
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Scalable and popularity-based secure
deduplication schemes with fully random tags

Guanxiong Ha, Chunfu Jia, Yixuan Huang, Hang Chen, Ruiqi Li, and Qiaowen Jia

Abstract—It is non-trivial to provide semantic security for user data while achieving deduplication in cloud storage. Some studies
deploy a trusted party to store deterministic tags for recording data popularity, then provide different levels of security for data
according to popularity. However, deterministic tags are vulnerable to offline brute-force attacks. In this paper, we first propose a
popularity-based secure deduplication scheme with fully random tags, which avoids the storage of deterministic tags. Our scheme uses
homomorphic encryption (HE) to generate comparable random tags to record data popularity and then uses the binary search in the
AVL tree to accelerate the tag comparisons. Besides, we find the popularity tamper attacks in existing schemes and design a proof of
ownership (PoW) protocol against it. To achieve scalability and updatability, we introduce the multi-key homomorphic proxy
re-encryption (MKH-PRE) to design a multi-tenant scheme. Users in different tenants generate tags using different key pairs, and the
cross-tenant tags can be compared for equality. Meanwhile, our multi-tenant scheme supports efficient key updates. We give
comprehensive security analysis and conduct performance evaluations based on both synthetic and real-world datasets. The results
show that our schemes achieve efficient data encryption and key update, and have high storage efficiency.

Index Terms—Cloud storage, data privacy, encrypted deduplication, data popularity, multi-tenant.

F

1 INTRODUCTION

W ITH the rapid development of cloud computing,
more and more individuals or enterprises choose to

outsource data to the cloud server. The storage of large
volumes of data brings huge overheads to the cloud ser-
vice providers. Deduplication is an effective way to detect
and eliminate redundant copies over clouds. The cloud
server only stores the unique data after deduplication to
reclaim a lot of storage space. Due to the insecure network
environment, users tend to outsource encrypted data to
prevent data privacy from being snooped on. However,
conventional encryption algorithms aim to provide seman-
tic security for user data. In other words, the encrypted
data are indistinguishable from random bits. This property
hinders data deduplication since the same messages will
be encrypted into indistinguishable ciphertexts. Convergent
encryption (CE) [1] is the first attempt to achieve encrypted
deduplication. The encryption keys in CE are derived from
the data content, so it is a deterministic encryption algo-
rithm and can make sure that identical messages could
be encrypted into identical ciphertexts. Nevertheless, CE
provides confidentiality only for unpredictable data (the
message space can not be exhausted) [2]. For predictable
data (the message space can be exhausted), CE is vulnerable
to offline brute-force attacks [2].

Since semantic security and data deduplication seem to
be irreconcilable, some studies attempt to explore a tradeoff
between them. For example, some schemes [3] [4] consider
data popularity in encrypted deduplication systems. It is

• G. Ha, C. Jia, Y. Huang, and H. Chen are with the College of Cyber
Science, Nankai University, Tianjin, China and Tianjin Key Laboratory of
Network and Data Security Technology. E-mail: cfjia@nankai.edu.cn.

• R. Li is with the College of Safety Science and Engineering, Civil Aviation
University of China, Tianjin, China.

• Q. Jia is with the Institute of Software, Chinese Academy of Sciences,
University of Chinese Academy of Sciences, Beijing, China.

a reasonable way to balance data security and storage effi-
ciency by setting different security levels for user data based
on their popularity. Some popular songs or movies may be
shared by a large number of users, which can be considered
popular data. The medical records or scientific research
results are generally shared by only a small number of users,
which can be considered unpopular data. Obviously, un-
popular data require more protection than popular data. In
the popularity-based encrypted deduplication scheme, only
when the data become popular will they be encrypted with
CE and be deduplicated. The unpopular data are encrypted
randomly to be provided with semantic security. Stanek et
al. [3] use two real-world datasets to analyze the storage
efficiency of the popularity-based deduplication scheme.
The storage performance is good for datasets containing
many files with very high popularity.

