
1

Mules and Permission Laundering in Android:
Dissecting Custom Permissions in the Wild

Julien Gamba, Álvaro Feal, Eduardo Blazquez, Vinuri Bandara, Abbas Razaghpanah,
Juan Tapiador, and Narseo Vallina-Rodriguez

Abstract—Android implements a permission system to regulate apps’ access to system resources and sensitive user data. One salient
feature of this system is its extensibility: apps can define their own custom permissions to expose features and data to other apps.
However, little is known about how widespread the usage of custom permissions is, and what is the impact that these permissions can
have on users’ privacy and security. In this paper, we empirically study the usage of custom permissions at large scale, using a dataset
of 2.2M pre-installed and app-store-downloaded apps. We find the usage of custom permissions to be widespread, and seemingly
growing over time. Despite this prevalence, we find that custom permissions are virtually invisible to end users, and their purpose
mostly undocumented. This lack of transparency can lead to serious security and privacy problems: we show that custom permissions
can facilitate access to permission-protected system resources to apps that lack those permissions without user awareness. To detect
this practice, we design and implement two static analysis tools, and highlight multiple concerning cases spotted in the wild. We
conclude this study with a discussion of potential solutions to mitigate the privacy and security risks of custom permissions.

Index Terms—Android, Access control, Custom permissions, Mobile apps

F

1 INTRODUCTION

THE Android operating system implements a
permission-based mechanism to control how

applications (apps) can access sensitive data and
dangerous system features [49] such as user contacts,
the camera, location sensors, or the system settings.
Coupled with other protection mechanisms such as process
sandboxing, the permission system empowers users to
control what sensitive resources are accessible to which
apps. The Android Open Source Project (AOSP) defines a
standard set of permissions which are supported by most
Android devices. Any Google-certified device [3], [4] must
implement the whole set of AOSP permissions to guarantee
their compatibility with the standard Android platform [5].

A decade of research in the use, enforcement, and usabil-
ity of AOSP permissions has revealed severe privacy and
security shortcomings inherent to the Android permission
model [71], [90], [73], [61], [86], [84], [65], [68]. However, the
research literature overlooked a key feature of Android’s
permission model: its extensibility. By design, the Android
framework allows any app developer to share features im-
plemented in their software with other apps in a “controlled”
way by defining custom permissions [47]. Therefore, custom
permissions allow extending the capabilities offered by the

• Julien Gamba, Álvaro Feal and Vinuri Bandara are with the IMDEA
Networks Institure and the Universidad Carlos III de Madrid, Spain.

• Eduardo Blazquez and Juan Tapiador are with the Universidad Carlos III
de Madrid, Spain.

• Abbas Razaghpanah is with ThousandEyes/Cisco, San Francisco, CA,
USA; and ICSI, Berkeley, CA, USA.

• Narseo Vallina-Rodriguez is with the IMDEA Network Institute, Madrid,
Spain; and AppCensus Inc.

Manuscript received May 2nd, 2022

Android OS and facilitate the flourishment of an open
software ecosystem in which apps (and third-party libraries
or SDKs) can share data and components with other devel-
opers. However, custom permissions pose potential security
and privacy risks as they can be (ab)used—intentionally
or by mistake—to circumvent the standard permission sys-
tem and provide backdoored access to privileged data and
system features to apps that are otherwise not permitted
to do so, in a way akin to how covert- and side-channels
operate [84].

The control and transparency mechanisms implemented
by the Android operating system are insufficient to protect
users from abusive or insecure implementations of custom
permissions. Even identifying the party responsible for their
definition and their purpose can become a daunting task.
Google recommends using the reverse domain name as the
prefix of such permissions, and supplying a description of
the custom functionality or data protected by the permis-
sion [47], [6], but, in practice, there is no enforcement of
such recommendations [75]. Consequently, it is not possible
to automatically know what precise function or resource
is protected by a custom permission, and how they are
being integrated and used across Android apps. This lack of
control and transparency also manifests at installation time,
which translates into profound implications in terms of user
awareness and control: unlike official AOSP permissions
custom permissions are not listed in the app stores, and
end-users cannot grant or deny apps access to them at
runtime unless the developer willingly defines them with
a dangerous protection level.

Despite these risks, the research literature on custom
permissions is significantly narrow. Prior work performed a
high-level analysis of the prevalence of custom permissions
in pre-installed apps [75], while others demonstrated, using

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2

proof-of-concept implementations, how custom permissions
can enable permission re-delegation and confused deputy
attacks [63], [64], [87], [79]. Yet, our understanding of the
Android custom permissions landscape has remained low,
particularly in terms of their prevalence, usage, and poten-
tial misuse. In fact, the state-of-the-art lacks app analysis
tools capable of capturing and analyzing the risks of custom
permisisons due to their asynchronous nature.

In order to fill this knowledge gap, we study a dataset
of 52,468 unique custom permissions defined by publicly-
available and pre-installed apps. This is the largest dataset
of custom permissions collected to date and gives us an un-
precedented and global view of this ecosystem (§4). Using
this dataset, we make the following key contributions:

• We present the first longitudinal and large-scale measure-
ment of the usage of custom permissions in the Android
ecosystem (§5). We find that both pre-installed and public
apps both define and request a large number of custom
permissions. Namely, 58% and 67% of pre-installed and
public apps request at least one, and 26% and 4% define
at least one, respectively.

• We measure whether developers defining custom per-
missions comply with Google’s naming and transparency
recommendations, finding widespread violations. Specif-
ically, 45% of declarations do not follow naming recom-
mendations. For example, we find 722 custom permis-
sions with the android.permission prefix, which is
explicitly forbidden by the Android Compatibility Defi-
nition Document (CDD). Moreover, there is no enforced
mechanism by which developers have to report what a
given custom permission enables or is used for. While
there is a description tag to describe the purpose
and functionality of the custom permission, its usage is
optional and we find that it is rarely used by developers,
being missing in 75% of the cases.

• The lack of transparency in custom permisisons is aggra-
vated by the lack of analysis tools to trace and understand
the type of data or capability that a given custom permis-
sion protects. To fill this methodological and tooling gap,
we present a novel method to triage apps that are po-
tentially misusing custom permissions to access personal
data, or perform other actions potentially detrimental to
users’ privacy and security (§7). Our method relies on
two purpose-specific tools: (1) permissionTracer, a
tool that reports potentially-dangerous custom permis-
sions and detects potential cases of a privilege escala-
tion attack in which an attacker can access permission-
protected information using custom permissions; and (2)
permissionTainter, a static taint analysis tool that
inspects the DEX code of apps that define custom per-
missions, to identify potential privacy leaks due to those
permissions. Equiped with these tools, we identify several
instances of potentially harmful and insecure implemen-
tations that can expose sensitive data such as the location,
Wi-Fi MAC address, or contacts without requesting the
corresponding AOSP permission.

• We conduct a small-scale survey of app developers who
defined some of these custom permissions in order to
understand their use case and rationale (§7). Our findings
suggest that most developers lack a clear understanding

of their purpose and functioning. As a result, custom
permissions are often used due to poor software devel-
opment practices or because they are required to define
them in order to integrate third-party SDKs.

These four contributions offer a unique picture of the
custom permission landscape and introduce new methods
and tools for assessing their security and privacy risks.
We conclude this paper with a constructive discussion on
potential solutions for the accountability and transparency
issues of Android custom permissions. To foster further
researc in this domain and raise awareness about the risks
of custom permissions, we make our dataset of custom
permissions available to the research community [21], [20].

Responsible disclosure. During the course of this study,
we identified vulnerabilities in Android apps currently in-
stalled on user devices. To minimize negative consequences
for users, we have responsibly disclosed our results to
Google in December 2020, including several examples of
apps that expose private data without user consent via
custom permissions. Google representatives acknowledged
the issue, but considered it to be a consequence of the
openness of the Android platform, and therefore difficult
to solve (and monitor) without hindering the possibility for
developers to create custom permissions.

2 THE ANDROID PERMISSION SYSTEM

This section provides essential background knowledge
about the Android permission system and its extensibility
through custom permissions. We refer the reader to Google’s
official documentation for general details on the Android
permission system [49].

2.1 Permission model
Android’s security model leverages some of the security
features offered by the Linux kernel, including user isola-
tion. In Android, each app runs under a unique user ID
(UID), belongs to a group whose group ID (GID) is the
same as the app’s UID, and is given a dedicated access-
protected data directory. User apps are sandboxed at the
process and file system level, thus preventing them from
arbitrarily interacting with each other. To access sensitive
user data (e.g., text messages or contacts), device features
(e.g., camera or GPS), and OS services (e.g., system settings),
apps must request and be granted specific permissions.

Each permission in Android is assigned a user group
with a distinct GID. The kernel manages access to resources
such as regular files, devices, and local sockets, based on an
apps’ group membership by way of its UID and associated
GIDs. When an app is granted a permission by the frame-
work (action performed by Android’s ActivityManager),
the UID assigned to the app becomes a member of the group
assigned to that permission, thus effectively granting the
app access to the resources it protects.

It is also important to note that all Android apps are
cryptographically signed with a digital certificate [55]. In
Android, there are special mechanisms in place for apps
that are signed with the same certificate to share data more
easily, as they are meant to belong to the same “developer”.
Namely, apps signed with the same certificate can use the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



3

sharedUserId attribute in their manifest to request the
system to run with the same UID. This means that such
apps can run in the same process and share access to the
same system resources; i.e., any permission granted to one
of the apps will be granted to all other apps signed with the
same cerificate. This feature was deprecated in API level
29 [11]. We note, however, that the certificate is only a
weak attribution signal, as Android apps rely on self-signed
certificates and, as such, the information they contain cannot
be fully trusted [77].

2.2 Requesting permissions

Apps must include the <uses-permission> tag in the
Android Manifest file for requesting permissions [49]. Each
Android permission has an associated protection level that
relates to its implied potential risk. This, however, affects the
procedure that the operating system follows to determine
whether or not to grant a given permission to a requesting
app:

• Permissions with the normal protection level are con-
sidered not to pose much risk to the user’s privacy or
the device’s security, and are automatically granted at
installation time.

• Permissions with a signature protection level will
also be granted by the system at installation time, but
only if the app requesting the permission is signed with
the same certificate as the app defining it.

• Finally, dangerous permissions protect resources that
are considered sensitive (e.g., the device’s location) and
therefore require explicit user approval. dangerous
permissions are granted at runtime since Android 6.

Permission can also be part of a permission group, which
gather together permissions that refer to the same part of the
system (e.g., the READ_SMS and WRITE_SMS permissions
are both in the SMS group). Permission requests are handled
at the group level, even if each single permission definition
appears in the manifest.

2.3 AOSP permissions

The Android Open Source Project defines a set of standard
permissions that must be supported by Google-certified An-
droid devices. These aim to define the standard way of ac-
cessing the most common resources across different devices,
such as obtaining the location or sending text messages.
The labels for these permissions begin with the android.
permission prefix. For instance, android.permission.
SEND_SMS is the standard AOSP permission for sending
text messages.

The permission system has evolved and increased over
time as illustrated in Figure 1 as a result of Google adding
new features for device manufacturers or developers, or
improving the security and privacy guarantees of the sys-
tem. The number of AOSP permissions has grown from
114 in Android 1.6 (API level 4, released in 2009) to 689 in
Android 12 (API level 31, released in 2021). Not all of these
permissions are supposed to be available to all developers
though: some are marked as “Not for use by third-party
applications” in the AOSP source code (e.g., the READ_LOGS
permission which allow an app to get access to the system

0

200

400

600

1.
6

2.
0

2.
1

2.
2

2.
3

3.
2.

