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Abstract—The fifth generation (5G) of mobile telecommunica-
tions is characterized by massive growth in the number of stake-
holders, interconnected devices, and available services distributed
under different administrative domains. Distributed marketplaces
aim at facilitating stakeholders in the quest and hiring of third
party resources and services. Establishing trustworthiness in such
an open ecosystem is a cornerstone for the final deployment of
these marketplaces in 5G networks and beyond. Hence, building
trust management systems that ensure the selection of reliable
parties or assets in 5G distributed marketplaces is essential. Thus,
a reputation-based trust management framework is proposed to
analyze stakeholder behavior patterns and predict trust scores to
establish trustworthy relationships across domains. Furthermore,
an Service Level Agreement (SLA)-driven reward and punishment
mechanism is designed and developed on top of the reputation-
based trust framework. Such a mechanism enables continuously
adapting trust scores by gathering breach predictions, breach
detections, and SLA violations in real time. Furthermore, an edge-
based use case is presented to contextualize our reputation-based
framework in a tangible enforcement scenario. In conclusion, three
experiments were conducted on real-life testbeds demonstrating
that our framework fairly distinguishes bad-mouthing attacks
with 67% accuracy, when 50% recommenders are corrupted, and
is resilient to continuous misbehavior bursts.

Index Terms—Trust framework, reputation, SLA-driven, 5G,
distributed marketplace.

I. INTRODUCTION

5G and beyond networks envision enforcement scenarios
where stakeholders intend to maximize their business profits
while ensuring a high level of Quality of Service (QoS) and
Quality of Experience (QoE) to consumers and end users.
Yet, stakeholders are sometimes not capable of meeting the
stated requirements themselves, and therefore, third parties are
necessary to guarantee the signed QoS [1]. By means of such
third parties, stakeholders can cover certain peak workloads by
hiring or purchasing on-demand services and resources, e.g.,
computing or network resources. Thereby, billions of business
relations across operators belonging to different domains are
conceived in the foreseeable future, in which the selection of
trustworthy third parties is a capital decision [2].

To deal with on-demand service, resource, and infrastructure
provisioning, distributed marketplaces present a fruitful solution
since they enable to assemble, through a cross-domain platform,
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both providers who desire to offer their capabilities and
consumers who look for purchasing or hiring available services
or resources to satisfy a contract [3]. Thence, distributed
marketplaces aim to enable the secure and trustworthy trading
of heterogeneous resources in dynamic 5G ecosystems and
facilitate cross-domain and multi-party collaborations. Con-
ventionally, marketplaces permitted users to apply several
filters in order to encounter a subset of stakeholders who
comply with imperative constraints and considerations such
as category, geographic location, price, and hardware or
software requirements, among others. Nevertheless, trust has
not normally been considered as a dimension to filter or rank
potential candidates in distributed marketplaces. Because trust
is one of the fundamental pillars for building 5G networks [4],
a dominant challenge is to determine which stakeholders are
trustworthy and reliable from an initial set of candidates who
previously met the basic constraints to provision 5G services
and resources between different domains [5].

Trust models are one of the utmost important approaches
considered in the literature to cope with a trustworthy third party
selection because they can profile stakeholders to determine
a trust level. Nowadays, other approaches such as Distributed
Ledger Technologies (DLTs) [6] and Trusted Execution En-
vironments (TEEs) [7] are also being contemplated as a root
of trust for 5G scenarios. Nonetheless, they do not generally
analyze real-time stakeholders’ behavior to enable or disable
given actions based on their trust levels, as some trust models
normally do. On the contrary, trust approaches based on DLT
and TEE solutions tend to guarantee characteristics such as non-
repudiation, runtime isolation, tamper-resistant, etc., which are
mostly linked to the intrinsic characteristics of the hardware or
software of such technologies and not on stakeholders’ behavior.
In this way, reputation-based trust models accomplish the above
statements as they allow estimating future stakeholder behaviors
from historical data and reliable recommendations from third
parties [8].

Because trust is a long-term concept, reputation-based trust
models should enable not only evaluating a set of candidates
before starting a business relationship but also adapting trust
levels once relationships are in progress. In this vein, trust
models usually consider a continuous update module that is
in charge of identifying events in real time and triggering the
proper decisions to adapt current trust scores. Thus, the update
module is totally aligned with the dynamism idea of many 5G
ecosystems as distributed marketplaces also follow [9]. In cross-
domain and multi-stakeholder scenarios, as the representative
one under 5G marketplaces, Service Level Agreements (SLAs)
need to be signed in order to legalize settlements among
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stakeholders. As a result of such agreements, multiple tasks
are initialized across domains to monitor the Service Level
Indicators (SLIs), forecast possible breach predictions, and
identify SLA violations [10], to name but a few. In this sense,
events generated during the whole SLA life-cycle management,
for instance, breach predictions, breach detections, and SLA
violations, are really meaningful for updating a previously
computed trust score. The principal reasons are: (i) they are
produced after starting a business relationship; (ii) they are
generated in real time since other components are continuously
monitoring them; and (iii) they are linked to the current
stakeholder’s behaviors so these may be used to characterize
them.

Few trust management models considered performance
measurements, related to SLA settlements, as the principal
dimension in recent years to determine a starting trust score
on a target stakeholder [11], [12]. Yet, there is an absence
of reputation-based trust frameworks supporting multi-party
collaborations for distributed marketplaces where real-time
breach predictions and breach detections are contemplated
as dimensions to readjust ongoing trust relationships (as
the next section underlines). Therefore, this article at hand
proposes a trust and reputation management framework for
5G distributed marketplaces which additionally describes in
detail a statistics mechanism to adapt trust scores considering
historical stakeholders’ behaviors as well as the current breach
prediction and detection events.

In order to enhance the development of trustworthy com-
munications in 5G networks and to cover the gaps mentioned
above, the principal contributions of this article are:

• A reputation-based trust management framework to ensure
a reliable ecosystem for distributed marketplaces in which
stakeholders look for trustworthy resource and service
providers. The framework analyzes not only service
providers but also their services and resources offered,
which bring us to detect whether a service or resource
started to act strangely. Besides, the reputation-based trust
management framework fulfills the zero trust principle
[13] since trust should not be taken for granted regardless
of whether a business relationship is established with
a stakeholder who belongs to our same domain (intra-
domain) or an external one (inter-domain). Note that
the zero trust principle also entails avoiding the fact of
assigning an outdated trust value to the same stakeholder
if the previous relationship ended and we are going to
start a new one.

