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Abstract—Approximate membership filters are increasingly used in
many computing and networking applications and new filter designs are
being continuously presented to improve one or more performance met-
rics. Therefore, understanding their security and privacy is an important
issue. Previous works have considered attackers that only have access
to an individual filter in isolation. For applications that generate many
related filters, such as a filter for a deny list that evolves over time, that
analysis is insufficient. This paper considers an attacker with access to
several versions of a filter that share most of the same input elements.
We find that for typical implementations of Bloom, cuckoo, and quotient
filters, the attacker gains little or no advantage with access to multiple
versions of a filter. However, typical xor filters do reveal more information
about their input elements by querying multiple versions of a filter, and
we propose techniques to enhance the privacy of xor filters and others.

Index Terms—Privacy, Approximate membership checking, Bloom fil-
ters, Cuckoo filters, Quotient filters, Xor filters.

1 INTRODUCTION

Privacy is a key requirement in applications and systems
that process or store sensitive data [1]. For instance, there
are strong regulatory requirements to process personal data
[2]. Probabilistic data structures such as sketches [3] or
approximate membership check filters [4] can play a role
in preserving privacy by storing summaries rather than
original data. Indeed, Bloom filters have been proposed
to obfuscate data while enabling approximate checking in
several applications [5],[6],[7],[8],[9].

However, the fact that the original data is not preserved
in the sketches nor filters does not guarantee that pri-
vacy is preserved, as shown in several works [10],[11],[12].
For approximate membership check filters, the privacy of
Bloom filters was studied in [12],[13] showing that when
the universe is small, an attacker that has access to the
filter contents and hash functions can infer the probability
that an element was in the original set of the filter—the set
of original inputs inserted and not later removed. More
recently, the distribution of the positives in the universe has
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also been used to extract information on the original set of
the filter [14]. Similarly, attacks on Bloom filters and possible
countermeasures when used for privacy preserving record
linkage have also been widely studied [15]. Therefore, in
some settings the privacy is not preserved although it is true
that the assumptions made on the attacker and universe are
quite strong.

New filter types and improvements are introduced fre-
quently [4], to satisfy broad interest in their performance
and capabilities. For example, many enhancements to the
original Bloom filter [16] have been proposed over the years
to reduce the false positive probability [17],[18]. Similarly,
alternative filters like the cuckoo [19], quotient [20],[21] and
xor [22] filters have been introduced. Recently, adaptivity
has also been proposed to eliminate false positives once
they occur so that new queries for the same element would
not produce further false positives [23]. Where there is an
interest in new filters, an interest in their privacy follows.

Security analysis must consider ways attackers might
gain an advantage not predicted in existing models, and
build new models to understand them. For filters, previous
studies only considered that the attacker has access to a
single instance of the filter. However in many applications,
the filter changes over time as elements are inserted or
removed, and it might be possible to learn more about the
original set from multiple versions of a filter. For example,
let us consider a filter that stores a list of malicious URLs.
It is likely that the list is updated periodically to add new
URLs and thus so would be the filter. Let us consider daily
updates and an attacker that has access to say the filters that
correspond to the last 15 days. Can a persistent attacker get
any additional information about the presence of a given
element in the filters? To the best of our knowledge, this
attack model relevant to some real applications has not been
studied.

In this paper, we explore the privacy of the elements
stored in various approximate membership check filters
when the attacker has access to several instances of the filter
that store a similar set of elements with some additions and
removals. Like a typical client, the attacker has only black-
box access to the filters to perform queries. In this scenario,
the attacker chooses an arbitrary element, and we want to
determine what the attacker can infer about the element
being in the original set inserted into the filters. The main
contributions of the paper are:

1) To propose a model for attacking and analyzing the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3298967

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



privacy of multi-versioned approximate membership
check filters.

2) To analyze the privacy of several filters under that
model: Bloom, quotient, cuckoo and xor filters.

3) To show that under some typical assumptions, Bloom,
quotient and cuckoo filters do not have any significant
privacy loss under multi-versioned attack compared to
a single instance attacker.

4) To show that xor probing filters are much more vulner-
able to multi-versioned attack.

5) To propose techniques to make xor filters more robust
against persistent attackers.

A naive view of randomized algorithms suggests that
more randomness is better. Like many other papers
[24],[25],[26],[27], we show how careful use of less random-
ness, less independent hash information, can give a better
overall solution for a set of applications. Here, using and
exposing more hash information than necessary is bad for
privacy.

The rest of the paper is organized as follows: section 2
briefly describes the approximate membership check filters
of interest: Bloom, cuckoo, quotient and xor filters. In section
3 we present the persistent attacker model and analyze the
privacy of various filters under this model. This section also
discusses some techniques to mitigate the privacy issues.
The attack is evaluated in section 4 by simulation. The
implications of the attack for several cases studies are briefly
analyzed in section 5. The paper ends with the conclusions
as well as some directions for future work, in section 6.

2 PRELIMINARIES

This section briefly describes the filters that will be consid-
ered and introduces the notation that will be used in the rest
of the paper.