4

4.
0.

1

4.
1.

1

4.
2

4.
3

4.
4

5.
0.

0

5.
1.

0

6.
0.

0

7.
0.

0

8.
0.

0

9.
0.

0

10
.0

.0

11
.0

.0

12
.0

.0

Android version

N
um

be
r 

of
 p

er
m

is
si

on
s

Permissions
 annotations

All permissions

No annotation

@deprecated

@hide

@removed

@systemapi

@testapi

Fig. 1: Evolution of the number of AOSP permissions per
Android release observed by parsing the manifest file of the
open-source framework app, which defines those default
permissions for the system.

log files). In fact, out of the 689 official permissions defined
at API level 31, 305 permissions (44% of the total) have
the @SystemAPI annotation, which indicates that they are
reserved for system processes.

2.4 Custom permissions

Android allows developers to define (or expose) their own
custom permissions to enable controlled access to their
own components and features. This facilitates “regulated”
programmatic inter-app communication and data sharing,
despite each app running with a different UID, as illustrated
in Figure 2. Apps can define their custom permissions in
their manifest file by using the <permission> tag [7]. Apps
declaring (or requesting) access to custom permissions must
also do so in the manifest file, just like they do for regular
AOSP permissions. However, for apps published on the
Google Play market, the custom permissions requested by
a given app is not rendered in its public market profile, so
users are unaware of their presence at the time of installing
them from the markets. Once an app requests access to a
custom permission, it can interact with the protected compo-
nent, for instance by sending an intent [57] or by instantiat-
ing the component directly (e.g., for a protected activity). By
default, access to custom permissions is regulated by the OS
package manager, but the app defining them can implement
further access controls to only grant access to authorized
apps, regardless of the protection level of the permission, by
calling checkPermission, enforcePermission or one
of their variants [56]. The ways in which other apps can
access an app component depend on whether it is exported
(either through the android:exported attribute or if it
contains any Intent-Filter) and on the protection level
of the protecting permission.

2.5 Naming conventions for custom permissions

The Android operating system does not impose any restric-
tion on custom permission names or the features and data
they can enable. However, Google recommends using the
app’s package name as the prefix for the custom permis-
sions that it defines (e.g., an app with the package name
com.foo should name their custom permissions com.foo.
MY_PERM), which itself should use a “reverse-domain-style
name”, to ensure package and permission name unique-
ness [47]. Google also recommends adding a description of

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4

Fig. 2: Example of an app defining a custom permission and
protecting a service with it. Only App3, which requests the
permission, can interact with the service exposed by App1.

the purpose of their permissions to “explain the permission
to the user” [36] when defined in the Android Manifest
file. However, no active policy enforcement is applied [75].
Moreover, Software Development Kits (SDK) embedded on
Android apps may also define and expose custom permis-
sions with the collaboration of the developer, in which case
the permissions they request or define will be merged in
the manifest of the host app [33] (e.g., an SDK from sdk.
com could define the com.sdk.MY_PERM permission). The
presence of SDK-defined custom permissions adds another
layer of complexity to the analysis and attribution of custom
permissions to the responsible party.

3 RELATED WORK

Previous work on Android’s permission system has focused
on the usage and abuse of AOSP permissions [86], [61],
over-privileged apps [71], [67], [82], detecting vulnerabilities
and weaknesses in the permission system [74], [66], [76],
[85], [84], [65] and assessed the efficacy and transparency
of Android’s permission model to empower users [73], [72],
[78], [90]. Multiple tools were also created to study AOSP
permissions. Felt et al. presented Stowaway, the first dy-
namic analysis tool to determine if all permissions requested
by a given app are actually used in runtime [71]. The authors
ran Stowaway on 900 Android apps and found that around
35% of them asked for unnecessary permissions (i.e., they
were not used on the app’s code). They demonstrated that
over-privileged apps are typically the result of developer er-
rors (e.g., legacy code, or copied-and-pasted code). Au et al.
proposed PScout, a static analysis tool to automatically infer
the specification of the permission system from Android 2.2
to Android 4 [61]. Their main objective was to determine if,
given the large number of permissions offered by the OS (79
at the time of publication), there was any overlap in the set
of protected APIs for a given pair of permissions, and found
only one such pair. The authors also noted the presence of
undocumented APIs and permissions, but show that such
APIs are rarely used by third-party app developers.

Backes et al. addressed the same problem and built
a static runtime model of the Android permission frame-
work [62] to create a more complete and recent mapping
of API calls to permissions. The authors studied permission
locality (i.e., whether permissions are enforced only by one
particular service). They showed that 20% of the analyzed
permissions are checked by more than one single class, mak-
ing enforcement of permissions a more complex task, as it
violates the principle of separation of duties (i.e., in this case,
multiple AOSP components are responsible for enforcing
the same permissions). Finally, Reardon et al. revealed how
app developers exploited covert- or side-channels to gain
access to permission-protected data, thus circumventing
the Android permission model. For example, developers
gathered the MAC address of the device without holding
the otherwise-required permission by calling ioctl() [84].

TABLE 1: Number of unique apps (by their MD5 hash) and
custom permissions per source. We merge AndroZoo apps
with their actual market of origin if we actively crawl said
market (e.g., AndroZoo apps fetched from the Play Store
are considered in the Google Play set). Otherwise, they are
considered in the “AndroZoo” category.

Origin Number
of apps

Number of permissions
requested defined all

Google Play 638,758 19,464 13,626 22,010
Tencent 94,443 11,610 7,013 12,591
APKMonk 23,774 1,037 402 1,108
Xiaomi Mi 21,613 6,381 3,852 6,838
Baidu 11,522 3,172 1,810 3,358
APK Mirror 9,696 2,106 852 2,246
Huawei 6,655 3,613 2,227 3,895
Qihoo 360 4,321 3,092 1,524 3,251
AndroZoo 217,639 9,814 6,195 10,660
Pre-installed 1,247,447 16,886 14,912 19,312

Total 2,234,506 46,556 37,743 52,468

3.1 Custom permission analysis
The research literature on custom permissions is very nar-
row. Tuncay et al. [87] revealed vulnerabilities on Android’s
permission system related to custom permissions. They
described a custom permission upgrade attack that exploits
the permission groups to be able to enable any dangerous
permission without user awareness and approval. They also
discussed a confused deputy attack that exploits the lack
of enforcement on naming conventions to access signature
custom permissions with an app that is not signed with
the same certificate as the defining app. Both attacks were
acknowledged and fixed by Google. The lack of enforcement
on naming conventions has both transparency and security
implications. Bagheri et al. [63], [64] formally validated the
Android permission model and showed that the lack of
compliance with the naming conventions for custom per-
missions allows an attacker to access components protected
by a custom permission in the victim app, in a way akin of
the confused deputy attack described by Tuncay et al..

Li et al. show how custom permissions can be used to
gain access to APIs otherwise protected by AOSP permis-
sions [79]. The authors develop CuPerFuzzer, an automatic
fuzzing tool that they use against the Android OS. This
tool allowed them to discover four design shortcomings
of the permission system, which were reported to Google
and fixed by the Android security team. However some of
these attacks need user interaction to be carried out, which
renders them less practical. Their attack has since been fixed
in Android 10.

Finally, in our prior work, we performed a preliminary
analysis on the Android supply chain [75] and identified a
large number of custom permissions in pre-installed apps,
many embedded even in core Android components. Our
preliminary study, however, did not perform any systematic
analysis of their associated privacy and security risks, nor
about its usage by regular apps.

4 DATA COLLECTION

For this paper, we gathered a large-scale dataset of both
user-installed and pre-installed Android apps between 2019

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



5

and 2022 as shown in Table 1 that offers a holistic perspec-
tive of apps exposing and requesting custom permissions.

Public app stores. We implemented a purpose-built crawler
to download apps and their associated metadata from sev-
eral public app stores at scale: Google’s Play Store [25], Ten-
cent [44], APKMonk [13], Xiaomi’s Mi Store [45], Baidu [14],
APK Mirror [12], Huawei [27], and Qihoo 360 [40]. We chose
these app stores for their popularity, thus giving us access to
a representative picture of the Android ecosystem including
and beyond the Play Store [88]. We complement this corpus
with apps collected by the AndroZoo project [50].

Pre-installed apps. We rely on our dataset of pre-installed
apps that we collected via crowdsourcing mechanisms using
Firmware Scanner, a purpose-built app available on the Play
Store [22]. The dataset contains metadata about the devices
(e.g., brand, model, and country) in which the apps come
pre-installed. We refer the reader to our paper [75] for a
detailed description of the operation of Firmware Scanner.
The dataset contains 1,247,447 apps collected from 58,540
users, representing 17,973 unique device models associated
with 783 Original Equipment Manufacturers (OEMs). To ac-
count for different apps sharing the same package name but
potentially manipulated by different developers—a com-
mon occurrence in pre-installed applications, where core
Android components can be modified by the vendor—, we
identify unique apps by their package name and certificate.

4.1 Methodology for extracting custom permissions
We consider any permission to be custom if it never was
in the official list of AOSP permission for any Android
release. We therefore start by extracting the official AOSP
permissions across Android releases by parsing the mani-
fest of the open-source AOSP framework app [10]. Then,
to extract custom permissions, we parse the apps’ man-
ifests and extract <permission> tags for defined per-
missions, and both <uses-permission> tags and the
android:permission attributes of permissions protect-
ing apps’ components for requested custom permissions.
Using this approach, we obtain 257,710 unique custom
permissions, either defined or requested ones. Alongside
the permission name, we also extract metadata related to the
app that defined or requests it (e.g., app’s package name and
signing certificate), and information about the permission
itself (e.g., description field and protection level) to further
study the adoption of naming conventions, and developers’
willingness to document their custom permissions.

Attribution. We leverage Google’s naming recommenda-
tion as a proxy to identify the party responsible for the
definition of custom permissions. For example, com.foo.
PERMISSION has the second-level domain foo.com, which
should identify the author of the custom permission. How-
ever, as mentioned earlier, developers do not necessarily
abide by this convention. Relying on extra signals such
as the app’s signing certificate does not solve this issue,
as applications in Android use self-signed certificates, and
previous work showed the existence of applications pur-
posefully using false information in their certificate to im-
personate other companies [75], [77]. Due to the lack of
robust mechanisms to do sound attribution of apps and

custom permissions, we rely on the naming convention
as the only way to potentially understand who defined
a given permission. However, when available, we rely on
online documentation as a reliable source for (1) attributing
permissions to app developers or SDKs; and (2) inferring
what service or data the permission is protecting. In some
cases, we manually inspect the package name of the app and
the signing certificate to enhance our attribution process but
the scale of the dataset prevents us from performing this
process for every single app.

Push notification services. Push notifications are messages
displayed to the user, either from a local app, or from
a remote server even when their app is not running on
the device. Developers include a receiver in their app to
receive the notifications, which they protect with a custom
permission to prevent other apps from intercepting the
messages. We identified several push notification services
from companies such as Xiaomi [46], Amazon [1], and
others [31], [26], [52], [28], [15], [24]. Due to their widespread
use and its supposedly harmless nature, we exclude 205,242
permissions associated with such services for the rest of the
paper. However, we note that it is technically possible for a
malicious app to create a permission resembling the syntax
of a push notification service for harmful purposes. After
applying this filter, we consider 52,468 custom permission
names for this paper, both requested and defined.