• An SLA-driven reward and punishment mechanism has
been designed and developed as part of the continuous up-
date module. Such a fully automatic mechanism leverages
breach predictions and breach detections, appearing in
real time, together with SLA violations and the impact of
trust as main features to adapt trust scores in an ongoing
relationship. By means of such an SLA-driven mechanism,
we intend to enhance their trust model, which is based on
historical interactions and recommendations, via objective
features as well as take advantage of a gap in the literature
not explored in depth.

• A real use case (UC) covered by the 5GZORRO H2020

European project [14] has been presented. The UC show-
cases through an architecture design how the reputation-
based trust framework can be smoothly integrated. Such
a framework is contextualized in an edge scenario, in
particular, the 5GZORRO distributed marketplace. In
addition to that, multiple experiments have been performed
to investigate accuracy, performance, and resilience in real
infrastructures such as 5GBarcelona and 5TONIC.

The remainder of this article can be outlined as follows.
Section II reviews the current SLA-based trust models in the
literature as well as solutions employing SLA events for creat-
ing reward and punishment mechanisms. Section III describes
the four modules of our reputation-based trust management
framework spotlighting how the framework introduces a novel
SLA-driven mechanism to update ongoing trust relationships.
Section IV presents the integration and experiments of our
framework in the 5GZORRO distributed marketplace. Finally,
Section V recaps the main conclusions of the present work
and future research lines.

II. RELATED WORK

This section analyzes the literature dealing with SLA-
based trust management models as solutions to guarantee a
trustworthy ecosystem for large 5G provisioning scenarios.
Furthermore, it also reviews trust models which considered SLA
events (i.e., SLA violations, breach predictions or detections,
etc.) for elaborating reward and punishment mechanisms to
continuously update trust scores.

Regarding SLA-based trust models, Li et al. [15] leveraged
trust credit as a mechanism to rank service providers (SPs)
before negotiating SLAs. The trust credit measured how SPs
behaved (competence) and how they are behaving (integrity).
Regarding competence, Rough Set theory was used to forecast
the negotiation success rate. In addition, predicted QoS values
were used to detect degradation and determine integrity via
Bayesian Networks, once an SLA is terminated. The outputs
enhanced the SLA compliance by about 34.5% compared to
matchmaking-based ranking. Also dealing with checking real
network behavior, Ma et al. [16] proposed a time-dependent
and deep learning-powered trust evaluation method. Thus, the
similarity between predicted and real follow-up behaviors is
considered as a trust value, being measured as the distance
between the central points of two clusters. Such a distance was
also useful for creating a reward and penalty mechanism based
on network behaviors, where a significant deviation between
central points entailed a trust decay based on a hyperbolic
tangent function. On the contrary, nearly identical behaviors
ameliorated devices’ trust. Experiments displayed that the long
short-term memory (LSTM) algorithm achieved a 0.008 mean
squared error (MSE) and 96.4% accuracy as well as provided
stable trust predictions. In [11], Aslam et al. presented a
trustworthiness assessment mechanism to analyze the service
trust of Social Internet of Things (SIoT) instead of provider
trust. Thereby, service trust was an aggregated parameter from
transaction and execution times plus availability. Besides, a
social relationship factor considered the degree of intimacy
between the service requester and provider. Experiments
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TABLE I: Comparison of SLA-driven trust management models.

Solu-
tion Year Environment Metrics

SLA-based
Reward &

Punishment

Cross-
domain

Real-time
Making-decisions

Zero
Trust

Open
Source

[17] 2019 Cloud Reliability, satisfaction, and recommendations ✗ ✓ ✓ ✗ ✗

[11] 2020 SIoT Transaction, availability, execution time, social
relationship factor ✗ ✗ ✗ ✗ ✗

[12] 2020 Cloud Response and execution times, availability, bandwidth ✓ ✗ ✓ ✗ ✗
[18] 2020 Cloud Deviation and nearness degrees, user satisfaction ✓ ✗ ✓ ✗ ✗
[16] 2021 IoT Network behavior similarities ✓ ✗ ✓ ✗ ✗
[15] 2022 IoT Competence, integrity ✗ ✓ ✓ ✗ ✗

[19] 2022 MEC Processing success, incompliance, and user
termination ratios and throughput ✓ ✗ ✓ ✗ ✗

[20] 2022 Cloud Service availability, response time, bandwidth,
throughput, compliance, etc. ✗ ✓ ✓ ✗ ✗

[21] 2023 Cloud Reliability, transitivity, dynamics, service quality, cost,
flexibility, accuracy ✓ ✓ ✓ ✗ ✗

Our 2023 Cloud Breach prediction and SLA violation rates, trust
impact ✓ ✓ ✓ ✓ ✓

showcased that an increase in QoS entailed an increase in
service trust and the relationship followed a partially linear
nature.

From a different domain, Li et al. [17] supported users’
decision-making in a cloud service marketplace via a three-
layered trust model. Such a model established end-to-end trust
relationships as well as asymmetric evaluations between layers.
To measure trust, reliability and satisfaction were inferred
from the direct and indirect trust. Provider and user’s trust
were updated based on performance and feedback, respectively,
during transactions. Regarding accuracy, their solution achieved
a 70% satisfactory transaction rate in cloud marketplace.
Similarly, Muralidharan and Anitha [20] proposed a reputation-
based mechanism to supervise that Cloud Providers (CPs)
meet the QoS levels declared in SLAs. To this end, the authors
defined multiple performance levels, based on technical and
non-technical parameters, using fuzzy sets to weigh them.
Afterward, a broker contrasted consumer rating and its own
rating about the CP to estimate multi-criteria trust on them.
The proposed trust model achieved more accurate reputation
scores, using identical metrics, than the cloud service trust
evaluation model (CSTEM) but no more detailed experiments
were performed. Guo et al. [21] presented a trust model for
cloud environments based on characteristic factors and SLAs.
This model enhances the precision of service cost and quality
assessments, as well as the identification of malicious entities,
through a negotiation and monitoring mechanism. It effectively
combats spoofing, coordination, and defamation attacks, leading
to a high trade success rate. By leveraging self-recommended
trust and SLAs, it fosters trust relationships between entities,
thereby improving the efficiency of selecting the best providers.
Compared to MDTES, TrueTrust, and CSRTM models, as
described in [21], it has proven to be more effective in resisting
attacks from various dishonest entities and in identifying
dishonest providers.