2.1 Bloom filters
The Bloom filter is probably the best known approximate
membership check filter [16]. Bloom uses hash functions to
map each element x to k positions in an array of m bits,
initially all zeros. As shown in Figure 1, inserting an element
into the filter sets the bits at those k positions to one. Query-
ing an element checks the k positions and returns positive
if all are set to one. The filter does not suffer false negatives,
but false positives can occur when the k positions have been
set by other elements inserted. The expected false positive
probability depends on the number of elements inserted
in the filter, the size of the bit array (m) and the number
of positions associated with each element (k) [4]. Elements
can be inserted dynamically as needed but not removed
as setting bits back to zero can create false negatives. The
counting Bloom filter is a variant that supports removals
by replacing each bit with a small counter [4],[28]. This is
not a memory-efficient representation, but it can easily be
projected into a standard Bloom filter for broad publication
in a compact form.

2.2 Cuckoo filters
Different from Bloom filters, cuckoo filters store a finger-
print of f bits per element on a table of buckets [19].

Fig. 1. Illustration of a Bloom filter with k = 3 functions. The
lookup for x returns a positive as the three positions it maps
to are set to one.

Fig. 2. Illustration of a cuckoo filter. The lookup for x returns a
positive as the fingerprint stored in the second cell of bucket a2

matches fp(x).

Typically each bucket has four cells or slots that can store
one fingerprint each. A given element is mapped to two
buckets a1, a2 and its fingerprint can be stored in any of the
cells of those two buckets. The values of a1, a2 are computed
using two hash functions h1, h2 and the fingerprint fp as
follows: a1 = h1(x), a2 = h1(x) bitwise-xor h2(fp(x)).
Space efficiency requires hashing independence between h1

and fp, because the fingerprints would not be as effective
at avoiding false positives if they could be predicted by
location in the table.

To insert an element, its fingerprint is stored in any
empty cell among the two assigned buckets. If both buckets
are full, then cuckoo hashing is applied: one of the finger-
prints already stored there is moved to its alternative bucket
to make room for the newly inserted element. This can make
insertions complex as a sequence of such movements may
be required. However queries are much simpler as only
buckets a1, a2 have to be read to check if the fingerprint of
the queried element is stored in any of the allowed cells. On
a match, a positive is returned and a negative is returned
otherwise. An advantage of cuckoo filters is support for
removals (under certain assumptions), simply by locating
the fingerprint and erasing it. An example cuckoo filter is
shown in Figure 2.

2.3 Quotient filters
Quotient filters [20],[21] are formed by an array of cells
composed of a fingerprint and three logical metadata bits
as shown in Figure 3. For each element, a hash function
h(x) is computed and the value is divided in two parts
h(x) = (p(x), fp(x)), the quotient and the reminder. The
quotient, p(x) is used to determine the cell that the el-
ement maps to that is denoted as its canonical cell and
the remainder fp(x) is used as the fingerprint. As there
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Fig. 3. Illustration of a quotient filter. The lookup for y returns a
positive as the fingerprint stored in the third cell matches fp(y).

can be collisions, metadata is added to each position on
the filter to enable locating fp(x) when it is not stored
in its canonical position p(x). The metadata bits are used
to signal (a) whether there are elements that map to this
cell (is occupied), (b) whether the element stored in this
cell is in its canonical position (is shifted) and finally (c)
whether this element has the same canonical cell as the
previous one (is continuation). Optimizations can reduce
actual metadata bits to two per cell [29].

To query for an element x, its canonical cell is accessed
and the metadata bits are used to locate the cells that store
the fingerprints associated with that cell. Then all of those
are compared with fp(x) and if there is a match a positive
is returned, otherwise the result is a negative. Insertion is
done by checking if the canonical cell is empty and if so
placing the fingerprint there updating the metadata bits. If it
is not empty, the element is inserted to the right after the last
element that maps to that canonical cell, this may displace
other elements to the right and the metadata for the relevant
cells is updated. Similarly, removals are supported by just
locating fp(x) and removing it from the filter after possibly
rearranging a few elements to keep the filter in a consistent
state. As we will see in the following, quotient filters have
a similar behaviour to that of cuckoo filters in the scenarios
considered in this paper.

2.4 Xor filters

Another approach to design approximate membership
check filters is to construct a data structure so that an
element’s fingerprint matches the bitwise-xor of several
positions in the table [30],[31],[22],[32]. One example of this
design approach is the xor filter using three tables and
mapping elements to one position in each table using hash
functions h1, h2, h3. Each position on the tables stores an r-
bit value. A query for element x returns a positive when the
bitwise-xor of the contents of h1(x),h2(x),h3(x) matches the
r-bit fingerprint fp(x) of element x, shown in Figure 4.

Xor filters are considered static because they do not
support dynamic insertions nor removals. In more detail,
constructing an xor filter involves two distinct phases that
each iterate over the entire original set S, so constructing
a filter for a modified original set involves re-processing
the entire filter, even if the first phase work is saved and
largely reused. Despite this limitation, xor filters have a
smaller memory footprint in many cases, especially with
compression [22] or advanced techniques [26]. Likewise,

Fig. 4. Illustration of an xor filter. The lookup for x returns a
negative as the xor of the values stored on the positions given
by h1, h2, h3 does not match fp(x).

since a filter is created for a given number of elements, the
table size is chosen to be just large enough to support S.