4.2 Ethical considerations
Our data collection relied on real users that installed Firm-
ware Scanner on their devices. We follow the principles
of informed consent [69] and avoid the collection of any
personal or sensitive data. The app does collect some meta-
data about the device (e.g., its model and build fingerprint)
along with some data about the pre-installed applications
(extracted from the Package Manager), network operator
(MNO), and user (the timezone, and the MCC and MNC
codes from their SIM card, if available). Additionally, using
the developer contact details available on Google Play, we
also survey app developers making use of custom permis-
sions to better understand their rationale and the reasons
why they include them (§7). We treat this as sensitive data
since it might have unexpected consequences, e.g., for their
current and future employment. We therefore only report
statistical and anonymized data, and do not store any infor-
mation that could be used to identify a particular developer
or company. In both cases, we consulted our data collection
protocols with IMDEA Networks’ Data Protection Officer
(DPO) and received approval from our institutional ethical
review board to conduct this survey.

5 PREVALENCE OF CUSTOM PERMISSIONS

Table 1 preliminary results suggest that there is a significant
usage of custom permissions, both requested and defined,
regardless of the type of app or its origin. However, these
numbers by themselves do not completely convey the scale
and complexity of the custom permissions ecosystem, espe-
cially the number of actors involved. This section measures
how widely defined and requested custom permissions are
at the application- and market-level.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



6

Requested custom permissions

Defined custom permissions

15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 31

0

10k

20k

0

10k

20k

API level

N
um

be
r 

of
 p

er
m

is
si

on
s

App's origin

Pre−installed
Qihoo 360
APK Mirror
APKMonk
Baidu
Google Play
Xiaomi Mi
Tencent
Huawei
Others

Fig. 3: Number of custom permissions requested or defined
per target API level, broken down by the origin of the app.
For clarity reasons, we exclude apps that target an API level
lower than 15 as less than 0.1% of current Android devices
run such an old version [9].

5.1 Definition of custom permissions

Figure 3 shows the increasing number of defined custom
permission per API level targeted by the app, i.e., as new
Android versions get released. We note that the low number
of permissions for API level 30 and up is due to the fact that
our dataset only contains 85 applications targeting such API
levels, all origins included. We find that the proportion of
apps defining custom permissions is much lower than the
proportion of apps requesting them: only 4% of apps avail-
able on app stores define at least one custom permission
versus 26% of pre-installed apps. In fact, the Android Open
Source Project allows OEMs to define and expose their own
services to other apps through custom permissions.

The reasons why custom permissions are declared are
diverse. By comparing the device fingerprint reported by
Firmware Scanner with the prefixes of the custom permis-
sions exposed by pre-installed apps, we could label 63%
as OEM-defined. While most OEMs define custom permis-
sions, Samsung, Huawei and Amazon devices tend to define
more than the average. In fact, just Samsung defines 4,822
custom permissions, 109 of which are related to Samsung’s
Knox framework, a proprietary security framework that
offers features like access control, mobile device manage-
ment, and VPN capabilities [43], [35], [37]. Anecdotically,
we found a Samsung device that defines as many as 664
custom permissions. Many OEM permissions are defined
by core Android components (e.g., the default dialer app
(com.android.phone) customized by OEMs to add their
own features and services. Figure 4 renders a boxplot of
the number of custom permissions defined by such core
apps. This shows the high number of potential vulnera-
ble features made available by privileged and critical pre-
installed apps to other applications, including applications
distributed through Android stores.

Yet, not only OEMs define custom permissions. By
reasoning about their prefix, 34% custom permissions
are related to companies offering third-party analyt-
ics and advertising SDKs [80], [83], [70] (e.g.,Baidu,
AppsFlyer) or social networks (e.g., Facebook, Twitter).
For example, according to their official documentation,
the permission com.twitter.android.permission.
AUTH_APP is used for allowing users of a given app to
log in through Twitter, and com.baidu.permission.

com.android.contacts

com.android.email

com.android.mms

com.android.phone

com.android.settings

com.android.systemui

0 10 20 30 40 50
Number of defined custom permissions

Fig. 4: Number of custom permissions defined by core
Android components. Note that we do not include the
android app in this plot for readability reasons.

0%

25%

50%

75%

100%

APKM
on

k

Goo
gle

 P
lay

APK M
irr

or

Hua
wei

Baid
u

Pre
−in

sta
lle

d

Te
nc

en
t

Qiho
o 

36
0

Xiao
m

i M
i

Oth
er

 m
ar

ke
ts

P
er

ce
nt

ag
e 

of
pe

rm
is

si
on

s Base level

signatureOrSystem
signature
dangerous
normal

Fig. 5: Base protection level usage per origin of the app for
defined custom permissions.

BAIDU_LOCATION_SERVICE is related to Baidu’s map ser-
vices. Another interesting set of custom permissions are
6 permisisons for enabling IoT platform integration. For
example, the permission amazon.speech.permission.
SEND_DATA_TO_ALEXA relates to Alexa devices [30], while
51 are related to Google’s Android for cars services [17], in-
cluding accessing car-specific information such as the speed
of the vehicle (android.car.permission.CAR_SPEED)
or control of the lights (android.car.permission.
CONTROL_CAR_INTERIOR_LIGHTS).

Protection level analysis
As with regular AOSP permissions, custom permissions can
set different protection levels to regulate its access. Figure 5
shows the protection level of defined custom permissions
per app type. This figure shows that 39% of the cus-
tom permissions are defined with a signature protection
level. When considering exposed custom permissions with
a signatureOrSystem protection level, this proportion
rises up to 86%. This means that the majority of custom
permissions will only be granted to apps that share a signing
certificate with the declaring app as we will study at the end
of this section. 1

More concerning is the fact that 11% of the permissions
are defined with the normal protection level. Motorola,
HTC and Xiaomi define a total of 170, 193, and 269 custom
permissions with the normal protection level. For Samsung,
this number goes as high as 867 custom permissions. There-
fore, any app installed on the same device will automatically
get granted these permissions at installation time unless the
developer defining the permission implements other access
control mechanisms programmatically (e.g., by checking the

1. We note that the protection level signatureOrSystem is depre-
cated since API level 23 (Android 6.0) [41] and it is semantically equiv-
alent to the signature base protection type with the privileged
flag, which allows an app installed on the system partition to be
automatically granted the permission when requested [18].

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



7

0.0

0.5

1.0

0 10 100 1K 10K 100K 1M
Number of requesting apps per permission (log scale)

E
C

D
F

Defining app's origin Any Pre−installed App stores

Fig. 6: Number of apps requesting custom permissions in
our dataset, broken down by the origin of the defining app

package name of the calling app). Unfortunately, the lack
of public information about the actual purpose of these
custom permissions (or the type of data or service that they
protect) and tools for automatically analyzing their risks has
historically prevented us from assessing wheter sensitive
data is left unprotected, as we will demonstrate in Section 7.

5.2 Requests of custom permissions

Figure 3 shows the number of requested custom permissions
per target API level and origin of the app. In general, 30%
of apps published in public app markets request at least
one custom permission but this number is significantly
higher (62%) for pre-installed apps. When ranking them
by their prefix and popularity—which we define as the
number of apps requesting them—we can observe clusters
of popular custom permissions. Table 6 in the appendix
shows the top 20 most requested custom permissions,
along to their potential creator which we infer from
the Subject field of the app signing certificate and its
prefix. As we can see, Google Mobile Services (GMS)
permissions are requested by more than 10,000 apps
and they enable Google-related functionalities related
to in-app purchases [54] (com.android.vending.
BILLING), the Play Install Referrer Library [51],
[53] (com.google.android.finsky.permission.
BIND_GET_INSTALL_REFERRER_SERVICE) and Google
Sign-In [48] (com.google.android.gms.auth.api.
signin.permission.REVOCATION_NOTIFICATION).
Samsung permissions are also amongst the most widely
requested by app developers.

OEM-specific custom permissions
Figure 6 shows that custom permissions defined by pre-
installed apps are likely to be requested by more apps than
those defined by publicly available apps. Specifically, the
median number of requesting apps per permission is of
587 and 36 for pre-installed and publicly available apps,
respectively. This confirms the importance of inspecting
potential vulnerabilities on pre-installed apps, as we will
further discuss in Section 7.

Figure 7 provides a more detailed perspective on how
the OEM-specific permissions for the top-10 Android OEMs
are requested by publicly available apps.2 For completeness,
we include Google Mobile Services permissions exposed by
pre-installed apps on 87% of the devices in our dataset. We

2. We infer OEM popularity by the number of users with devices of a
given OEM in our dataset. Yet, our top-10 vendors correlate to publicly
available Android market shares [32].

TABLE 2: Most popular second level domains for custom
permissions defined or requested by apps on public stores.

Origin Most popular SLD
requested perms defined perms

Google Play google.com google.com
Tencent google.com tencent.com
APKMonk google.com sina.com
Xiaomi Mi permission.android tencent.com
Baidu permission.android lechuan.com
APK Mirror google.com google.com
Huawei permission.android huawei.com
Qihoo 360 permission.android tencent.com
Others permission.android permission.android

group the remaining vendors under the “Others” label. We
can infer two things from this figure: (i) a large number
of permissions exposed by pre-installed apps are primarily
requested by other pre-installed applications, which could
indicate the existence of partnerships between actors of the
supply chain of Android devices; and (ii) apps from all app
stores do request OEM-defined permissions. Specifically, a
total of 43,517 applications in our dataset request Samsung
Knox permissions, but 98% of them are other apps pre-
loaded on Samsung devices. Those apps distributed through
Google Play and requesting Knox services are mostly pro-
fessional applications like Cisco Webex, and MDM solu-
tions. This confirms that the important role of pre-installed
apps in the development of Android applications and the
need for assessing their security and privacy risks.

Market-level differences
At the market-level, we see that apps published in Xiaomi
Mi, Tencent and Huawei app markets tend to request more
custom permissions than apps published in Google Play.
We note that some markets are more recent than others.
For instance, the Huawei app store was only launched
globally in 2018 [29]. Their short age might explain why
the usage of custom permissions in Huawei’s market is
higher for higher API levels. Nevertheless, the declaration
of custom permissions in Android apps grows with new
Android releases: the median number of requested custom
permissions between API levels 15 and 25 (both included) is
5,303.5 per API level, while for API levels 26 to 31 (478,244
of all apps in our dataset), the median rises up to 9,550
requested custom permissions per API level.

Table 2 shows the most requested permission (grouped
by their SLDs) for apps publicly available on public app
stores. These figures stress the importance of Google per-
missions in Android app development, being the most
popular requested permissions in half of the markets we
cover. Google apps present on Google Play (including very
popular ones such as YouTube, GMail or the Google Play
Services app which is also pre-installed on any Google-
certified device) define as many as 183 custom permissions
with the com.google prefix. We find that the android.
permission prefix is the most requested permission
in app stores from China. For instance, the android.
permission.DOWNLOAD_WITHOUT_NOTIFICATION per-
mission (which is not part of AOSP) is requested by 5,757
applications on the Baidu app store alone. Permissions
seemingly from Google (i.e., in the google.com SLD

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8

13

0

10
00

20
00

3000

14
015

0
16

0

17
0

18
0

19
0

20
0

21

0

22

0

1

0

2

0

1000
3

0
4

0

50

6

0

10
00

20
00

70

8
0 9

0
10

0

11

0 1000

2000

3000

4000
12 0

Origin of defining apps
Asus
Huawei
Lenovo
Motorola

Oppo
Samsung
Sony
Vivo

Xiaomi
ZTE
Others
GMS

Origin of requesting apps

Pre−installed
Google Play
Qihoo 360
APK Mirror

APKMonk
Baidu
Huawei store
Xiaomi Mi

Tencent
Other stores

Fig. 7: Number of requested permissions defined by pre-
installed apps, broken down by the origin of the requesting
app (left side) and OEM (right side).

group) are still in the most popular ones in Chinese markets,
but followed by well-known Chinese companies such as
Tencent or Sina Corporation. This shows a geographical
divide between Chinese app stores and Google Play.