When it comes to SLA violations, they usually entail cost
penalization and business termination, in the worst case. Yet,
Badshah et al. [12] introduced a performance-based SLA frame-
work to maximize provider revenue and customer satisfaction.
Prior to finishing an SLA, the authors proposed an adaptive
penalization approach for proportionally diminishing provider
reputation and helping future customers. Three thresholds were

set up to apply penalties based on the percentage exceeded,
always less than the initially agreed 10%. Similarly, Zhang et al.
[18] designed a trust model to select trustworthy cloud providers
without abnormal behaviors at any specific time. Concretely,
the authors measured user satisfaction through the nearness
degree and the deviation between QoS declared in the SLA
and the current performance. Besides, an adaptive weighting
method was formulated from the fluctuation of QoS metrics
which dwindled the impact of subjective factors on the trust
evaluations. In [19], Monir et al. evaluated the SP compliance
to SLAs in Mobile Edge Computing (MEC). To this end, they
defined four thresholds which assigned a trust status to the SP
via the processing performance during service provisioning.
Furthermore, a punishment mechanism accordingly dwindled
trust status whether SP intended not to send all rated SLAs,
register with a new identity, and exceed the computation time.
The simulations displayed an efficient and low time-consuming
trust evaluation scheme.

TABLE I shows a comparison between the different SLA-
driven trust management models in the literature and our
proposal. From the analysis performed in this section, it is
noticed that there are two principal gaps regarding solutions
focused on an open source approach and the zero trust principle.
The former is a weak point when it comes to reusing models
or checking accuracy results, being one of the downsides found
during our initial research. The latter may be conditioned by the
fact that it is a cutting-edge principle introduced by NIST [13],
and in consequence, it has not been considered and described
by the latest proposals discovered in the literature review. In
our proposal, we tackle both characteristics by publishing
our source code in an open repository [22] and not granting
trust scores to any stakeholder regardless of its origin domain.
Additionally, our proposal also recomputes trust scores in case
two or more stakeholders had a relationship in the past that
finished.

Despite four solutions considered SLA-based trust score
update mechanisms (see SLA-based Reward & Punishment
column in TABLE I), most of the recent solutions contemplated
SLA events as the capital information source to calculate an
initial trust score and not as a mechanism to continuously
update trust scores in ongoing relationships (after computing
the first value). Besides, no solution considered SLA-based
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Fig. 1: Trust and reputation management framework life-cycle

reward and punishment mechanisms which can be applied to
cross-domain scenarios. Similarly, there is still a way to go in
the research of trust models for decentralized markets since
only [17], among the investigations analyzed, tackled the topic.
Therefore, our SLA-driven trust and reputation management
framework intends to cover the aforementioned gaps for 5G
distributed marketplaces.

III. TRUST AND REPUTATION MANAGEMENT FRAMEWORK

This section contextualizes the proposed trust and reputation
management framework (TRMF) by providing a high level
description of its sub-modules: the Information gathering and
sharing, the Trust computation, the Trust storage, and the
Continuous update (see Fig. 1). Yet, we spotlight on the latter
module as it encapsulates the proposed SLA-driven reward and
punishment mechanism. Furthermore, the rest of modules, as
well as their corresponding equations were previously described
in [23].

A. Information gathering and sharing module

The trust and reputation management life-cycle commences
through the Information gathering and sharing module when
the Smart Resource & Service Discovery (SRSD) [24] wishes
to analyze a list of available services and resources offered in
a distributed marketplace (step 1 in Fig. 1) so as to recognize
the most reliable ones (step 8). To this end, this module firstly
retrieves raw data from the Product Offers (POs), published in
the Resource and Service Offer Catalog [5], to analyze them
(step 2). Among raw data, it can be underlined decentralized
identifiers (DIDs) of providers and resources, coordinates,
current life-cycle status, service specifications, etc. Afterward,
it also collects historical information from a dedicated trust
database when consumers and providers have had previous
trust relationships (step 3). Therefore, they leverage prior
interactions as direct trust to predict future behaviors and not
as the current value to be assigned directly to the providers

(zero trust principle). In addition, consumers can also gather
recommendations about specific targets from trustworthy third
parties. Note that this capability is enabled thanks to the Data
Lake platform [24], which acts as a shared repository where
interactions among stakeholders can be openly published and
consulted by others. Thereby, consumers should decide whether
it is worth asking for feedback, depending on the level of
consumers’ belief in recommenders. Yet, consumers might still
receive dishonest recommendations so mechanisms to mitigate
trust attacks should be considered, as described in the following
section.

B. Trust computation module

Once all information has been collected, such data are
directly shared toward the Trust computation module (step
4). The principal goal of this module is to find out a trust
score per each PO to be analyzed as well as ease potential
trust attacks during the computation steps. When it comes to
trust computation, an adapted PeerTrust model is considered
as a statistical algorithm since it is principally centered
on distributed scenarios where peer-to-peer connections are
considered [25]. Besides, the PeerTrust model also brings huge
flexibility to researchers due to the fact that they need to figure
out how the four main dimensions; satisfaction (S), credibility
(Cr), transaction context factor (TF), and community context
factor (CF), are going to be designed (see Eq. 1). As a result,
it allows adjusting the algorithm to the vast majority of final
scenarios.

T (u) = α ·
( I(u)∑

i=1

S(u, i) ·Cr(p(u, i)) ·TF (u, i)

)
+β ·CF (u),

(1)
where u is the provider for whom wants to determine the

trust score T (u) ∈ [0, 1] on the i-th interaction; α and β are
the weights of each dimension, satisfying that α+ β = 1; and
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I(u) is the maximum number of interactions. Due to the fact
that the authors of this research work at hand have thoroughly
described how all dimensions have been formulated in [23]
and [26], we honestly believe such equations should not be
reintroduced again as the principal aim is to spotlight a new
SLA-driven reward and punishment mechanism. Nonetheless,
a high level description of the four dimension objectives is
going to be reported so as to comprehend how our adapted
PeerTrust model works.