In order to understand the construction of an xor filter,
the two phases of this process are shown in Figure 5 and
Figure 6 using a single shared table instead of three separate
tables to make the example simpler.

The first part of the process maps one position of the xor
table to each element. Figure 5 shows an example of this
procedure. Three structures are used:

• A table that for each position holds the number of
elements with a hash mapping to that position (and
also a way of identifying the elements). This table is
called Occupancy Table in Figure 5.

• An auxiliary stack that keeps the positions with just
one active element assigned.

• The final map that stores the element-position rela-
tionship.

The algorithm works as follows:

1) In the first pass, all the hashes of all the elements from
S are calculated and the occupancy table is populated
with that information. For instance, the first hash of x
and y (shown on the top of the figure) are mapped to
the first position, so it holds 2 elements. See INITIAL
step from Figure 5.

2) Once this is completed, all the positions with just one
element are pushed into the auxiliary stack in order. In
the figure, position 2 is pushed, then 3 and then 5 as
shown in the bottom part of the INITIAL step.

3) Then, positions start to be popped from the stack and
assigned to elements from the set S. In the example, the
position in the top of the stack is 5. The only element
that maps to this position is x, so the pair is included
in the map. Then, x is no longer an active element of
the algorithm and its positions are removed from the
occupancy table as shown in STEP 1.

4) After removing x, three positions from the table re-
duced their occupancy and some of them may hold just
one element. This is the case of position 1 in STEP 1
of the figure, and positions 4 and 6 in STEP 2. These
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positions are pushed into the stack in the corresponding
step.

5) The process continues until the auxiliary stack is empty.
If all elements were mapped to positions, then the
process completed successfully, otherwise, a different
set of hash functions should be used and the process
has to start from scratch.

At the end of this first part of the construction process,
a map is obtained with a position for each element in S.
This map will be used in the second part, but traversing it
in reverse order (i.e. processing first the last mapping that
was found).

An example of this second part of the process is de-
scribed in Figure 6. The data table corresponds to the
internal content of the xor filter. It could be initialized to
zero or to random values as in the figure. The algorithm
executes the following steps:

1) Take a pair from the map generated in the previous
process. Pairs are taken in reverse order, so position 6
for element z will be used first.

2) Calculate the value to be inserted into that position
as the xor of the fingerprint of the element (f(z) in
this case) and the value of the other positions assigned
by the hash functions for the element. In the example,
data(6) has to be filled to generate a positive for z. The
hash functions map z to positions 2, 4 and 6. Thus, the
content of data(6) will be the xor function of the values
of data(2), data(4) and f(z).

3) Repeat the process until the map is empty.
At the end of this execution, the xor filter content is

filled with the appropriate information and the construction
process ends.

Notice that adding an element, even if the size of the
table is not increased, can completely change the content of
the filter as it may modify the mapping from the first part
of the process. This would change the occupancy table thus
generating different values in the second part.

2.5 Notation

Before proceeding to describe the attacks in the next section,
the main notations used in the rest of the paper are summa-
rized in Table 1.

3 MULTI-VERSIONED FILTER PRIVACY

In this section we consider an attacker trying to determine
whether an arbitrary element x is in any of the original
sets for a series of related filters, F1 . . . Ft, or informally,
multiple versions of the same filter. The first thing that
the attacker can do is to query for x in each of the filters.
On a negative, x cannot be in the original set for that
filter. Because of false positives, however, a positive query
is typically little evidence that x is in the original set for
that filter 1. Therefore, before understanding the relationship
between filters, the attacker does not have strong evidence
for x in any original set from these individual filter queries.

1. A sufficiently small universe or cryptographically strong hash
function and false positive rate could make a false positive unlikely
or infeasible.

Fig. 5. Process of mapping elements to positions when building
an xor filter.

We are most interested in the case in which the original
sets of the Fi filters change very little from filter to filter, as
this gives the attacker the best chance to draw inferences,
and has applications in accept/deny lists [33],[34], packet
processing [35], and databases [32]. In particular, elements
shared by the original sets of all the Fi filters, call it set Ŝ
of size ŝ ̸= 0, have the best chance of being inferred by the
attacker.

The attacker might be able to learn more by looking at
filter contents rather than just the result of queries. This
has been analyzed for Bloom filters [12],[13], with successful
inference in some cases like a small universe of elements. To
contain the scope of this paper, we assume the attacker only
has access to the results of queries, not to the underlying
filters (future work). However we do assume the attacker
can infer or guess the kind of filter and some configuration
and implementation details. A real-world example would be
an online service running open source software, where there
are filters on the server side and clients can infer filter query
results based on the server’s responses or other behaviors.

