and
outperforms the previous anonymization algorithm for KGs
[2] and relational data [15]. Our work can be extended in
various directions. We plan to design a risk assessment
module to recommend anonymity levels to users, so that it is
easier for non-expert users to specify their anonymity levels.
Additionally, we plan to investigate novel generalization
techniques that utilize fuzzy logic representation to rep-
resent users’ relationships. These techniques allow for the
representation of user relationships within the same clusters
using the probability of their presence, rather than the
traditional method of adding and removing relationships.
Another extension is to protect users’ privacy from inference
attacks when attackers exploit the public protection levels.
The protection can rely on the a risk assessment algorithm
that predicts the probability that the protection level of
a user is associated with the sensitivity level of his/her
sensitive values. If the risk is too high, users’ data are
removed from anonymized KGs.
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