With respect to the satisfaction (S), it measures the accep-
tance degree of stakeholder u after finishing the i-th interaction.
This dimension is in turn composed of provider’s satisfaction
and offer’s satisfaction, which estimate provider and offer
reputations and returns a value ranging from 0.0 to 1.0. Note
that the TRMF is capable of handling 7 types of offers: cloud,
edge, radio access network (RAN), spectrum, virtual network
function (VNF), network service, and slice. Another dimension
of the PeerTrust model is the credibility (Cr) which determines
how analogous two entities are when assessing a similar
set of stakeholders (p(u, i)). To deal with it, a Personalized
Similarity Metric (PSM) is utilized. By means of PSM, it
is possible both to contrast opinions and to determine the
distance of credibility about a set of stakeholders assessed
by both stakeholders. Thereby, the lower credibility distance
after evaluating the set of stakeholders, the most credible the
opinion. It should be pointed out that this mechanism supports
the idea of a non-transitive trust model [27], which entails
greater disbelief when two stakeholders have not previously
interacted with each other. Therefore, it is necessary to identify
a set of common stakeholders to find out the belief [28] of
such a new stakeholder. Finally, the TRMF also considers
two context factors. On the one hand, the TF determines
stakeholder’s participation associated with the number of PO
and provider feedback published in the Data Lake platform
through multiple time windows. In this way, the TF gratified
stakeholders who divulge their interactions with others in the
Data Lake since such an action boosts future stakeholders to
look for new interactions at the Data Lake platform, request
recommendations from other trustworthy stakeholders, and
enlarge the community. On the other hand, the CF gathers
feedback from a continuously updated list of trustworthy
recommenders who had previous interaction with the target
stakeholder u. Additionally, the CF observes untrustworthy
recommendations via a recommendation trust mechanism [26].
This mechanism is in charge of evaluating the certainty of
recommendations according to the trust in that recommender
and the recommendation trust. Thus, CF can come up against
traditional attacks in trust models such as bad-mouthing attacks.

C. Trust storage module

Since data privacy-preserving plays a critical role for 5G
and beyond 5G networks (B5G), it is really crucial to define
how data are going to be handled by the TRMF. As it can
be observed in Fig. 1, there are two main information storage
sources. When it comes to the private database, it mainly
contains personal data, inferred information from raw data,
scores, or actions to be addressed (steps 5 and 6). There are

two main reasons why this type of information is stored in a
private database. First of all, this database is only consulted by
the TRMF of its own domain, and in consequence, potential
malicious behavior by other stakeholders can be avoided.
On another hand, the Data Lake platform is shared across
stakeholders, and consequently, stakeholders do not warehouse
backups of information in their local domains but they launch
on-demand requests since owners can continuously update
information. Therefore, each request entails traffic network
outside of the TRMF domain. In consequence, the time needed
to calculate trust scores could be affected as personal data,
inferred information from raw data, and previous scores would
be constantly requested. In the case of data to be shared and
requested by any stakeholder being registered in the ecosystem,
the TRMF leverages the Data Lake platform as a storage
source. Interactions among stakeholders are pushed to Data
Lake since other stakeholders subsequently employ them to
directly request recommendations (step 7).

D. Continuous update module

Owing to the fact that trust changes over time, the continuous
update module has a pivotal role in ensuring consistency
between real-time events and trust scores (step 9). 5G and B5G
networks entail cross-domain environments where stakeholders
cooperate under the principle of maximizing their benefits
and ameliorating customers’ QoS. To enable quality-aware
resource and service provision, SLAs are widely utilized as
legally binding contracts to commit providers to fulfill the pre-
negotiated performance metrics as well as to form a trustworthy
provider-consumer relationship. In this vein, SLAs, Service
Level Objectives (SLOs), and SLIs enable declaring, defining,
and measuring the fulfillment of agreements and indirectly
generating events that allow for recomputing trust scores in
real time.

Thereby, an SLA-driven reward and punishment mechanism
is going to be introduced as an enabler to continuously update
trust scores in an ongoing relationship. Besides, such a reward
and punishment mechanism is also utilized to determine when
a service or resource under a specific trust level should
not be able to participate in a relationship anymore due to
subsequent misbehaviors. The mechanism follows an agnostic
approach so as to be considered by other trust and reputation
models. Similarly, the mechanism is not directly related to
the types of metrics to check in the SLOs. Hence, it is not
necessary to normalize the equations for each possible type of
metric, but rather it covers the entire spectrum. Note that the
proposed mechanism does not directly leverage the performance
measurements provided by a run-time QoS monitoring engine,
but it defines a set of statistic features from events generated
by breach prediction and detection services [29] and SLA
Violation Manager. These statistic features are based on truthful
information backed up by a Governance service responsible for
defining, validating, and operating the identities, the certificates,
and the permissions for all 5GZORRO stakeholders according
to Self-sovereign Identity principles [30].

Before thoroughly describing the features and equations
of our reward and punishment mechanism based on SLA
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events (step 10), it should be pointed out that another reward
and punishment mechanism was previously defined in [26].
In this case, the mechanism gathered security-based network
monitoring events following a time-driven approach. By means
of such a mechanism, the trust and reputation management
framework was able to early identify feasible threats as well
as enhance the security capabilities for network services.

Akin to the security-based mechanism, our SLA-based
mechanism follows a time-driven approach to readjust active
and trustworthy relationships in real time. In particular, the
proposed punishment method Pu(v, u) ∈ [0, 1] on a provider
u on whom computations are performed by a consumer v is
mainly composed of three dimensions: the Breach Prediction
Rate (BPRate), the Impact of Trust over upcoming events
(ITrust), and the historical SLA Violation Rate (SLAV Rate)
(see Eq. 2).

Pu(v, u) =

n∑
m=1

BPRate(u,m) + ITrust(v, u) · SLAV Rate(u,m)

2
,

(2)
where v denotes the consumer who updates a trust score; u

represents the provider on whom computations are performed;
m is the type of SLO metric measured, for example, function-
ality, availability, performance, requests per minute, etc.; and
n is the maximum number of metrics. This method aims at
evaluating the impact of breach predictions and detections on
a provider’s reputation.