3.1 Bounds and hashing independence
The hash information available to the filter data structures
can put useful bounds on the information leaked to an at-

4

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3298967

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE 1
Summary of main notations

Symbol Meaning
Fi ith instance of the filter
t number of instances of the filter
U universe of elements
u number of elements in the universe
S the original set of a filter (elements inserted)
s size of the original set
δ number of elements added/removed from one filter instance to the next
o number of elements with reserved space for future insertions
b number of bits of hash information used by each filter insertion
k number of hash functions in a Bloom filter
r fingerprint bit length

Fig. 6. Process of assigning values to positions when building a
xor filter.

tacker. Let b be the number of bits of hash information used
by each filter insertion in our Fi filters. If each filter uses
hash functions that are independent of the other filters, then
there is the potential to leak tb bits of data about an element
that is in the original sets of all the filters. Specifically, for
the null hypothesis that x is in none of the original sets of
the filters, the probability of randomly seeing all positive
queries for x /∈ Ŝ could be as low as 2−tb, depending
on the filter implementation. Because of the compounding

exponential, this will typically be overwhelming evidence
for the attacker to conclude that x is in some original
sets (reject the null hypothesis). In summary, independent
hashing between filters is notable for leaking information
about the original set, but is not the most interesting case
for further consideration.

More typically, different versions of a filter will use the
same base hash function(s) and seed(s), such as for simple
dynamic updates to a filter. In this case, the probability of
randomly seeing all positive queries for x /∈ Ŝ cannot be
lower than 2−b, which may or may not be enough evidence
for the attacker to conclude that x is in the original set. This
suggests that filters using more hash information are more
susceptible to leaking information to attackers, and that will
play a role in analyzing various kinds of filters and their
variants.

The above bounds are based on the worst case of filters
containing just one element in their original set, and these
bounds can be improved. (The empty filter case is excluded
because there’s no element to leak information about.) We
are really looking for a minimum or best case false positive
rate for a filter using b bits of hash information to insert
each element, because without access to the filter repre-
sentation, the false positive probabilities are the only tool
for our attacker to make inferences from query results. The
probability that the hash information for x /∈ Ŝ collides with
one of the s elements in the original set is well known:

1− (1− 2−b)s ≈ 1− e−s/2b ≈ s/2b (1)

(The joint probably for t filters with independent hashing is
the same raised to the t power.) Intuitively, it might seem
that s would not matter for privacy in a filter that preserves
all b hash bits about each element, but that intuition comes
from exact representations of elements. Probabilistic infor-
mation is diluted as more entries are accumulated. In the
extreme, a completely full filter with 100% false positive
rate has no usable information to distinguish elements in the
original set from other random elements. Conversely, this
observation is a warning against sharing or exposing under-
populated filters, as they could reveal much more about the
small number of elements in the original set than the same
filter configuration would with a much larger original set.

3.2 Filter sizing and hashing
A common pattern for building hashed data structures
gives us a different bound between completely independent
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hashing and completely the same hashing. For efficient
memory utilization, it is common to use non-power-of-two
sizes for filter data structures, which means reducing a
word-sized hash value, say w bits, down to some smaller
range, say [0,m). For a relatively uniform mapping, typ-
ically w ≥ 5 + logm. The traditional approach uses the
modulo (remainder) operator, but an approach based on
wide multiplication is much faster and equally effective
under standard assumptions [36]. The problem with both
of these approaches is that a small change to the size of
the data structure has widespread impact on which values
collide with each other in that reduced range. An example
with xor filters is shown in Figure 7. Because hash collisions
play a major role in filter false positives, filters with the same
base hash function(s) and seed(s) but different mapped sizes
are somewhat independent within the bound of the pre-
reduced hash size. The probability of randomly seeing all
positive queries for x in t filters of different sizes, all roughly
m, but all using the same w-bit hash function and seed,
cannot be lower than (1− (1− 1/m)s)t from the somewhat
independent filters, nor lower than 1− (1− 2−w)s from the
pre-reduced hash. (Except where noted, we assume the Fi

filters are the same size, and for generality allow b to be a
non-integer, as in b = logm.)

3.3 Equivalence class-based filters

Many kinds of filters including cuckoo, quotient, and k = 1
Bloom are essentially different ways of encoding the same
kind of filtering information. Hash function(s) divide the
universe of elements into equivalence classes, and the filter
exactly represents the minimum set of equivalence classes
that covers the original set. Equivalence classes correspond
to hash values, often a composite of the hash for table
location and the fingerprint hash, but could be just one of
the two in some filter designs.

While quotient filters derive from an exact representation
for sets [37], it is not as obvious that cuckoo filters are strictly
based on equivalence classes. In the standard cuckoo filter
design, there are two composite hash values for each equiv-
alence class; each gives the same set of two buckets and
same fingerprint, but returns the buckets in alternate orders.
The order does not matter for false positives (scope of this
paper) but is typically used for preferred insertion location,
so could be partially exposed in the filter representation
(future work).

In these kinds of filters, a queried element x is a false
positive if it has the same equivalence class as some element
in the original set. This is ideal from a privacy perspective
because all of the hash information used by the filter goes
to minimizing the false positive rate. Conversely, a chosen
false positive rate minimizes the hash information used
by the filter and, thus, opportunities for further leakage.
Specifically, our prior bound for the best case false positive
rate, 1− (1− 2−b)s, is the expected false positive rate of an
equivalence class-based filter.