Signature permissions
One final aspect to consider is the link between exposed
and requested custom permissions with signature level,
as they can be automatically granted during installation
time. When a custom permission has a signature or
signatureOrSystem protection level, we check the cer-
tificate(s) of both the defining and requesting app, and
identify cases where both apps have at least one certificate in
common. This approach allows us to reproduce the behavior
of the Android OS at granting these permissions.

We focus on custom permissions that are declared by
pre-installed apps, as those apps are inherently more trusted
by the operating system [75]. We find that custom per-
missions declared by pre-installed apps are mostly re-
quested (and, in this case, granted) to other pre-installed
apps: out of the 586,354 apps that would be granted
signature or signatureOrSystem permissions, 99.9%
of them are pre-installed. We find 13,717 apps (2.3% of
the total) on public markets that would also be granted
such permissions automatically. In particular, we find that
some Facebook apps—including the official Facebook app
(com.facebook.katana) and Facebook Messenger (com.
facebook.orca—request custom permissions defined by
other pre-installed apps signed by the same certificate,

TABLE 3: Number of custom permissions definitions that do
not follow the naming convention. Note that an application
defining multiple custom permissions will be counted mul-
tiple times in this table.

Origin # of
definitions

# of bad
definitions Percentage

Google Play 63,193 7,087 11%
Tencent 9,902 1,629 17%
APKMonk 3,060 298 10%
Xiaomi Mi 5,898 1,219 21%
Baidu 4,703 612 13%
APK Mirror 19,543 1,654 9%
Huawei 3,392 464 14%
Qihoo 360 1,999 297 15%
AndroZoo
(other stores) 28,636 9,478 33%

Pre-installed 2,237,585 1,045,815 47%

Total 2,373,124 1,067,421 45%

hence most likely Facebook apps too. Such permissions
include com.facebook.appmanager.ACCESS or com.
facebook.receiver.permission.ACCESS, which are
not publicly documented. It is possible that these per-
missions are potentially related to partnerships and data-
sharing practices between Facebook and OEMs as revealed
in 2018 by the New York Times [81].

6 NAMING AND DECLARATION CONVENTIONS

Google recommends app developers to define custom per-
missions following a clear naming convention and to add
a description of the purpose of the custom permission. We
find that this recommendation is not enforced. Figures 8a
and 8b show the scale and complexity of the problem for a
subset of custom permissions that are requested by at least
2,000 apps in our dataset. Using the attribution method-
ology described in Section 4.1, we cluster this subset of
popular custom permissions into 67 second-level domains
(SLDs). When analyzing all custom permissions in our
dataset, we find a total of 11,209 SLDs groups, the majority
of which (65%) only contain one custom permission, and
94% five or less. Without proper and verifiable naming
conventions, nor a clear description of the services and
data protected by custom permissions, users cannot take
informed decisions when granting custom permissions to
apps. In fact, a malicious app developer could easily confuse
users by (intentionally) impersonating a well-known prefix,
such as com.google or com.samsung. In this section,
we empirically measure whether app developers exposing
permissions follow recommended practices.

6.1 Naming convention violations
We find naming convention violations to be widespread.
Table 3 lists the percentage of definitions that fail to adhere
to the naming convention, broken down per origin. The
percentage of permission declarations that fail to adhere to
the naming convention varies from 8% to 33% on public app
stores. For pre-installed apps, almost half (47%) of custom
permission declarations break the naming convention.

An example of such a violation is the com.qualcomm.
permission.QCOM_AUDIO permission, defined by the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



9

(a) Phylogenetic tree. The colors represent the most common
SLDs: com.google, com.huawei, com.sec,
com.samsung Note that the com.sec prefix might in fact be
related to Samsung’s Knox API [35]

.conv

.dexonpc

.miui

.oppo

.provider

.sidesync

.sstream

.telecom android.manifest

android.miui

com.amazon

com.anddoes com.bbk

com.bst

com.cequint

com.coloros

com.diagmondm

com.dsi com.facebook

com.fede

com.fingerprints

com.gsma

com.hiya com.infraware

com.lenovo

com.lge

com.mediatek com.meizu

com.mirrorlink

com.miui

com.motorola

com.msc com.nttdocomo

com.oppo

com.osp

com.qihoo360

com.qualcomm

com.samsungtest

com.sgmc

com.skt

com.slideme

com.sonyericsson

com.sonymobile

com.sprint

com.tencent

com.vcast com.verizon

com.vivo com.vodafone

com.wsomacp

com.wssnps

com.xiaomi org.adwfreak

org.fidoalliance

org.gsma

org.simalliance

samsung.android

(b) Treemap. For readability, we do not include the top
10 most common SLDs. The excluded prefixes seems to be
associated with Samsung (com.samsung, com.sec, .sec),
Google (com.google), Huawei (com.huawei, .huawei),
HTC (com.htc), and other entities which we could not iden-
tify (android.permission, com.android, org.adw)

Fig. 8: Treemap and phylogenetic tree of custom permissions requested by at least 2,000 apps each, grouped by their second
level domain.

com.verizon.obdm_permissions app. Not only are the
SLDs of the package name (qualcomm.com, a chipset man-
ufacturer) and of the custom permission (verizon.com, a
network operator) different, but the Subject field of the
signing certificate of the app mention a third entity, Google.
In that case, it is impossible to attribute with certainty the
custom permission to any of these entities.

Some violations are due to developers choosing to
use the same prefix as AOSP permissions, which can also
confuse the end user into granting a permission, thinking
it was created by the operating system, such as android.
permission.DOWNLOAD_WITHOUT_NOTIFICATION, or
android.permission.RECORD_VIDEO. In total, we
find 722 custom permissions that use the android.
permission prefix. This high number of permissions
using AOSP prefixes is surprising as OEMs are explicitly
forbidden from adding permissions to the android.*
namespace as part of their customization of the OS [5]. Yet,
we find that 87% of the apps defining at least one of the
722 custom permissions that we identified are pre-installed
applications, which could be a breach of the CDD. This
issue is still present in recent versions of Android: we
find that 226 of these permissions (31% of the total) are
defined by apps pre-installed on devices running Android
11 or 12. Anecdotally, we observe instances of applications
requesting custom permissions with names that are similar
to those of well-known AOSP permissions, but with typos.
We find, for instance, custom permissions that include the
string andorid instead of android, CORSE_LOCATION

instead of COARSE_LOCATION, or RUN_TIME instead of
RUNTIME.

We also find evidence suggesting that some naming
violations might be due to embedded third-party SDKs
or components integrated in the app: if an app embeds
an SDK that defines a custom permission, that permission
will be in the manifest of the host app (as explained in
Section 2), and most likely result in a violation of the naming
convention (unless both the app and the SDK share the
same package name). For instance, the app com.iugome.
lilknights (an RPG game available on Google Play)
defines the permission com.facebook.orca.provider.
ACCESS, which seems to be associated with the Facebook
Messenger app. Another more complex example is the com.
verizon.permission.ACCESS_REMOTE_SIMLOCK per-
mission, defined by the com.mediatek.op12.phone app.
Not only are the SLDs of the package name (mediatek.
com, a chipset manufacturer) and of the custom permission
(verizon.com, a network operator) different, but the sign-
ing certificate of the app mentions a third entity: TCL, a
phone manufacturer. Unfortunately, the lack of developers’
compliance and third-party control by app markets defeats
any automatic effort to perform accurate attribution of cus-
tom permissions to the responsible party.

6.2 Documentation for custom permissions, or lack
thereof
One option to better understand custom permissions would
be to look at their descriptions on the Android Manifest

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



10

TABLE 4: Percentage of custom permissions definitions
(grouped by their SLD or not) without description

Origin % of definitions
without description

% of SLDs
without description

Google Play 82% 75%
Tencent 94% 91%
APKMonk 76% 66%
Xiaomi Mi 91% 88%
Baidu 98% 97%
APK Mirror 74% 48%
Huawei 97% 94%
Qihoo 360 96% 93%
AndroZoo
(other stores) 67% 60%

Pre-installed 70% 45%

All 75% 47%

file. While documenting custom permissions is a practice
recommended by Google [47], it is not mandatory for de-
velopers and we find that in 75% of the cases this field
is just empty. Table 4 shows the percentage of custom
permissions definitions without description broken down
by the origin of the apps. We also give the percentage of
custom permissions without description when grouped by
their prefix SLD. As it can be observed, applications very
often lack custom permissions’ description when regardless
of their origin market.

We also find that when developers provide a custom
permission description, it is often vague and does not de-
scribe accurately what their actual purpose is (e.g., “Quick
connect” or “Dolby Tuning permission description”). In
some cases, the suffix of a permission can render useful
for inferring their purpose. We find custom permissions
that use the exact same suffix as official AOSP permis-
sions, such as com.oppo.permission.safe.CAMERA or
thinkyeah.permission.READ_SMS. In total, we find 142
unique custom permissions with a normal protection level
that use the same suffix as a dangerous AOSP permission,
and 1,334 with a signature or signatureOrSystem
suffix. It is unclear to us why these developers might try
to replicate AOSP permissions, and this might suggest that
they could provide covert access to AOSP-protected system
resources and data. Nonetheless, such a string-based analy-
sis is not conclusive in itself, and requires further code-level
investigation.

Finally, we find that online documentation explaining
which company is behind a given permission and what
is the functionality or data protected is very scarce. In
fact, we manually looked for public documentation for the
permissions in our dataset using online search engines and
do not find publicly available documentation for most of
them (94%). This is a highly manual and time-consuming
task, and thus we could not realistically manually search
for 257,710 permissions. Instead, we rank the permissions
by their prevalence and focus our manual efforts on those
that are most highly used. For the lesser known permis-
sions, we implement an automatic crawler that relies on the
DuckDuckGo API to search for documentation relevant to
the permission. Furthermore, we also crawl StackOverflow
forums to find discussions revolving around the permission.
Even when combining automatic and manual analysis of

App 1

App 2

´
GPS

P
er
m
is
si
o
n
sy
st
em

[dangerous]

Query without user consent

Query with user consent

Location data

shareLocService
µ

[normal]
1

2

3

4

Fig. 9: Scenario where an attacker bypasses the permission
model using a service protected by a custom permission.
The circled numbers indicate the order of each step.

different resources, we are barely ever able to find any in-
formation relevant to a given permissions functionality. This
suggests that inferring the purpose of a custom permission
requires analyzing the code of the app.

7 DETECTING LEAKY CUSTOM PERMISSIONS

The main goal of the Android permission system is to pro-
tect sensitive system APIs from unwanted access without
explicit user consent. However, custom permissions also
make the Android permission model vulnerable to an eleva-
tion of privilege attack, as highlighted by Tuncay et al. [87]
and Bagheri et al. [63], [64]. In this scenario, we hypothesize
that an app can obtain access to sensitive data, or to perform
an action that is protected by an AOSP permission, and then
make it available to other apps via a custom permission
that has a lower protection level than the original AOSP
permission.

Figure 9 illustrates this situation. App1 first tries to
get the user’s location through the official API but either
lacks the necessary AOSP permission or the user rejects the
request, so it is denied. Then, App1 sends an Intent [57]
to the shareLocService service exposed by App2. This
component is protected by a custom permission that App1
holds. App2 also holds the AOSP location permission, so it
is able to successfully obtain the user’s location. App2 then
sends back the location to App1 as a response to its Intent.