When it comes to BPRate ∈ [0, 1], it measures the proba-
bility of having SLA violations if a provider continues its actual
behavior over time (see Eq 3). Particularly, BPRate determines
the percentage of breach predictions (SLOBP ) for a given
metric m over the total breach predictions k ∈ [1, n] on a target
stakeholder u as well as the accuracy level of the intelligent
algorithm to prognosticate a prediction (CertaintyBP ). Note
that the algorithm in charge of performing breach predictions,
which is part of the 5GZORRO Breach Predictor, which is
outside the scope of this paper [29].

BPRate(u,m) =
SLOBP (u,m)
n∑

k=1

SLOBP (u, k)

· CertaintyBP (u,m)

(3)
Another paramount dimension to compute the punishment

value is the impact degree of trust on SLA events (ITrust ∈
[0, 1]). In this vein, Eq. 4 bears in mind the current trust
score between the consumer v and the provider u as well as
a trapezoidal fuzzy model µtrust(v, u). Concerning the trust
score, we assume a higher trust score will entail a greater
impact on punishment. This assumption comes from the fact
that a fully trustworthy level can be only reached whether a
provider had reliable behavior during a long period, therefore
negative events are barely expected.

ITrust(v, u) =
(
1− 1− T (v, u)

1 + T (v, u)

)
· µtrust(v, u) (4)

Regarding the fuzzy model, the principal objective is to
determine the membership degree of trust and reputation values

with respect to the multiple trust levels defined (see Fig. 2).
To this end, fuzzy sets are leveraged as they enable finding
out a direct correspondence between reputation values and the
impact of the SLA violations on the asset. So as to define the
membership degree, a trapezoidal function has been selected
since it utilizes linear interpolation to obtain both endpoints
of the interval [31], being triangular membership a subcase of
this one.
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Fig. 2: Trust levels based on the impact degree of trust and
reputation values.

As an example, Fig. 2 shows that the likelihood of provider u
based on its trust and reputation T (v, u) is directly proportional
to the membership degree of provider u for each trust level of
a consumer v. According to the likelihood, a consumer v can
set up a trustworthy or full trustworthy levels. Due to the fact,
we follow the principle of selecting the highest membership
degree between levels involved, the ε1 linked to the trustworthy
level would be the option to be selected as a fuzzy set.

Last but not least, we have the last dimension denoted
as SLAV Rate(t)(u,m) ∈ [0, 1]. This dimension defines
the growth of SLA violation figures leveraging sliding time
windows. In particular, Eq. 5 computes a penalization score
ranging from 0 to 1 which determines the deviation between
the history and the current SLA violation rates at a given time
t.

In Eq. 5, a forgetting factor (ξ) has been contemplated so as
to handle the repercussions of time passage over SLA violations.
In general terms, the forgetting factor allows utilizing aging
functions to gradually adapt to the oblivion of past interactions
SLAV Rate(t−1)(u,m). Furthermore, an increase or decrease
in violation number (Increment(u,m)) together with the
occurrence level of violations have been also considered.
Note that the violation notifications are generated by an SLA
Monitoring module, which is also part of the 5GZORRO project
[29], via run-time QoS measurement metrics and assessment
intervals specified in the SLA settlement.
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SLAV Rate(t)(u,m) = SLAV Rate(t−1)(u,m)+

ξ · Increment(u,m) · µvio(u,m)
(5)

With respect to the Increment(u,m), we settle to apply
penalizations, if and only if new violations appear in the
relationship. In this vein, Increment(u,m) defines the growth
of the SLA violations over past interactions. Otherwise, the
Increment(u,m) is settled to 0 (see Eq. 6) and a reward is
applied on the provider u trust score, as depicted in Eq. 7.

Increment(u,m) =


SLAV Rate(t)(u,m)

SLAV Rate(t−1)(u,m)
, if new violation

0 otherwise
(6)

In the case of being applied a reward (Re), its value is
directly proportional to the forgetting factor (ξ) applied over
the last trust score computed (Ots), as illustrated in Eq. 7. Thus,
the greater ξ, the higher the recovery speed of our SLA-driven
mechanism.

Re(v, u) = ξ · (1−Ots(v, u)) (7)

When it comes to the violation increase, another fuzzy set
(µvio(u,m)) is employed to assess the occurrence level of
such violations in the last time window. In this way, three
occurrence levels are established: momentary, recurrent, and
persistent based on the percentage of increase with respect
to the past violation rate SLAV Rate(t−1)(u,m), as depicted
in Fig. 3. It is worth mentioning that n is always the past
violation rate, being updated after new interactions. Contrary
to Fig. 2, this fuzzy set selects the highest occurrence level
although the membership degree may be the lower one. The
reason is that the authors intend to maximize the penalization
of an SLA violation rate increment. Thus, a persistent level
through ε4 would be elected as a fuzzy set in Fig. 3.
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Fig. 3: Occurrence levels based on SLA violation rate values.

Once the three dimensions have been calculated, our SLA-
driven reward and punishment mechanism returns a final score
Re(v, u) or Pu(v, u) between 0.0 and 1.0, which entails a
decrease or increase percentage n on the new trust score (Nts).
Afterward, such a reward and punishment is subsequently
used by the trust and reputation management framework to
accordingly update the last trust score Ots(v, u) and forward
the present one to the consumer v, as given in Eq. 8.

Nts(v, u) =

Ots(v, u)− Pu(v, u) ·

(
1−Ots(v,u)

)
n , if new violation

Ots(v, u) +
Re(v,u)

n otherwise
(8)

Owing to the fact that this reward and punishment mecha-
nism follows a time-driven approach, its whole life-cycle is
constantly triggered when new breach predictions or detections
arise in an ongoing business relationship. Therefore, a trust
and reputation score could be dwindled at a certain level in
which the consumer decides to conclude the current relation,
and in consequence, discover new trustworthy providers.

IV. USE CASE

This section introduces an emerging paradigm on which trust
and reputation are fundamental pillars to optimize orchestration
phases. Especially, Section IV-A describes the integration of
trust and reputation into a 5G distributed service marketplace
use case supported by the 5GZORRO H2020 European project
[3]. In addition, this edge-based paradigm also displays a set of
experiments to measure both the performance of our proposed
SLA-driven reward and punishment mechanism and the whole
reputation-based trust framework (see Section IV-C).