These filters are also optimal for the multi-versioned
filter case, in terms of minimizing information leakage
through changes in the false positive set. For what is
optimal, consider two filters with identical configuration,
including a very low false positive rate, less than 1/s, but

with disjoint original sets. A false positive in one of the sets
would be expected not to be a false positive in the other:
otherwise would imply false positives are not uniformly
randomized. Consequently, if we remove or replace δ/s
elements from one filter to the next, the best we can hope
for (in the very low false positive rate regime, generalization
omitted) is for δ/s portion of false positives in the first filter
to no longer be false positives in the second, and this is
what we see with equivalence class-based filters. Although
a strategy of not removing elements at all could work
around this limitation, it would likely be unsustainable for
maintaining a target false positive rate.

3.4 Bloom filters
False positives in Bloom filters with k > 1 are not based
on equivalence classes, so are more complex. Also, standard
Bloom filters are known to use more hash information than
is strictly required for their false positive rate [24], which
suggests hypotheses that (a) they are more susceptible to in-
formation leakage than filters based on equivalence classes,
and (b) techniques to improve Bloom hashing efficiency
could also improve privacy.

Note that the attacker should generally assume that
removals from a Bloom filter are possible, either because
the filter is a counting filter or comes from one, or simply
because the writer of the filter can rebuild from a modified
original set.

We can understand the somewhat degraded privacy of
Bloom filters (vs. equivalence class-based) by their steep
false positive rate curve vs. s, especially for larger k. This
is illustrated in Figure 8. The first consequence of this
is that under-populated Bloom filters have extremely low
false positive rates. As seen in the figure, Bloom filters
with k independent hash functions compound the under-
population problem warned against earlier, simply by their
extremely low false positive rates.

The second consequence of the steep false positive rate
curve applies to multi-versioned filters. The steep curve
implies bigger changes to the false positive set by adding
or removing a small number of elements in the original set.
It is well known that in a Bloom filter tuned to optimize false
positive rate and memory efficiency, approximately half the
bits are set to one. In this case, when we remove an element
from the original set, we expect k/2 bits to revert back to
zero, out of sk/(2 ln 2) ≈ 0.72sk bits set to one. With that,
the probability that a bit previously set to one reverts back
to zero is (ln 2)/s, so the probability of a false positive being
removed is approximately (k ln 2)/s ≈ 0.69k/s. Compare
this to typical 1/s for equivalence class-based filters. For
larger k, this is a notable increase in information leakage
associated with multi-versioned filters, but within constant
factors.

3.5 Xor filters
The case of xor filters is different from cuckoo, quotient
and Bloom filters as xor filters have to be reconstructed
even when a single element is added or removed. The first
consequence of this is that without specific consideration,
implementations are more likely to hit the leakage issues
associated with independent hashing and different table
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Fig. 7. Two xor filters of different sizes showing the mapping of a queried element x and two stored elements y, z. The positions are
computed by taking the modulo of the hash values over the number of buckets.
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Fig. 8. Predicted false positive rates for 1KB filters of various
designs and configurations, versus number of elements in the
original set. Some structures fill up so are not usable beyond
some s. The lower graph is mostly the same data using log
scale. “quo/cu, n bit” refers to optimized quotient and cuckoo
filters that lose two of those n bits per cell to either explicit or
implicit metadata.

sizes, as in Figure 7. A minor contributor to this issue is
that xor filter construction can fail with some probability,
and that is resolved by modifying the hashing.

A related interesting aspect of xor filters is a false posi-
tive rate that is independent from the number of elements
inserted (s). Although we can generally choose a false
positive rate for filters, for most kinds of filters the resulting
configuration only has that false positive rate when you add
the intended number of elements. Thus for most kinds of
filter, the false positive rate is a curve or sloped line vs. s,
as in Figure 8. In a standard xor filter, the false positive
rate is fixed by the configuration regardless of the number
of elements inserted. A good effect is that this prevents the
problem of a much lower-than-intended false positive rate
associated with under-populated filters. This is almost like
a cuckoo filter whose unused cells are filled with random
“junk” entries, and only someone with access to the original
set knows which entries are junk and which are real.

Our most interesting privacy question about xor filters
is how vulnerable they are to leaks with multi-versioning
when keeping hashing and table sizes constant. At first
glance, xor filters use three independent hash values with
Θ(s) range each, or using 3 log(s) + r + ±O(1) bits of
hash data, asymptotically the same as a k = 3 Bloom filter.
Compared to log(s)+r+±O(1) for equivalence-class based
filters, this indicates the potential for substantial information
leakage from multi-versioned xor filters.