In this particular scenario, App1 and App2 do not nec-
essarily need to cooperate. The result is identical if App2
fails to correctly protect its service, e.g., by giving access
to it with a permission that has a normal protection level.
This creates a vulnerability that an attacker could exploit
simply by sending an Intent to the service to retrieve the
location. In the attack above, the only user interaction that
will occur would be at step three, where the OS will display
a popup window to ask the user if they wish to allow App2
to access the location. If the user had already granted such
a permission to App2, then the attack will play out without
any user interaction.

7.1 Tooling
Android’s custom permissions are asynchronous software
artifacts that are difficult to monitor, model, and study.
While there is a vast arsenal of highly useful static and
dynamic analysis tools to study many harmful and privacy-
intrusive behaviors on Android, none of them are fit to
effectively infer the purpose of custom permissions and to

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



11

determine whether they expose sensitive data or system
resources. For example, Flowdroid [60] allows tracking data
flows within a given component, but it is unable to han-
dle neither inter-component nor inter-app communication—
both of which are essential in the analysis of custom permis-
sions. Similar limitations are present in Amandroid (since
renamed Argus-SAF) [89] which is able to detect inter-
component leaks but it does not detect information leaks
between apps through components protected by a custom
permission. Finally, PScout [61] analyzes permissions by
mapping them to AOSP APIs, and it is not intended for
understanding what these permissions are protecting or for
determining the purpose of a custom permission. Further-
more, typical analysis challenges such as software obfusca-
tion, dynamic code loading, or deodexing of compiled pre-
installed software further complicate the analysis of custom
permissions.

To overcome these technical limitations and challenges,
we create permissionTracer and permissionTainter,
two complementary tools tailored to the analysis of custom
permissions:

Tool 1. permissionTracer. We create
permissionTracer, a triage tool to extract information
about the data type or features protected by custom
permissions. Given an application defining custom
permissions, the tool analyzes all components protected
by such permissions and reports: (i) the data types of
return values and method prototypes that an app can
access when interacting with said component; and (ii)
the list of APIs protected by AOSP permissions accessed
within the component’s methods. The ability to extract
this knowledge allows determining whether components
protected by custom permissions could potentially allow
access—by mistake or by design—to restricted data to an
app that does not hold the required AOSP permission
and which ones might require manual verification. The
way permissionTracer analyzes a protected component
depends on its type:

• For activities and broadcast receivers, it looks for the
setResult method and extracts its return data type.

• For content providers (which work as a database for
other applications), permissionTracer obtains the
type of the getType method.

• For services where no data is returned, it extracts
and parses the method prototypes (i.e., method name,
return type, and parameter types) from all the inter-
faces that are returned by the onBind method. The
type of data (e.g., String or Android objects such as
Android.location.Location) allows understand-
ing the kind of information (e.g., contacts or location) it
might expose.

permissionTracer follows a tree search of all method
calls and parses the Smali code of each method looking
for API calls. This process involves multiple steps. First,
permissionTracer extracts and classifies all methods
as either external, i.e., not defined by the app being ana-
lyzed like AOSP calls, or internal. For the external calls,
permissionTracer looks at whether an AOSP permis-
sion is needed to invoke the method using our permission

mappings.3 For internal methods, it adds them to a stack
and traverses them recursively once the current method has
been analyzed. We limit the stack size to an arbitrary limit
of 7 method calls. To that end, we modify Androguard [2]
to load our AOSP permission mappings, and to obtain the
list of permission protected APIs accessed in a given class.
We evaluate permissionTracer by manually inspecting
the Android components protected by custom permissions
across 400 APKs. From those, we manually extract the
objects and value types that the components return, and
compare this to the output of permissionTracer in the
dataset. We do not find any false positive or false negative in
the output of our tool. We make our modifications publicly
available along with permissionTracer’s code and AOSP
permission mappings.
Tool 2. permissionTainter. permissionTracer can-
not discover potential leaks of data protected by
AOSP permissions. To aid in this task, we build
permissionTainter, a static taint analyzer developed to
study custom permissions on top of our modified version
of Androguard. permissionTainter starts by looking for
intent filters that are registered by the application that are
not already defined in the app’s manifest. Then, it parses
the DEX code to look for intents and handlers, and tries
to associate them with their target. For intents, the target
can be explicitly set by the app, or implicit in the case of
broadcasted intents. In the latter case, we use the list of
intent filters to determine the classes that would receive
such an intent.

After this step, permissionTainter enriches the anal-
ysis object created by Androguard (which contains, among
other elements, all the classes, methods and the cross-
references between them) to add extra cross-references to
account for asynchronous communications, such as intents.
Essentially, permissionTainter creates a graph repre-
senting the whole DEX code where vertices are methods and
edges are methods calls, which now include asynchronous
communications as well.

Finally, permissionTainter relies on the default
sources and sinks used by Flowdroid [23] along with the
modifications shown in Table 7 of the appendix. It also
considers any AOSP API protected by an AOSP permission
as a source. permissionTainter first locates all calls to
sink methods and, for each occurrence, builds a call graph
rooted at that method. It then looks for any call to a source
method in that call graph and extracts all paths from the
sources to the sinks. A path in the call graph indicates that
the value returned by the source method could make its
way to the sink. permissionTainter then follows each
path in the call graph and creates the corresponding control
flow graph (CFG). Again, permissionTainter looks for

3. To extract the list of protected AOSP APIs, we update Axplorer’s
mappings [62] with (1) mappings provided by Android Studio IDE [8];
This includes lint scripts to warn developers if they use certain API
calls without requesting the associated permission. and (2) knowledge
extracted from the AOSP source code to see the prototypes of methods
that use the @RequiresPermission annotation [42], which indicate
the permission(s) that need to be granted to an app in order to invoke
a given AOSP method. To the best of our knowledge, we are the first
to follow this easy-to-update approach to obtain a more complete and
fresh mapping of API calls to AOSP permissions.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



12

all paths from the source to the sink, this time in the CFG,
and applies tainting rules to detect potential misuses.
Limitations. Both of our tools suffer from a number of
limitations which are common to other static analysis ap-
proaches for Android apps. They cannot detect calls to pro-
tected APIs that are called by other components loaded dy-
namically during runtime (e.g., using Java’s reflection [58]
or JNI APIs). While they can tell if a component uses
permission-protected APIs, they cannot guarantee that the
component will be actually used in runtime. Moreover,
pre-installed applications can use ODEX instead of DEX
files, which are stored alongside the APK file. Because of
limitations in our data collection strategy, we may miss the
ODEX file associated with an APK, which prevent us from
doing any code analysis. Lastly, our tools cannot detect if
an app manually implements access control mechanisms
(e.g., by checking the package name of the calling app upon
receiving an intent). Such an analysis must therefore be
conducted manually, after detection of a potential case of
abuse.

7.2 Analysis results
We run both tools on our dataset of 96,748 unique applica-
tions exposing custom permissions to protect 214,943 com-
ponents.4 Using permissionTracer, we find that 24,648
of those components (11%) access at least one API protected
by an AOSP permission, and 16% of those components
access at least one API protected by an AOSP permission
with a dangerous protection level. This tool allows us to
identify the following behaviors:

Sensitive components
We find that 1,209 components (over 2,192 apps) use a
custom permission with a normal protection level. These
components are essentially unprotected, as the normal
protection level allows any app on the device to request
and be granted the permission. 55% of these apps are pre-
installed. For example:

• 950 of those components access APIs protected by the
READ_PHONE_STATE permission, which grants access
to non resettable device identifiers such as the IMEI un-
til Android 10, which can be used for user tracking [16].

• 497 components access location data protected by the
ACCESS_COARSE_LOCATION permission, while 422 ac-
cess ACCESS_FINE_LOCATION.

• We find 134 components accessing APIs protected by
READ_PRIVILEGED_PHONE_STATE, which also gives
access to unique identifiers, and 58 components ac-
cessing APIs protected by WRITE_SECURE_SETTINGS
which allows for the modification of the system prefer-
ences of the device.

Such findings do not necessarily indicate a malicious in-
tent from the developer, but insecure development practices
that could be exploited by malicious actors to access AOSP-
protected data without user awareness. This is particularly
concerning with normal custom permissions, which are

4. Note that given the scale of our dataset, we only analyse the
latest version of each package and, in the case of pre-loaded apps, we
define as unique apps those unique combinations of package names
and signing certificates.

granted automatically at install time. An example of such a
permission is melons.dialer.permission.CALL_LOG,
defined by a dialer app that was published on Google Play.
This permission has a normal protection level and protects
a content provider that allows other apps to read and delete
entries from the call log. The application implements access
control simply by checking the package name of the caller
app, and only allows queries from package names in a hard-
coded list of messenger apps, including some from the same
developer. Thus, an attacker just needs to use one of these
packages names for their app and then query the dialer
app to read or delete call log entries without requesting the
AOSP permission. We tested and verified this vulnerability
dynamically with a proof-of-concept app.

We also study in detail the return types of the 3,780 meth-
ods that permissionTracer detected. Unsurprisingly, we
find that most methods return void, boolean, or integer
values (36%, 29% and 16% of the cases, respectively). How-
ever, the method returns Android objects in 123 cases. For
instance, the mobi.maptrek.lite app defines the mobi.
maptrek.lite.permission.RECEIVE_LOCATION per-
mission (normal protection level) to protect a service
that defines a getLocation() method, which returns a
Landroid/Location/Location object. Further analysis
of the app code shows that the service makes the user
location available to any colluding application that requires
the custom permission. The app defining this permission
is an offline map app, intended to be used during outdoor
activities when the user has no Internet connection. The app
is available on Google Play Store and has been downloaded
over 10k times. We verified this attack with a proof-of-
concept app, showing that any app can access the user
location without requesting the official AOSP permission
and without the need to interact with the developers of the
other app. In 19% of the cases, the methods return a custom
object defined by the app itself.

PII leaks

permissionTainter detects 5 potential PII leaks in pre-
installed applications. All these apps implement a similar
pattern: upon receiving an intent with a specific action
(which can be discovered by simply analyzing the source
code of the protected component), an attacker can make
the component broadcast an intent which contains the Wi-Fi
and Bluetooth MAC addresses as extras. We find these apps
even in recent Samsung, Asus and LGE devices running
Android version 11. We have not found similar behaviors
in apps published in app stores. Any colluding app that has
the correct intent filter (which can also be simply discovered
by analyzing the component’s source code) can then receive
that intent and get access to the MAC addresses. The MAC
addresses can then be used to uniquely identify a user, or
can be used to infer their location [34].

Placeholder permissions

We identify 212,277 applications defining custom permis-
sions that are potentially unused, i.e., the permissions is
defined but it is never used in the manifest to protect any of
the app’s components. We name those as “placeholder permis-
sions.” The reasons why they are defined remain unknown

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



13

TABLE 5: Number of apps defining placeholder permissions
and apps dynamically enforcing custom permissions broken
down by dataset of origin.

Origin
# placeholder
applications

# calling
check*

# calling
enforce*

# calling
any

Pre-installed 189,177 45,889 5,771 51,793
Public apps 23,143 149 8 149

Total 212,277 5,779 46,038 51,942

to us but it might be the result of poor development prac-
tices, such as including code obtained from online forums or
legacy code from older versions of the app. Yet, it is possible
that such apps do not rely on the system’s package manager
to enforce their permission and chose to do so internally
using either checkPermission, enforcePermission, or
one of their variants [56].