A. 5G distributed service marketplace

As previously stated, marketplaces have an important role
in 5G networks when stakeholders need to extend their
current resource and service capabilities in order to cover
peak workloads through third party infrastructure providers.
Due to the absence of distributed solutions covering on-demand
resource and service provisioning, the 5GZORRO project
delineates solutions for secure, trustworthy, automated, and
intelligent resource discovery and selection, operating with
SLAs to facilitate workload offloading to third party resources
across multiple domains. In particular, Fig. 4 showcases an
overview of how trust and reputation management is integrated
with other primary layers such as Analytics and Intelligence and
Resource and Service Trading. The 5GZORRO architecture
design is mainly composed of four layers, being three of
them involved in the process of guaranteeing a reliable
ecosystem. Firstly, the blue color represents the Analytics
and Intelligence Layer whose objective is to provide data
persistence, data sharing, and data analytics for the 5GZORRO
platform across domains. Secondly, the Security and Trust
Layer aims to guarantee intra- and inter-domain security
capabilities, trustworthy establishments across multiple domains
as well as the identification and authorization of stakeholders.
Lastly, the Resource and Service Trading Layer does business
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Fig. 4: Trust and reputation integration into a 5G distributed service marketplace

with 5G resources across different domains by utilizing SCs
and a dedicated Marketplace DLT platform.

As well, Fig. 4 also presents an edge scenario based on
a virtual Content Delivery Network (vCDN) paradigm in
which we can underline how trust is applied to optimize the
orchestration part as well as ensure a trustworthy slice selection.
In this vein, our use case (UC) describes how a stakeholder can
elect a reliable provider to cover a load of a streaming service.
Especially, the stakeholder has the need for slice expansion
due to the impending overload of its vCDN server located on
the Content Service Provider (CSP) Edge server. As a result,
the stakeholder looks for compute resources, namely a slice
instance, at the Edge to hire it and bypass the traffic routing
through the network core.

When it comes to slice extension, our UC considers an
advanced auto-scaling policy to trigger the resource discovery
process that aims at identifying potential usable 3rd party edge
resources. Such a discovery process identifies the candidate
product offers (POs) and rates them based on how much they
satisfy the offer request as well as on profile information related
to the resource, e.g., trust properties, pricing, etc. To achieve
this objective, the Analytics and Intelligence Layer introduces
the Smart Resource & Service Discovery (SRSD) that allows
obtaining a customized subset of resources and services that
best satisfy the consumer expectations. Especially, one of the
SRSD sub-steps is to determine a trust score for each available
candidate to rank them.

In this sense, the SRSD sends a set of POs to be thoroughly
analyzed by the TRMF (step 1). At this point, the TRMF begins
a data-related gathering process through different information
sources such as the Resource and Service Offer Catalog (step
2) which enables obtaining information about the geolocation
of resources and services, current life-cycle status, service
specification as well as deriving statistical features. Besides,
the TRMF also makes use of Decentralized Identifiers (DIDs)

to authenticate stakeholders in the 5GZORRO Marketplace and
to identify offers registered in the Catalog (step 2). Afterward,
the trust and reputation management framework begins its Trust
computation module defined in Section III-B so as to find out
a trust score per PO. Lastly, the TRMF sends a list of trust
scores and POs back to the SRSD to classify candidates.

As the distributed 5GZORRO Marketplace is willing to
facilitate stakeholders’ interaction during the resource and
service discovery stage, a graphical user interface (GUI) is also
contemplated to showcase the ranking of trustworthy candidates
for each type of offer and for a smoother user experience.
Thence, once the stakeholder determined the compute resource
to be consumed, he/she is able to visualize all available
offers ranked by the highest trust score, together with other
characteristics such as price, provider, location, etc. Upon
selecting the offer with the highest score, the stakeholder orders
it from the Marketplace and starts orchestration steps. In this
final stage, the network section is expanded to the 3rd party
infrastructure. As a result, a secure connection is carried out
between the CSP Edge server and the new infrastructure site
as well as the instantiation of the service components on the
new resources.

Last but not least, the orchestration part is in charge of
notifying the TRMF which offer was finally selected by means
of the Intelligent and Automated Slice & Service Management
(ISSM) (step 3). This action triggers multiple actions in the
TRMF since it should monitor relevant metrics to continuously
adjust the trust score of an ongoing relationship. Hence, as the
last trust-related step of our UC, the TRMF makes use of two
modules, one comes from the Security and Trust Layer and the
other from the Analytics and Intelligence Layer. The former is
called security analytic service (SAS), whose aim is to analyze
the network traffic and notify potential threats. The latter is
the Intelligent SLA Monitoring & Breach Prediction (ISBP)
module which recaps breach predictions and detections and
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SLA violations (step 4). As we previously described in Section
III-D and in [23], the TRMF leverages such information to
reassess an ongoing trust establishment in real time.

Note that some steps, which do not directly impact on trust
and reputation, have been omitted to simplify the understanding
of both this subsection and Fig. 4.

B. Findings from the TRMF fine tuning process

Prior to analyzing the effectiveness of our trust and reputation
management framework (TRMF), it is necessary to determine
the proper values for those parameters which may be adjusted
by users before launching it. Such parameters usually allow
us to shape up a solution based on the intrinsic characteristics
of a final enforcement scenario.

Particularly, our SLA-driven reward and punishment mech-
anism presents two parameters to be investigated. First and
foremost, we have the forgetting factor (ξ ∈ [0, 1]) symbolized
in Eq. 5. By means of the forgetting factor, a user can configure
our mechanism to set how many iterations would be needed to
equate a historical SLA Violation Rate SLAV Rate(t)(u,m)
to a sudden SLA Violation Rate increase. In other words, ξ
establishes how much time is required for a trust score to
converge to a target value. Thereby, the convergence speed of
final trust scores may be adapted taking into account the number
of interactions that a use case tends to habitually manage.

Also aligned with ξ, the TRMF also introduces the parameter
n depicted in Eq. 8. In this case, n enables determining the
decrease or increase percentage of punishment and reward
mechanisms, respectively. Therefore, n plays a pivotal role to
find out how much a trust score can be reset when a sudden
increase Increment(u,m) in SLA violation is maintained
over time until the SLAV Rate(t)(u,m) matches the sudden
increase.