On the other hand, an aspect of standard xor filters puts
a useful bound on the information leakage, at least under
the working assumptions. Let a residual false positive refer
to an element that maps to three positions unused by any
elements in the original set (typical probability of (e−3/1.23)3

or 2/3000) and expects the xor to match all zero bits (prob-
ability of 2−r), so overall typical probability of 21−r/3000.
Such false positives can be predicted without considering
the element inter-dependencies in generating a full xor filter,
so importantly, these false positives are much more stable
under small changes to the original set, comparable to a
k = 3 Bloom filter. Experimental validation is in Section 4.
However, it is unusual for a true positive query to map to
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three positions of all zero bits, even assuming the xor is
all zero bits, so when the attacker has access to the filter
representation, residual false positives likely do not provide
the same privacy backstop for multi-versioned filters.

3.6 Privacy Protection Schemes

In this section we propose some techniques that could make
it harder for an attacker to infer whether an element is in
the original sets of related filters. Future work should con-
sider more protection schemes, especially those that would
address potential leakage through the filter representation.

As discussed above, minimizing the independent hash
information used through a series of filters is crucial
to bounding the information leakage. Many protection
schemes are related to this, and work along with the core
approaches already discussed, including keeping the same
core hash function and seed(s) across filter versions.

3.6.1 Filter variants using less hash information

Some variants of filters not based on equivalence classes
use less hash information than their standard designs. For
example, Bloom filters based on double hashing [24], [38]
use roughly 2 log(sk) bits of hash information instead of
k log(sk)±O(1).

A promising variant of xor filter uses a technique called
spatial coupling to improve table utilization (memory ef-
ficiency) and access locality [26]. Interestingly, this is ac-
complished using less hash information than a standard xor
filter, roughly 7

3 log(s)+ r bits instead of 3 log(s)+ r±O(1)
bits, because in a typical coupling design, all but the first
probing location can only be offset by Θ(s2/3) from the
previous.

3.6.2 Sharding

Sharding a filter means building it from sub-filters, where a
hash function and/or some metadata determine which sub-
filter is used for each element of the universe. Sharding is
a top-down approximation or hybridization of equivalence
class-based filtering, with some of the same privacy benefits.
In the extreme, a sub-filter could be a single bit indicating
whether anything was added or not, and a k = 1 Bloom
filter is simply a sharding of these simplest sub-filters (recall
that k = 1 Bloom filters are based on equivalence classes).

For a more interesting example, a cache-local Bloom
filter [39] is a sharded structure using a constant c bits of
memory per shard, typically c = 512. The hash information
used is k log(c) + log(sk/c)± O(1) which for large s scales
more like an equivalence class-based filter (log(s)+r±O(1))
than a standard Bloom filter (k log(sk)±O(1)).

Sharding can also be used with xor filters, and with
another likely benefit to privacy. In addition to reduced
hash information use, sharding contains the scope of small
changes to filters, which could be useful for containing the
potential cascading effects of small changes to the original
set of an xor filter. For example, adding or removing δ
elements from the original set of a filter with n independent
shards can modify at most (in expectation) δ/n portion of
the false positives.

3.6.3 Oversizing
As discussed before, a potential protection scheme would
be to oversize the filter to reduce the chances or frequency
of needing to change the filter size, which exposes more
base hash information through a different reduced range.
There is an obvious trade-off with memory and/or I/O
efficiency when using over-sizing to protect privacy, though
this might be mitigated with compressed Bloom filters [40]
or compressed xor filters [22].

A potential major issue with oversizing is the under-
population false positive rate problem from above, which
can affect most filters except xor. In other words, either over-
sizing or undersizing (leading to resizing) could compro-
mise filter privacy, which complicates representing original
sets that vary in size. To limit the scope of this paper, we
focus on cases in which the filter versions have original sets
of roughly the same size.

4 EVALUATION

The first step in the evaluation was to review the original
xor filter Java code [22] for hash function usage and inde-
pendence. Indeed, a random value is used to seed the hash
functions, making them different each time a filter of the
same size with exactly the same elements is constructed.
As described before, this is an ideal setup for an attacker be-
cause full hash independence maximizes information leaked
through queries (for chosen false positive rates). This was
tested by 1) checking that the filter contents are completely
different for different runs when inserting exactly the same
set of elements and 2) checking that independence holds by
simulation 2.

Now, for filters that use the same hash function in
their construction, to evaluate the proposed scheme, first
s elements are selected randomly and an xor filter is created
with them. In the second step, another set of n elements
that are not in the filter are selected randomly. Then, the
n elements are queried on the filter and only the false
positives are kept. Let us denote as n1 the number of those
false positives. Then, the process starts again but with an
additional δ random elements in the original set, and only
querying the n1 prior false positives to determine n2. This
sequence is repeated t times so that at the end we have
nt elements that are false positives on all the filters. Then
the ratio nt

n is compared with 1
2r·t to make sure that the

two values are similar. If that is the case it validates the
conjecture and thus the ability of an attacker to eliminate
false positives up to the desired probability.