To detect such cases, we analyze the binaries of these
apps to look for calls to these methods. We find stark differ-
ences between pre-installed apps, where 51,793 of the apps
call one of the methods, and publicly-available apps, where
only 149 of the apps do so. Overall, only 51,942 of the apps
seem to do dynamic enforcement of custom permissions.
Table 5 shows the number of apps for which we detected at
least one call to checkPermission, enforcePermission
or one of their variants [56] in the DEX or ODEX code of
apps that are defined but do not protect any component. We
grouped together all apps collected from public app stores
or from AndroZoo under the “Public apps” category.

To gain a better understanding of why so many app
developers define custom permissions but do not protect
any component with it (nor enforce them dynamically), we
contacted 529 developers using the contact email address
listed in the public profile of their apps. We discuss the
ethical considerations and IRB approval in §4. Our survey
received 53 responses. Surprisingly, 28% of the developers
that responded to us either did not know that their app
defined a custom permission or they did not know why it
was there. In 17% of the cases, an SDK used by the developer
added the permission. In 9% of the cases, the permission
was associated with an old feature that had been already
removed.

Although the scale of our survey is small, it provides
some intriguing perspectives on the reasons behind the
widespread usage of custom permissions. The responses
suggest a poor understanding of the (custom) permission
system by some developers, which could negatively impact
users by inadvertently exposing sensitive data or resources.

8 DISCUSSION

Through the course of this research we have uncovered
several problems inherent to custom permissions. As they
are, custom permissions open various avenues for abuse, an
issue which is compounded by a severe lack of transparency
in the app ecosystem of Android. This stems chiefly from a
lack of enforcement of software development and platform
policies that promote transparency and best development
practices. As a result, and as we demonstrated, finding
abuse and errors in custom permissions, as well as at-
tributing behaviors, is a herculean task, resulting in a lack

of accountability across the ecosystem. In this section, we
discuss our findings and propose workable solutions based
on our observations.

Google, both as the platform operator and the main
driving force behind AOSP, is in a privileged position to
mitigate the issues we reported about the use and abuse of
custom permissions. Google has already fixed previously-
discovered issues, such as the permission re-delegation and
confused deputy attacks described by Tuncay et al. [87] but
the technical challenges imposed by custom permissions
have impeded the discovery of insecure implementations as
the ones described in this paper. We next discuss potential
strategies to address the issues reported in this paper.

8.1 Privilege escalation
Fixing privilege escalation issues arising from custom per-
missions is complex, as it exploits a functionality inherent to
the Android permission system. One approach to tackle it
would be to determine the AOSP permissions being used in
the protected component to perform a risk assessment using
a tool such as permissionTracer. Note that a dangerous
permission might, nonetheless, be used within a component
without exposing the data protected by it. We believe that
the ability to automatically prevent potential attacks justifies
instances in which the platform enforces a higher permis-
sion level (e.g., dangerous) for a custom permission than the
originally necessary (e.g., normal). This enforcement can be
done automatically by analyzing the app’s code and it could
be introduced as part of the analysis processes implemented
in Google Play Protect [59], the built-in security mechanism
present on Android devices and in the Google Play Store.

8.2 Transparency and user control
Requiring app developers to include a better description of
the purpose and the potential risks associated with their
defined custom permissions is an important and much-
needed first step to improve transparency, promoting user
awareness, and empowering user control. We understand
that developers can still be obscure or deceitful in describing
the purpose of a permission. To make this more effective, we
suggest extending the description field with a mandatory
risk self-assessment done by the developer. Such assessment
might consist of a few key questions with a set of predefined
answers regarding the data and features accessed or shared
by the permission. Software distribution channels can verify
and enforce permission description sanity, at least at a
basic level. Furthermore, this could be a way to ensure
that developers do not define custom permissions that are
unnecessary, reinforcing the practices already implemented
by Google to encourage developers to minimize the access
to sensitive permissions via permission nudges [82].

Another step in the right direction would be to inform
users about the custom permissions requested and defined
by an app. Right now, a custom permission is only shown
to the user when requested, if the developer itself decides to
give it a dangerous protection level. The risk self-assessment
discussed above should be the basis to convey the informa-
tion effectively. The replies to the set of questions could be
leveraged to automatically decide the protection level of the
custom permission, instead of leaving this decision to the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



14

developer. Finally, the platform should offer users a mech-
anism to revoke previously granted custom permissions,
both individually for a particular app or globally within the
system through a blocklist.

8.3 Accountability
The attribution problem in Android extends beyond custom
permissions as it is rooted in the absence of a reliable way of
tracing an app back to its developer. One potential solution
to this problem would be for Google to require app devel-
opers to take ownership of their apps through a centralized
certificate solution. This, in turn, allows users to know the
true developer of the apps, as well as the entity that exposes
the custom permission to other apps (which itself could be
an embedded third-party component). Additionally, custom
permissions should add a definer tag to their definitions so
that a user would always know who is the actor behind
a given custom permission as in the case of permissions
defined by third-party components embedded in the app.

9 CONCLUSIONS

In this paper, we presented a holistic view of the prevalence
of custom permissions in the Android ecosystem and their
inherent transparency, security and privacy problems. Our
findings suggest that, despite this being a widely used
feature in both pre-installed and publicly available apps,
custom permissions lack transparency, accountability, and
it is the source of potential security and privacy harm for
end users. We hope that our work will bring more focus
to the issues surrounding Android’s custom permissions
ecosystem. In an effort to foster more research efforts in
this area, we make available our dataset of custom per-
missions [21], [20], as well as the source code of our tools,
permissionTracer [38] and permissionTainter [39],
to the research community, platform operators, and regula-
tors.

ACKNOWLEDGMENTS

This research has been partially funded by the Span-
ish Government grant ODIO (PID2019-111429RB-C21 and
PID2019-111429RBC22); the Region of Madrid, co-financed
by European Structural Funds ESF and FEDER Funds,
grant CYNAMON-CM (P2018/TCS-4566); Google and Con-
sumer Reports; and by the EU H2020 grant TRUST aWARE
(101021377). The opinions, findings, and conclusions or rec-
ommendations expressed are those of the authors and do
not necessarily reflect those of any of the funders.

REFERENCES

[1] Amazon Push Notification Service. https://developer.amazon.
com/docs/adm/integrate-your-app.html. [Online; accessed 03-
Feb-2021].

[2] Androguard.
https://github.com/androguard/androguard/. [Online; accessed
19-March-2019].

[3] Android Certified Partners — brands. https://www.android.
com/certified/partners/. [Online; accessed 7-July-2020].

[4] Android Certified Partners — ODMs. https://www.android.
com/certified/partners/#tab-panel-odms. [Online; accessed 7-
July-2020].

[5] Android Comptability Document — Permissions. https://source.
android.com/compatibility/android-cdd#9 1 permissions. [On-
line; accessed 7-July-2020].

[6] Android Developers.
https://developer.android.com/guide/topics/manifest/
permission-element.html. [Online; accessed 29-May-2019].

[7] Android Developers - Define a Custom App Permission. https:
//developer.android.com/guide/topics/permissions/defining.
[Online; accessed 25-Jul-2019].

[8] Android Studio code annotations.
https://android.googlesource.com/platform/tools/adt/idea/
+/refs/heads/mirror-goog-studio-master-dev/android/
annotations/android/. [Online; accessed 23-March-2020].

[9] Android Version Distribution statis-
tics. https://www.xda-developers.com/
android-version-distribution-statistics-android-studio/. [Online;
accessed 31-May-2020].

[10] Androidmanfiest.xml.
https://android.googlesource.com/platform/frameworks/base/
+/refs/heads/master/core/res/AndroidManifest.xml. [Online;
accessed 29-July-2019].

[11] android:sharedUserId. https://developer.android.com/guide/
topics/manifest/manifest-element#uid. [Online; accessed 15-Mar-
2021].

[12] APK Mirror App Store. https://www.apkmirror.com/. [Online;
accessed 28-May-2020].

[13] APK Monk App Store. https://www.apkmonk.com/. [Online;
accessed 28-May-2020].

[14] Baidu App Store. https://shouji.baidu.com/. [Online; accessed
28-May-2020].

[15] Baidu Push Notification Service. http://push.baidu.com/doc/
android/api. [Online; accessed 03-Feb-2021].

[16] Best practices for unique identifiers. https://developer.android.
com/training/articles/user-data-ids. [Online; accessed 1-Apr-
2021].

[17] Cars — Android Developers. https://developer.android.com/
reference/android/car/Car.

[18] Commit a90c8de: Add new ”preinstalled” permission flag.
https://android.googlesource.com/platform/frameworks/
base/+/a90c8def2c6762bc6e5396b78c43e65e4b05079d. [Online;
accessed 11-July-2019].

[19] Dataset for Sources and Sinks. https://github.com/
Android-Observatory/PermissionTainter/blob/master/
SourcesAndSinks custom perms.txt.

[20] Dataset of defined custom permissions. https://
androidobservatory.com/files/defined perms all release.json.xz.

[21] Dataset of requested custom permissions. https:
//androidobservatory.com/files/requested perms all release.
json.xz.

[22] Firmware Scanner.
https://play.google.com/store/apps/details?id=org.imdea.
networks.iag.preinstalleduploader. [Online; accessed 06-March-
2019].

[23] FlowDroid’s Sources and Sinks list. https://github.com/
secure-software-engineering/FlowDroid/blob/develop/
soot-infoflow-android/SourcesAndSinks.txt.

[24] Google Maps Receive Permission. https:
//stackoverflow.com/questions/14832911/
android-map-v2-why-maps-receive-permission. [Online;
accessed 03-Feb-2021].

[25] Google Play App Store. https://play.google.com/store/apps/.
[Online; accessed 28-May-2020].

[26] Google Push Notification Service. https://web.archive.org/
web/20121004073640/https://developers.google.com/android/
c2dm/. [Online; accessed 03-Feb-2021].

[27] Huawei App Store. https://appgallery1.huawei.com/#/Featured.
[Online; accessed 28-May-2020].

[28] Huawei Push Notification Service. https:
//stackoverflow.com/questions/57860791/
how-to-access-payload-of-hms-push-notifications. [Online;
accessed 03-Feb-2021].

[29] Huawei’s Android App Store Launches Internation-
ally. https://www.androidheadlines.com/2018/04/
huaweis-android-app-store-launches-internationally.html.
[Online; accessed 16-June-2020].