In order to figure out the best configuration for ξ and n, Fig. 5
displays a set of charts with multiple parameter combinations
for a punishment scenario. Note that we are outlining the
behavior of our punishment mechanism since such a mechanism
tends to be more important in trust models than the reward
mechanism. For this fine tuning process, we have arbitrarily
fixed some parameters for all charts, for example, we set a
SLAV Rate(t)(u,m) = 2.456 and a Increment(u,m) = 4,
which is the target to achieve. Besides, the initial trust score
T (v, u) was set to 0.749, which defines a reliable behavior, and
the system has previously carried out 100 iterations. Once we
have established the first set of parameters, the next step was
to discover proper values for adjustable parameters ξ and n. In
the case of the forgetting factor, we first leveraged intermediate
values ranging from 0.2 to 0.8 so as to avoid extreme results.
In fact, the values related to ξ = 0.2 have been narrowed down
in the graphs as they made it difficult to read the graphs when
cutting with the x-axis too far to the right (see the black point
to know the cut value). For the n parameter, we analyzed the
behavior of our framework utilizing values ranging from 1 to
10 as we identified that values higher than 10 will imply a
negligible decrease in trust scores.

Looking at Fig. 5, we can observe the two main conclusions
previously introduced. On the one hand, whether the value of

n is getting bigger, the amount of punishment to be applied
on trust scores will be limited in comparison with a n with a
lower value, for instance, n = 1 vs. n = 8. On the other hand,
if we leverage a forgetting factor closer to 0.2, we will need a
higher number of interactions to equal a SLAV Rate(t)(u,m)
to a repeated Increment(u,m) over the time. It is worth
mentioning that these statements are fulfilled regardless of fixed
parameters selected at the beginning of fine tuning process.
Therefore, bearing in mind our use case in which we have
a huge number of interactions across multiple domains, we
think the best value for n is 3 and for ξ is a value between
0.4 and 0.8. This statement is also supported by the fact that
the 5G distributed service marketplace handles thousands of
transactions per hour, and in consequence, stakeholders should
not undergo drastic variations for events not repeated over time.
Nonetheless, SLA violations are a type of unusual occurrence
so it is important to uncover a repeated increase above the
average at an early stage. Because of that, n = 3 allows us
to drastically penalize to stakeholders who consecutively had
unexpected behaviors based on their historical SLA Violation
Rate. In the case of ξ, we have enlarged values between 0.4
and 0.8 so as to discover a forgetting factor that enables us to
point out a change of unusual behavior, but not in a short time
window. In this vein, the top side of Fig. 6 showcases a specific
example based on previous patterns presented in Fig. 5 where
values from ξ = 0.5 (120 iterations) to ξ = 0.65 (93 iterations)
can contribute the equilibrium between a quick reaction and a
minimum figure of iterations that our 5G distributed service
marketplace requires to sharply dwindle a trust score.

When it comes to the fine tuning process for a reward mech-
anism, the recovery pace should be slower than the punishment
mechanism since trust and reputation models conventionally put
the focus on fingering stakeholders’ misbehaviors rather than
good ones. For this reason, after suffering a punishment due
to inappropriate actions, our SLA-driven trust and reputation
management framework should need a higher number of
interactions to return to the pre-penalty trust value (0.749). On
the bottom side of Fig. 6, we can observe a feasible combination
of n = 9 and ξ = 0.03 or 0.04 for our mechanism. These
values will allow us to get back to the normal state but without
having a faster recovery process than the sanctioning process.

C. Experiments

Once the UC has been contextualized, this subsection recaps
a set of tests to adjust pivotal parameters of our SLA-driven
reward and punishment mechanism, checks its suitable behavior
as well as that of the TRMF in general, and resilience to
multiple attacks.

• Experiment 1 – Bootstrap time for different amounts
of events: After adjusting the utmost important configurable
parameters, our next goal is to analyze the necessary time
to process different amounts of SLA Violation and Breach
Prediction events by the SLA-driven reward and punishment
mechanism. To this end, a time window was set to 5 minutes,
therefore our mechanism gathered all events published by
5GZORRO ISBP and SLA Monitoring modules in two different
Kafka buses. Due to the fact that our mechanism may receive
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events related to violations, predictions, or both, we are going
to study the three feasible combinations. Fig. 7 plots the
time consumed by the SLA-driven reward and punishment
mechanism when only SLA Violations are generated during
the current time window (blue bar), only Breach Predictions
(orange bar), or when there are 50% of events of each type
(black line).
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Fig. 7: Time consumption required to analyze SLA Violation
and Breach Prediction events for a 5-minute time window

As it can be observed in Fig. 7, our mechanism did not
introduce a high delay on the continuous update module as
1.2 seconds are only required to recompute a trust score in the
worst-case scenario. Note that the event numbers defined in the
x-axis were linked to a specific trust relationship thence, we
do not expect to receive a number of events exceeding 3600
in our application scenario, or at least for such a small time
window. In addition, we can only notice how time consumed is
stable for the first three even numbers and is slightly increased
for the four one. For the rest of combinations (1600, 3200, and
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6400), the total time consumed is increased to a larger extent
but being it still negligible. This behavior is mainly caused
because the maximum number of records returned in a single
Kafka call is 500, so the need to request multiple calls entail a
slight increase in time. Concerning the time required to perform
the mathematical operations, there is no significant increase
therefore, the proposed mechanism enables its scalability to
larger scenarios.

• Experiment 2 – Continuous misbehavior bursts over
time: This experiment aims at verifying the proper behavior
of our SLA-driven reward and punishment mechanism when
multiple waves of malicious behaviors tamper a reliable flow,
also known as an on-off attack. As we previously stated, SLA
violations are a type of unusual occurrence so it is important
to uncover a repeated increase above the average at an early
stage. Following configuration parameters settled on previous
experiments, we have leveraged a 5-minute time window
to gather SLA Violations and Breach Prediction events. In
addition, we have also set multiple behavior bursts to analyze
how rewards and punishments affect trust scores. First, on the
one hand, we establish a fixed parameter, misbehavior, to 2,
4, or 8 which does not change for each plot in Fig. 8. Such a
parameter describes the figure of consecutive iterations that a
stakeholder had unusual behaviors. On the other hand, we also
depict three different bursts of good behaviors for each plot
in Fig. 8. Thus, we try to visualize whether our mechanism
quickly forgets misbehaviors.