In this first experiment, we fix s = 64K 3, n = 128M ,
r = 6, δ = 1, 2, 3 and t = 5 and elements are taken from
the universe of 64 bit elements. The average false positive
probability after each iteration for 1000 runs is shown in
Figure 9, and compared to the theoretical estimate given by
1

2r·t . Observe that when δ = 1 or 2, the number of false
positives is reduced with each iteration, but it is still above
the theoretical estimate for independent filters. Because the
implementation uses three equal-size tables per xor filter,

2. The code used in our experiments is available at
https://github.com/amacian/PrivacyXOR

3. In this section, K refers to 210 and M to 220.
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targeting 1.23 total slots per element, the table size may
not increase when the increment is below three. Indeed, the
number of false positives in common is smaller for δ = 2
than for δ = 1 as the change in size is more likely to occur.
Finally, for δ = 3, it can be observed that the simulated
results match the theoretical estimates based on the con-
jecture of the filters being independent. This shows that a
typical xor filter implementation is susceptible to substantial
information leakage by adding just a few elements to the
original set.

The same experiment was done for s = 1M to see if the
filter size has any impact. The results are shown in Figure
10. It can be seen that when δ = 1, 2 the results are slightly
different due to the different rounding values for the table
size, however for δ = 3 they are similar and again confirm
the independence of the filter instances.

Fig. 9. False positive probability after each iteration for an xor
filter with s = 64K,n = 128M, r = 6, t = 5 over 1000 runs when
δ = 1, 2, 3.

Fig. 10. False positive probability after each iteration for an xor
filter with s = 1M,n = 128M, r = 6, t = 5 over 1000 runs when
δ = 1, 2, 3.

The second experiment uses different larger values for δ

to see if they have any effect on the results. In more detail,
the values for δ are selected randomly in the range of 4
to 512 for each run and the values of n3 are logged. The
values obtained are shown in Figure 11. It can be observed
that the value of δ does not influence the results. Therefore,
the independence conjecture seems to be valid regardless of
the value of δ as long at it is three or larger. As in the first
experiment, the simulations were repeated with s = 1M
and the results are shown in Figure 12. It can be seen that
they are similar and confirm that the filter size has no effect
on the filter instance independence.

Fig. 11. Number of false positives n3 after the third iteration for
an xor filter with s = 64K,n = 128M, r = 6 and random values
of δ elements added.

Fig. 12. Number of false positives n3 after the third iteration for
an xor filter with s = 1M,n = 128M, r = 6 and random values
of δ elements added.

As changing the filter size can compromise the privacy
of the elements stored in the filter, one of the potential
solutions could be to use initially a larger filter so that
additional insertions can be supported without changing the
filter size. For example, the size can be dimension for s + δ
elements so that after the insertion of the initial s elements
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another δ elements can be inserted without modifying the
filter size. Therefore, we finally consider the case where the
filter size remains the same and a fraction of the elements
are randomly selected among those stored in the filter and
replaced by new elements also randomly chosen. As in pre-
vious experiments we set s = 64K , n = 128M , r = 6, t = 5
and the fraction of replaced elements to be approximately
0.01%, 0.1%, 1% and 10%. The results are summarized in
Figure 13 showing the false positive probability over 1000
runs. The theoretical estimates for independent filters ( 1

2r·t )
and for residual false positives (21−r/3000) are also shown
in Figure 13. Observe that querying multiple instances does
reduce false positives but the reduction deviates from that of
independent filters and saturates around the residual false
positives as expected. After reaching that value, querying
additional instances has limited benefit as false positives are
reduced only when one of the δ newly-inserted elements
maps to one of the remaining false positives. Therefore, the
reduction is larger for larger values of δ as can be seen in
Figure 13. This means that in this case, the effectiveness
of the attack is reduced but still many false positives can
be excluded by querying several filter instances. The same
experiment was repeated with s = 1M and the results are
shown in Figure 14. It can be observed that again the results
are similar to those of the initial simulations with s = 64K .

Going back to compare Figure 13 with Figure 9, it is clear
that changing the underlying filter size and thus range of the
reduced hash does not have the backstop of residual false
positives, as these also change when the size changes.

Fig. 13. False positive probability after each iteration for an xor
filter with s = 64K,n = 128M, r = 6, t = 5 over 1000 runs when
replacing a percentage of the element stored in the filter.

5 CASE STUDIES

The ability of a persistent attacker to infer if an arbitrary
element has been inserted in an xor filter depends on
several factors: the false positive probability of the xor filter
(which depends on the number of fingerprint bits r), the
number of instances that the attacker can access (t), the total
independent hash bits used from the hash functions (b) and
whether the xor filter uses oversizing to protect against the

Fig. 14. False positive probability after each iteration for an xor
filter with s = 1M,n = 128M, r = 6, t = 5 over 1000 runs when
replacing a percentage of the element stored in the filter.

attack. In more detail, the false positive probability that an
attacker can get when querying t filter instances is approxi-
mately 1

2r·t when no oversizing is used and 21−r/3000 when
sufficient oversizing is used so that dynamic insertions and
removals can be supported with the same filter size.

Considering a universe U that has u elements and an
attacker that wants to infer whether each element in the
universe has been inserted in the filter, the expected number
of false positives would be approximately:

FPsnovs =
u

2r·t
+

u

2b
(2)

without oversizing. The right term comes from our hash-
ing bound.