[30] Integrate Amazon Device Messaging (ADM). https://developer.
amazon.com/docs/video-skills-fire-tv-apps/integrate-adm.html.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://developer.amazon.com/docs/adm/integrate-your-app.html
https://developer.amazon.com/docs/adm/integrate-your-app.html
https://github.com/androguard/androguard/
https://www.android.com/certified/partners/
https://www.android.com/certified/partners/
https://www.android.com/certified/partners/#tab-panel-odms
https://www.android.com/certified/partners/#tab-panel-odms
https://source.android.com/compatibility/android-cdd#9_1_permissions
https://source.android.com/compatibility/android-cdd#9_1_permissions
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://android.googlesource.com/platform/tools/adt/idea/+/refs/heads/mirror-goog-studio-master-dev/android/annotations/android/
https://android.googlesource.com/platform/tools/adt/idea/+/refs/heads/mirror-goog-studio-master-dev/android/annotations/android/
https://android.googlesource.com/platform/tools/adt/idea/+/refs/heads/mirror-goog-studio-master-dev/android/annotations/android/
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://www.xda-developers.com/android-version-distribution-statistics-android-studio/
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/res/AndroidManifest.xml
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/core/res/AndroidManifest.xml
https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://www.apkmirror.com/
https://www.apkmonk.com/
https://shouji.baidu.com/
http://push.baidu.com/doc/android/api
http://push.baidu.com/doc/android/api
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/reference/android/car/Car
https://developer.android.com/reference/android/car/Car
https://android.googlesource.com/platform/frameworks/base/+/a90c8def2c6762bc6e5396b78c43e65e4b05079d
https://android.googlesource.com/platform/frameworks/base/+/a90c8def2c6762bc6e5396b78c43e65e4b05079d
https://github.com/Android-Observatory/PermissionTainter/blob/master/SourcesAndSinks_custom_perms.txt
https://github.com/Android-Observatory/PermissionTainter/blob/master/SourcesAndSinks_custom_perms.txt
https://github.com/Android-Observatory/PermissionTainter/blob/master/SourcesAndSinks_custom_perms.txt
https://androidobservatory.com/files/defined_perms_all_release.json.xz
https://androidobservatory.com/files/defined_perms_all_release.json.xz
https://androidobservatory.com/files/requested_perms_all_release.json.xz
https://androidobservatory.com/files/requested_perms_all_release.json.xz
https://androidobservatory.com/files/requested_perms_all_release.json.xz
https://play.google.com/store/apps/details?id=org.imdea.networks.iag.preinstalleduploader
https://play.google.com/store/apps/details?id=org.imdea.networks.iag.preinstalleduploader
https://github.com/secure-software-engineering/FlowDroid/blob/develop/soot-infoflow-android/SourcesAndSinks.txt
https://github.com/secure-software-engineering/FlowDroid/blob/develop/soot-infoflow-android/SourcesAndSinks.txt
https://github.com/secure-software-engineering/FlowDroid/blob/develop/soot-infoflow-android/SourcesAndSinks.txt
https://stackoverflow.com/questions/14832911/android-map-v2-why-maps-receive-permission
https://stackoverflow.com/questions/14832911/android-map-v2-why-maps-receive-permission
https://stackoverflow.com/questions/14832911/android-map-v2-why-maps-receive-permission
https://play.google.com/store/apps/
https://web.archive.org/web/20121004073640/https://developers.google.com/android/c2dm/
https://web.archive.org/web/20121004073640/https://developers.google.com/android/c2dm/
https://web.archive.org/web/20121004073640/https://developers.google.com/android/c2dm/
https://appgallery1.huawei.com/#/Featured
https://stackoverflow.com/questions/57860791/how-to-access-payload-of-hms-push-notifications
https://stackoverflow.com/questions/57860791/how-to-access-payload-of-hms-push-notifications
https://stackoverflow.com/questions/57860791/how-to-access-payload-of-hms-push-notifications
https://www.androidheadlines.com/2018/04/huaweis-android-app-store-launches-internationally.html
https://www.androidheadlines.com/2018/04/huaweis-android-app-store-launches-internationally.html
https://developer.amazon.com/docs/video-skills-fire-tv-apps/integrate-adm.html
https://developer.amazon.com/docs/video-skills-fire-tv-apps/integrate-adm.html


15

[31] Jiguang Push Notification Service. https://docs.
jiguang.cn/en/jpush/client/Android/android guide/
#configuration-and-code-instructions. [Online; accessed 03-
Feb-2021].

[32] Market share development per Android phone manufacturer.
https://www.appbrain.com/stats/top-manufacturers.

[33] Merge multiple manifest files. https://developer.android.com/
studio/build/manifest-merge. [Online; accessed 22-July-2020].

[34] Mobile Advertising Network InMobi Settles FTC
Charges It Tracked Hundreds of Millions of Con-
sumers’ Locations Without Permission. https://www.
ftc.gov/news-events/news/press-releases/2016/06/
mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers.

[35] New permissions names. https://docs.samsungknox.com/dev/
knox-sdk/new-permission-names.htm.

[36] permission — Android Developers.
https://developer.android.com/guide/topics/manifest/
permission-element#desc.

[37] Permissions. https://docs.samsungknox.com/dev/common/
license-permissions.htm.

[38] PermissionTainter. https://github.com/Android-Observatory/
PermissionTainter.

[39] PermissionTracer. https://github.com/Android-Observatory/
PermissionTracer.

[40] Qihoo 360 App Store. http://zhushou.360.cn/. [Online; accessed
28-May-2020].

[41] R.attr.
https://developer.android.com/reference/android/R.attr.html#
protectionLevel. [Online; accessed 2-July-2019].

[42] RequiresPermission — AndroidX.
https://developer.android.com/reference/androidx/
annotation/RequiresPermission. [Online; accessed 23-March-
2020].

[43] Samsung Knox. https://www.samsungknox.com/en. [Online;
accessed 15-Apr-2021].

[44] Tencent App Store. https://android.myapp.com/. [Online; ac-
cessed 28-May-2020].

[45] Xiaomi Mi App Store. http://app.mi.com/. [Online; accessed
28-May-2020].

[46] Xiaomi Push Notification Service. https://docs.moengage.com/
docs/android-xiaomi-push. [Online; accessed 03-Feb-2021].

[47] Android Developers - Define a Custom App Permission, 2018.
https://developer.android.com/guide/topics/permissions/
defining.

[48] Android Developers - GoogleSignInApi. https://developers.
google.com/android/reference/com/google/android/gms/
auth/api/signin/GoogleSignInApi, 2018. [Online; accessed
6-Aug-2020].

[49] Android Developers - Permissions Overview, 2018. https://
developer.android.com/guide/topics/permissions/overview.

[50] AndroZoo, 2018. https://androzoo.uni.lu/.
[51] Google Issue Tracker - Why Google play services dependency

automatically added com.google.android.finsky.permission.
BIND GET INSTALL REFERRER SERVICE permission.
https://issuetracker.google.com/issues/78380811#comment22,
2018. [Online; accessed 6-Aug-2020].

[52] Migrate a GCM Client App for Android to Firebase Cloud Messag-
ing. https://developers.google.com/cloud-messaging/android/
android-migrate-fcm, 2018.

[53] Android Developers - Play Install Referrer Library. https:
//developer.android.com/google/play/installreferrer/library,
2019. [Online; accessed 6-Aug-2020].

[54] Android Developers - AIDL to Google Play Billing Library migra-
tion guide. https://developer.android.com/google/play/billing/
migrate, 2020. [Online; accessed 6-Aug-2020].

[55] Android Developers - Sign your app. https://developer.android.
com/studio/publish/app-signing, 2020. [Online; accessed 25-
Aug-2020].

[56] Context - Android Developers. https://developer.android.com/
reference/android/content/Context.html, 2020.

[57] Intent - Android Developers. https://developer.android.com/
reference/android/content/Intent, 2020.

[58] Using Java Reflection. https://www.oracle.com/
technical-resources/articles/java/javareflection.html, 2020.

[59] https://developers.google.com/android/play-protect. https://
developers.google.com/android/play-protect, 2021. [Online; ac-
cessed 15-Apr-2021].

[60] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau,
and Patrick McDaniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android
apps. Proceedings of the ACM Special Interest Group on Programming
Languages (SIGPLAN), 2014.

[61] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David
Lie. Pscout: analyzing the android permission specification. In
Proceedings of the ACM Conference on Computer and Communication
Security (CCS), 2012.

[62] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien
Octeau, and Sebastian Weisgerber. On demystifying the android
application framework: Re-visiting android permission specifica-
tion analysis. In Proceedings of the USENIX Security Symposium,
2016.

[63] Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson.
Detection of design flaws in the android permission protocol
through bounded verification. In Proceedings of the International
Symposium on Formal Methods, 2015.

[64] Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson.
A formal approach for detection of security flaws in the android
permission system. Formal Aspects of Computing, 2018.

[65] Kenneth Block, Sashank Narain, and Guevara Noubir. An auto-
nomic and permissionless android covert channel. In Proceedings
of the ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2017.

[66] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer,
and Ahmad-Reza Sadeghi. Xmandroid: A new android evolution
to mitigate privilege escalation attacks. Technische Universität
Darmstadt, Technical Report TR-2011-04, 2011.

[67] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I Hong,
and Yuvraj Agarwal. Does this app really need my location?
context-aware privacy management for smartphones. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies, 2017.

[68] Luke Deshotels. Inaudible sound as a covert channel in mobile de-
vices. In {USENIX}Workshop on Offensive Technologies ({WOOT}),
2014.

[69] David Dittrich and Erin Kenneally. The Menlo Report: Ethical
principles guiding information and communication technology
research. US Department of Homeland Security, 2012.

[70] Álvaro Feal, Julien Gamba, Juan Tapiador, Primal Wijesekera, Joel
Reardon, Serge Egelman, and Narseo Vallina-Rodriguez. Don’t
accept candy from strangers: An analysis of third-party mobile
sdks. Data Protection and Privacy: Data Protection and Artificial
Intelligence, 2021.

[71] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and
David Wagner. Android permissions demystified. In Proceedings of
the ACM Conference on Computer and Communication Security (CCS),
2011.

[72] Adrienne Porter Felt, Kate Greenwood, and David Wagner. The
effectiveness of application permissions. In Proceedings of the
USENIX conference on Web application development, 2011.

[73] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney,
Erika Chin, and David Wagner. Android permissions: User atten-
tion, comprehension, and behavior. In Proceedings of the Symposium
on Usable Privacy and Security (SOUPS), 2012.

[74] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve
Hanna, and Erika Chin. Permission re-delegation: Attacks and
defenses. In Proceedings of the USENIX Security Symposium, 2011.

[75] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan
Tapiador, and Narseo Vallina-Rodriguez. An analysis of pre-
installed android software. IEEE Symposium on Security and Privacy
(SP), 2020.

[76] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen.
Androidleaks: automatically detecting potential privacy leaks in
android applications on a large scale. In International Conference on
Trust and Trustworthy Computing, 2012.

[77] Kaspar Hageman, Álvaro Feal, Julien Gamba, Aniketh Girish,
Jakob Bleier, Martina Lindorfer, Juan Tapiador, and Narseo
Vallina-Rodriguez. Mixed signals: Analyzing software attribution
challenges in the android ecosystem. IEEE Transactions on Software
Engineering, 2023.

[78] Kristen Kennedy, Eric Gustafson, and Hao Chen. Quantifying the
effects of removing permissions from android applications. In
Mobile Security Technologies (MoST), 2013.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://docs.jiguang.cn/en/jpush/client/Android/android_guide/#configuration-and-code-instructions
https://docs.jiguang.cn/en/jpush/client/Android/android_guide/#configuration-and-code-instructions
https://docs.jiguang.cn/en/jpush/client/Android/android_guide/#configuration-and-code-instructions
https://www.appbrain.com/stats/top-manufacturers
https://developer.android.com/studio/build/manifest-merge
https://developer.android.com/studio/build/manifest-merge
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://docs.samsungknox.com/dev/knox-sdk/new-permission-names.htm
https://docs.samsungknox.com/dev/knox-sdk/new-permission-names.htm
https://developer.android.com/guide/topics/manifest/permission-element#desc
https://developer.android.com/guide/topics/manifest/permission-element#desc
https://docs.samsungknox.com/dev/common/license-permissions.htm
https://docs.samsungknox.com/dev/common/license-permissions.htm
https://github.com/Android-Observatory/PermissionTainter
https://github.com/Android-Observatory/PermissionTainter
https://github.com/Android-Observatory/PermissionTracer
https://github.com/Android-Observatory/PermissionTracer
http://zhushou.360.cn/
https://developer.android.com/reference/android/R.attr.html#protectionLevel
https://developer.android.com/reference/android/R.attr.html#protectionLevel
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://www.samsungknox.com/en
https://android.myapp.com/
http://app.mi.com/
https://docs.moengage.com/docs/android-xiaomi-push
https://docs.moengage.com/docs/android-xiaomi-push
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://developers.google.com/android/reference/com/google/android/gms/auth/api/signin/GoogleSignInApi
https://developers.google.com/android/reference/com/google/android/gms/auth/api/signin/GoogleSignInApi
https://developers.google.com/android/reference/com/google/android/gms/auth/api/signin/GoogleSignInApi
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://androzoo.uni.lu/
https://issuetracker.google.com/issues/78380811#comment22
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developer.android.com/google/play/installreferrer/library
https://developer.android.com/google/play/installreferrer/library
https://developer.android.com/google/play/billing/migrate
https://developer.android.com/google/play/billing/migrate
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://developers.google.com/android/play-protect
https://developers.google.com/android/play-protect


16

[79] Rui Li, Wenrui Diao, Zhou Li, Jianqi Du, and Shanqing Guo. An-
droid Custom Permissions Demystified: From Privilege Escalation
to Design Shortcomings. 2021.