There are two main conclusions that can be derived from
analyzing such results. First, the reward mechanism does not
allow stakeholders to overcome consecutive misbehaviors (2,
4, or 8) in a short period. Hence, our prior statement about
negative events had a higher impact than positive ones on
trust scores is being fulfilled. In the best case (2 consecutive
misbehaviors), the model requires 76 iterations or 380 minutes
with consecutive good behaviors to restore the initial trust
score (0.729). It is worth mentioning that each iteration (x-axis)
entails 5 minutes. Second, the punishment enables dwindling
a high trust score without drastically setting it to 0, if it has
been a one-time setback and the stakeholder has been able to
recover. This statement can be observed in any of the plots
in Fig. 8 after the first wave of misbehaviors. From the left
plot to the right one, we can notice how a higher consecutive
number of misbehaviors entails a higher punishment as well as
a lower iteration number to get a 0 trust score. In the worst case
(8 consecutive misbehaviors) in Fig. 8, 25 iterations or 125
minutes are necessary to reduce a stakeholder’s reputation to
0. Thence, our SLA-driven reward and punishment mechanism
meets the expected behavior because it allows us to identify
the change of behavior of a malicious user in 1 hour, being
his/her trust score dwindled to 0.

• Experiment 3 – Bad-mouthing attack resilience: One
of the most customary recommendation-related attacks of
reputation-based trust models is the bad-mouthing attack [32].
By means of it, an attacker intends to dwindle the trustwor-
thiness of honest entities, or the reverse, through deceptive
recommendations [27]. In particular, the bad-mouthing attack to
be tested follows the collusive bad-mouthing paradigm [33], so
malicious nodes are colluded and intend to give hostile feedback

about a targeted node. To cope with it, our TRMF introduces a
mechanism to deal with such attacks as part of the community
factor (CF) dimension. Concretely, our mechanism considers
two key factors to detect bad-mouthing attacks [32]: (i) the
trust of recommender’s feedback and (ii) the recommendation
deviation [23]. Therefore, the main objective of our mechanism
is to identify the collusion of malicious recommenders, among
the total percentage of recommenders, so as to minimize the
decrease in the trust score that our TRMF model would suffer
if it considers recommendations from third parties.

In order to demonstrate the resilience of our TRMF to the
bad-mouthing attack, Fig. 9 displays the likelihood of electing
reliable recommenders when a percentage of the population
has been corrupted and Fig. 10 plots the impact of such
disrupted recommendations over final trust score. Concerning
Fig. 9 and Fig. 10, we have evaluated our TRMF in different
environments with up to 90% of malicious recommendations,
although we considered that a percentage greater than 50%
is, in straightforward terms, unrealistic since the disrupted
feedback would become the majority and the method could
understand malicious recommendations as good because they
are the majority.

When it comes to Fig. 9, we can observe a detriment in
the accuracy of the resilience mechanism when the amount of
malicious recommenders increments. In the worst case, where
90% population is corrupted, our TRMF model is capable of
fairly distinguishing misbehaviors in around 33% of the cases.
Yet, as above-mentioned, we consider a percentage of malicious
recommenders greater than 50% as unrealistic. Bearing such a
percentage in mind, our TRMF is able to achieve an accuracy
of 67%, reaching a maximum of 93% when only 30% of
recommenders behave spitefully. It is worth mentioning that
we always select the number of recommenders positioned
lower for all statistics in this section. Regarding Fig. 10, we
can visualize how a trust score dwindled an 8.6% when our
TRMF reached a 33% accuracy to identify misbehaviors (90%
malicious population and 100/150 recommenders). On the
contrary, only a 2.1% trust score is decreased when only 30%
of recommenders behave spitefully. As a result, the TRMF is
capable of slightly mitigating the impact of misbehaviors on
trust scores when the malicious percentage is lower than 40%,
hence the trust scores dwindle from 3.1% to 8.6%.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a trust and reputation management
framework to boost trustworthy stakeholder selection in a
5G distributed marketplace. In particular, we have proposed
a reputation-based trust model composed of four modules:
Information gathering and sharing, Trust computation, Trust
storage, and Continuous update. By means of these modules,
we describe the principal actions of our trust and reputation
management framework life-cycle. Specially, for the Continu-
ous update module, we propound an SLA-driven reward and
punishment mechanism which allows adjusting the trust score
of an ongoing relationship through SLA events, i.e., breach
predictions and detections and SLA violations. By employing
fuzzy models, our reward and punishment mechanism can
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Fig. 8: Misbehavior bursts and their impact on trust scores
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Fig. 9: Likelihood of electing reliable recommenders
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Fig. 10: Disrupted recommendation impact over a trust score

also determine the membership degree of trust and reputation
values concerning the declared trust levels. Lastly, we have
introduced a real use case covered by the 5GZORRO H2020
European project to verify the behavior and the accuracy of
our SLA-driven trust and reputation management framework.
Experimental results carried out in real infrastructures like
5GBarcelona and 5TONIC demonstrate that our proposal
can deal with conventional trust attacks such as on-off and
bad-mouthing. As well, the framework can ensure a reliable
recommender selection with an accuracy of 94% and 67%
when 30% and 50% population are corrupted.

As future work, we plan to enhance the resilience of our

trust framework by considering other well-known trust attacks
such as shilling, collusion, or ballot stuffing. Therefore, new
resilient mechanisms will be designed and developed together
with the current ones. Besides, the authors aim to extend
the research field in order to support trustworthy on-demand
service provisioning systems for cloud and edge computing.
Such an effort entails finding out similarities and divergences of
trust models for on-demand service and resource provisioning
scenarios and, consequently, designing and developing two
new trust models. Last but not least, the authors aim at
moving their reputation-based trust framework from a pure
statistical approach (PeerTrust model) to Artificial Intelligence
(AI)-driven model, as AI-based solutions make it easier to
compare the effectiveness of the solution with other algorithms
or methodologies, without the need to redesign or define a
new set of equations for each purely statistical algorithm to
be leveraged.
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