For oversizing the number would be limited by the
residual false positives:

FPsovs =
u

2r−1 · 3000
(3)

In the first case, t can be adjusted to achieve a value that
is almost negligible, within the hashing limits. Instead in the
second, once the limit is quickly reached, increasing t has
little effect. In comparison, a space-optimized cuckoo filter
of consistent size will have false positives roughly u/2r−2

regardless of t.
To better understand the number of false positives in

practical settings, we can consider a few case studies:

• Filtering of IPv4 addresses: the universe is formed by
the 232 ≈ 4.3 · 109 possible IPv4 addresses.

• Filtering of Ethernet MAC addresses: the universe
is formed by the 248 ≈ 2.8 · 1014 possible MAC
addresses.

• Filtering of compromised passwords: we assume that
the passwords are represented by 160 bit SHA-1
hashes4 (≈ 1.5 · 1048).

• Filtering of names: the names are encoded in text
and possibly, the number of names is very large.

4. A list containing the SHA-1 of millions of passwords is available
at https://haveibeenpwned.com/Passwords
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However, the number of names that correspond to a
person can be bounded to be the number of persons.
Considering as an example the names of Spanish citi-
zens, the universe of names would be approximately
50 million.

The expected number of false positives for each case
study when r = 8 and for different values of t are sum-
marized in Table 2. It can be observed that when oversizing
is used, there will be false positives in all four case studies
and thus the presence of a given element x in the filter
cannot be fully asserted. Instead, when no oversizing is
used, by selecting the right value for t, the number of false
positives can be made practically zero5 so that the presence
of an element can be asserted with almost certainty. This
occurs for all the case studies except the passwords when
t = 8, so after checking eight instances. Instead for the
passwords, t = 24 instances are needed. However, even this
number is low and could be easily obtained by an attacker
over time. Note that when the universe has a manageable
size so that the attack can be done for all elements in the
universe, the attacker can actually infer all the elements
stored in the filter. Therefore, to protect privacy, xor filter
implementations should use some oversizing to ensure that
an attacker does not have access to filter instances that are
fully independent.

Let us now assume that the filter is using oversizing.
Table 3 shows the predicted number of false positives when
using fingerprints of different sizes. It can be seen that for
the Names case study, values below one are obtained in
some cases. Therefore, even when oversizing is used, an
attacker may be able to infer with some confidence the exact
stable original set of the filter if r is large and the universe
has a moderate size. As shown in the table, the privacy
improves with an equivalence class-based filter such as a
cuckoo filter.

As for the cost of oversizing, it would largely depend
on the variability of the size of the stored set. For example,
in a accept or deny list of IPv4 addresses we would expect
a small variability from one day to the next so probably
allocating a 10% oversize would ensure that most instances
have the same size. The same reasoning applies to accept
or deny lists of person names or list of compromised pass-
words. Therefore, in many applications oversizing would
reduce the attacker‘s ability to infer whether an element
is stored in the filter while incurring in a small memory
overhead.

Finally, it should also be noted that in some applications
the number of elements stored in the filter may grow
considerably over time and thus periodic reconstructions
would be needed for all filter types. Although this may
help in reducing Denial of Service attacks produced by
an adversary taking advantage of false positives [41] (as
these change after reconstruction), it also creates a potential
vulnerability as it would mean that several independent
instances of the filter will be used. Therefore, alternative
techniques to protect privacy will be needed.

5. Although the standard implementation uses b = 64 with some
hash reuse tricks, this argument assumes a sufficient number of inde-
pendent hash bits is used, also shown in Table 2.

6 CONCLUSION AND FUTURE WORK

This paper has examined the privacy of approximate mem-
bership check filters with a focus on xor filters and multi-
versioned attacks, unlike previous works. A series of related
filters is common in many applications in which the set
of elements for filtering changes slowly over time. Our
analysis shows that cuckoo and quotient filters have some
ideal properties for minimizing information leakage across
versions of a filter, and Bloom filters are close to that ideal.
For xor filters, however, access to several instances can often
reduce the probability of false positives dramatically to a
point where an attacker can infer the presence of an element
with almost no error. This analysis has been validated by
simulation under different configurations. Therefore, xor
filters should be used with caution in applications for which
privacy is an issue.

To mitigate some xor privacy issues, we demonstrate
using oversizing in the filter construction so that additional
elements can be accommodated without changing the filter
size. This reduces change in the false positive set from filter
to filter and, thus, also reduces the advantage of an attacker
seeing many related filters. Despite the improvements, how-
ever, xor filters are substantially worse for privacy across
many related filters than more traditional alternatives.

The only known natural privacy advantage of an xor
filter is a consistent false positive rate even when the filter is
under-populated. Especially in Bloom filters but also cuckoo
and quotient, an attacker with access to a sparsely populated
filter can have extra confidence in the identity of the small
number of elements used to populate the filter. At least
without access to the underlying filter (only query results),
the xor filter is not vulnerable in the same way.

Future work is possible in several areas. New attack
scenarios could include filters growing or shrinking in size
more substantially, or access to the filter contents. Best
practices and more protection schemes should be explored
for the various scenarios and kinds of filters. More filter
designs such as ribbon filters [32] should also be studied.
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