[80] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar:
Fast and accurate detection of third-party libraries in android
apps. In Proceedings of the International Conference on Software
Engineering, 2016.

[81] New York Times. Facebook Gave Device Makers
Deep Access to Data on Users and Friends. https:
//www.nytimes.com/interactive/2018/06/03/technology/
facebook-device-partners-users-friends-data.html.

[82] Sai Teja Peddinti, Igor Bilogrevic, Nina Taft, Martin Pelikan, Úlfar
Erlingsson, Pauline Anthonysamy, and Giles Hogben. Reducing
permission requests in mobile apps. In Proceedings of the Internet
Measurement Conference (IMC), 2019.

[83] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-
Rodriguez, Srikanth Sundaresan, Mark Allman, Christian
Kreibich, and Phillipa Gill. Apps, trackers, privacy, and regulators:
A global study of the mobile tracking ecosystem. Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2018.

[84] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On,
Narseo Vallina-Rodriguez, and Serge Egelman. 50 ways to leak
your data: An exploration of apps’ circumvention of the android
permissions systems. Proceedings of the USENIX Security Sympo-
sium, 2019.

[85] Alireza Sadeghi, Hamid Bagheri, and Sam Malek. Analysis of
android inter-app security vulnerabilities using covert. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, volume 2, pages 725–728. IEEE, 2015.

[86] James Sellwood and Jason Crampton. Sleeping android: The
danger of dormant permissions. In Proceedings of the ACM workshop
on Security and Privacy in Smartphones & Mobile Devices, 2013.

[87] Güliz Seray Tuncay, Soteris Demetriou, Karan Ganju, and
C Gunter. Resolving the predicament of android custom permis-
sions. Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2018.

[88] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez,
Yao Guo, Li Li, Juan Tapiador, Jingcun Cao, and Guoai Xu.
Beyond Google Play: A Large-Scale Comparative Study of Chinese
Android App Markets. In Proceedings of the Internet Measurement
Conference (IMC), 2018.

[89] Fengguo Wei, Sankardas Roy, and Xinming Ou. Amandroid: A
precise and general inter-component data flow analysis frame-
work for security vetting of android apps. ACM Transactions on
Privacy and Security (TOPS), 2018.

[90] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egel-
man, David Wagner, and Konstantin Beznosov. Android per-
missions remystified: A field study on contextual integrity. In
Proceedings of the USENIX Security Symposium, 2015.

Julien Gamba is a PhD student in the Internet
Analytics Group at the IMDEA Networks Insti-
tute. His research revolves around user’s secu-
rity and privacy in Android devices. In his work,
Julien uses both static and dynamic analysis, as
well as other techniques specifically designed to
understand the behavior of mobile applications.
Recently, Julien was the first author of the first
large-scale analysis of the privacy and security
risks of pre-installed software on Android de-
vices and their supply chain, which was awarded

the Best Practical Paper Award at the 41st IEEE Symposium on Security
and Privacy. This study was featured in major newspaper such as The
Guardian (UK), the New York Times (USA), CDNet (USA) or El Paı́s
(Spain). Julien was also awarded the ACM IMC Community Contribution
Award in 2018 for his analysis of domain ranking services, and was
awarded the NortonLifeLock Research Group Graduate Fellowship, the
Google PhD Fellowship in Security and Privacy and Consumer Reports’
Digital Lab fellowship.

Álvaro Feal is a PhD student working at IMDEA
Networks Institute under Prof. Narseo Vallina-
Rodriguez’s supervision. His research revolves
around analyzing privacy threats in the mo-
bile and web ecosystem using static and dy-
namic analysis techniques as well as network
measurements. He has published his research
in different venues such as the IEEE Sympo-
sium on Security and Privacy, USENIX Security,
ACM IMC, PETS Symposium, IEEE ConPro, and
CPDP.

Eduardo Blazquez is a PhD student at the Car-
los III University of Madrid. His research focuses
on Android security and privacy issues, analyz-
ing the Android ecosystem using static and dy-
namic analysis techniques. Recently, he was the
first author of the first analysis of Firmware-over-
the-Air applications on Android devices, which
was published at the 42nd IEEE Symposium on
Security and Privacy.

Vinuri Bandara is a first year PhD student at
the IMDEA Networks Institute, supervised by Dr.
Narseo Vallina-Rodriguez. Her current research
focuses on privacy and security analysis of the
android ecosystem along with a focus on pri-
vacy policies and regulations. Her research has
been published at the IEEE International Work-
ing Conference on Source Code Analysis and
Manipulation and ACM Conference on Computer
and Communications Security.

Abbas Razaghpanah is a Senior Data Scientist
at ThousandEyes/Cisco, and a Research Scien-
tist at the International Computer Science Insti-
tute (ICSI) at University of California, Berkeley.
The crux of his work is the application of network
measurements in various areas of networking
and security research. His work in the area of
mobile privacy and security has been awarded
the Distinguished Paper Award at ACM IMC
2018, Best Practical Paper Award at the 41st
IEEE Symposium on Security and Privacy, the

CNIL-INRIA 2019 award for privacy protection, the 2020 Caspar Bowden
Privacy Enhancing Technology Award, and the 2019 AEPD Emilio Aced
Prize for Privacy Research. His work on mobile app privacy has received
international media attention from The Washington Post, CNET, The
Verge, The Guardian, and others.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html
https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html
https://www.nytimes.com/interactive/2018/06/03/technology/facebook-device-partners-users-friends-data.html


17

Juan Tapiador is Professor of Computer Sci-
ence at Universidad Carlos III de Madrid, Spain,
where he leads the Computer Security Lab. Prior
to joining His research interests include binary
analysis, systems security, privacy, surveillance,
and cybercrime. He has served in the technical
committee of conferences such as USENIX Se-
curity, ACSAC, DIMVA, ESORICS and AsiaCCS.
He has been the recipient of the UC3M Early Ca-
reer Award for Excellence in Research (2013),
the Best Practical Paper Award at the 41st IEEE

Symposium on Security and Privacy (Oakland), the CNIL-Inria 2019
Privacy Protection Prize, and th e 2019 AEPD Emilio Aced Prize for
Privacy Research. His work has been covered by international media,
including The Times, Wired, Le Figaro, ZDNet, and The Register.

Narseo Vallina-Rodriguez is an Associate Re-
search Professor at IMDEA Networks and a co-
founder of AppCensus Inc. Narseo obtained his
Ph.D. at the University of Cambridge and his
research interests fall in the broad areas of net-
work measurements, privacy, and mobile secu-
rity. His research efforts have been awarded with
best paper awards at the 2020 IEEE Symposium
on Security and Privacy (S&P), USENIX Se-
curity’19, ACM IMC’18, ACM HotMiddlebox’15,
and ACM CoNEXT’14 and Narseo has received

prestigious industry grants and awards such as a Google Faculty Re-
search Fellowship, a DataTransparencyLab Grant, and a Qualcomm
Innovation Fellowship. His research in the mobile security and privacy
domain has been covered by international media outlets like The Wash-
ington Post, The New York Times, or The Guardian and it has influenced
policy changes and security improvements in the Android platform.
Narseo’s work has received in multiple ocassions the recognition of
EU Data Protection Agencies with the AEPD Emilio Aced Award (2019,
2020, and 2021) and the CNIL-INRIA Privacy Protection Award (2019
and 2021). He is also the recipient of the IETF/IRTF Applied Networking
Research Award in 2016 and the Caspar Bowden Award in 2020. In
2020, he was awarded a Ramon y Cajal Fellowship by the Spanish
Ministry of Science.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



MOST REQUESTED CUSTOM PERMISSIONS

TABLE 6: Top 20 most often requested custom permissions in our dataset, in order. We infer the creator of those permissions
using the Subject field of the signing certificate of the APKs

Permission name Creator

com.samsung.android.providers.context.permission.WRITE_USE_APP_FEATURE_SURVEY Samsung
com.wssnps.permission.COM_WSSNPS Samsung
com.google.android.finsky.permission.BIND_GET_INSTALL_REFERRER_SERVICE Google Firebase/Android
com.sec.android.diagmonagent.permission.DIAGMON Samsung
com.sec.android.settings.permission.SOFT_RESET Samsung
com.sec.android.diagmonagent.permission.PROVIDER Samsung
com.samsung.android.permission.SSRM_NOTIFICATION_PERMISSION Samsung
com.sec.phone.permission.SEC_FACTORY_PHONE Samsung
com.google.android.providers.gsf.permission.READ_GSERVICES Google Mobile Services/Android
com.samsung.android.bixby.agent.permission.APP_SERVICE Samsung
com.google.android.gms.auth.api.signin.permission.REVOCATION_NOTIFICATION Google Mobile Services/Android
com.android.vending.BILLING Google Mobile Services/Android
com.sec.android.app.twdvfs.DVFS_BOOSTER_PERMISSION Samsung
com.sec.imsservice.PERMISSION Samsung
com.sec.imsservice.READ_IMS_PERMISSION Samsung
com.sec.android.provider.logsprovider.permission.READ_LOGS Samsung
com.sec.android.provider.badge.permission.READ Samsung
com.samsung.cmh.data.READ Samsung
com.sec.enterprise.knox.MDM_CONTENT_PROVIDER Samsung
com.samsung.android.launcher.permission.READ_SETTINGS Samsung

ADDED SOURCES AND SINKS USED FOR THE ANALYSIS

TABLE 7: We base the sources and sinks monitored through permissionTainter [19] on the default list provided by
FlowDroid. We have incorporated the following additions to the default list.

API method signature Source/Sink

java.lang.Runtime: java.lang.Process exec(java.lang.String) Source
java.net.HttpURLConnection: void connect() Sink
java.net.HttpURLConnection: java.io.OutputStream getOutputStream() Sink
javax.net.ssl.HttpsURLConnection: void connect() Sink
javax.net.ssl.HttpsURLConnection: java.io.OutputStream getOutputStream() Sink

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3288981

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


	Introduction
	The Android permission system
	Permission model
	Requesting permissions
	AOSP permissions
	Custom permissions
	Naming conventions for custom permissions

	Related Work
	Custom permission analysis

	Data collection
	Methodology for extracting custom permissions
	Ethical considerations

	Prevalence of custom permissions
	Definition of custom permissions
	Requests of custom permissions

	Naming and declaration conventions
	Naming convention violations
	Documentation for custom permissions, or lack thereof

	Detecting leaky custom permissions
	Tooling
	Analysis results

	Discussion
	Privilege escalation
	Transparency and user control
	Accountability

	Conclusions
	References
	Biographies
	Julien Gamba
	Álvaro Feal
	Eduardo Blazquez
	Vinuri Bandara
	Abbas Razaghpanah
	Juan Tapiador
	Narseo Vallina-Rodriguez