Existing popularity-based encrypted deduplication
schemes [3] [4] need to deploy a trusted third party to store
deterministic tags for recording data popularity. However, if
the trusted party is compromised by adversaries, the deter-
ministic tags will be vulnerable to offline brute-force attacks,
which is a serious security vulnerability. Besides, we find
the “popularity tamper attack” in existing popularity-based
schemes [3] [4]. Since unpopular data are usually encrypted
randomly in popularity-based schemes, it is difficult for the
server to verify the data ownership for users. In other words,
it is difficult to design proof-of-ownership (PoW) protocols
[5] [6] for unpopular data in popularity-based schemes.
However, in an encrypted deduplication scheme without
the PoW protocol, the data popularity can be tampered with
by adversaries with only a small part of the data. The cloud
server may increase the number of owners by mistake under
the attacks launched by adversaries. We call it the “popularity
tamper attack”, which will be described in detail in Section
2.3.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

1.1 Contribution
In this paper, we first present a popularity-based encrypted
deduplication scheme with fully random tags. We use ho-
momorphic encryption (HE) to generate random data tags
and achieve a ciphertext-level comparison, which elimi-
nates the requirement of storing deterministic tags to record
data popularity. Furthermore, we use an AVL tree to store
random tags based on their homomorphism and alleviate
the inefficiency of the random tag comparison by binary
search. Compared with other fully random tag comparison
schemes [7] [8], our method does not need the involvement
of clients and supports dynamic insertion and deletion of
tags. Besides, we find the popularity tamper attack in the
popularity-based deduplication and design a PoW protocol
based on HE to resist it. Only the users with the whole data
content could increase the count of data owners.

Since the multi-tenancy and scalability are crucial in
cloud storage, we further expand our scheme with the
multi-key homomorphic proxy re-encryption (MKH-PRE) to
make it enjoy these properties. In our multi-tenant scheme,
users can be divided into different tenants. Cross-tenant
users generate their random tags with distinct HE key
pairs, while the cloud server can record data popularity
by comparing the equality of cross-tenant tags due to the
property of MKH-PRE. Note that a tenant is the customer
of the cloud storage service. For example, a tenant can be
an enterprise or government department. As a side benefit
of using MKH-PRE, our multi-tenant scheme supports effi-
cient key updates for random tags based on the proxy re-
encryption. Our contributions are summarized as follows:

• First, we propose a popularity-based encrypted
deduplication scheme, which is the first attempt to
record data popularity based on fully random tags
instead of deterministic tags. Then, we use the binary
search to reduce the time complexity of tag compari-
son to logarithmic time.

• Second, we point out the popularity tamper attack in
existing popularity-based encrypted deduplication
schemes [3] [4] and design a PoW protocol based on
HE to resist it.

• Third, we introduce the MKH-PRE into our scheme
to make it enjoy multi-tenancy and scalability. Be-
sides, the efficient key update can be achieved in our
multi-tenant scheme.

• Finally, we give the security analysis and con-
duct performance evaluations. The evaluation results
show that the introduction of HE and MKH-PRE
does not bring much extra computation overheads.
Compared with the scheme proposed by Stanek et
al. [3], our schemes have a slight improvement in
encryption efficiency.

This is the full version of the paper that has been ac-
cepted by TrustCom 2021 [9]. Compared with the conference
version, the main differences are as follows: First, we expand
our original scheme to a multi-tenant scheme for scalability
and updatability by introducing MKH-PRE. Second, we add
integrity verification to the original scheme to provide data
integrity. Third, we give a more elaborate security model
and security analysis for our schemes compared with the
conference version. Finally, we give a more comprehensive

performance evaluation. We add the performance compari-
son with [7], add the evaluation of the communication over-
head and storage overhead, and evaluate the performance
of the key update.

2 BACKGROUND AND MOTIVATION

2.1 Encrypted Deduplication

In conventional encryption algorithms, messages are en-
crypted into random bit strings and are hard to be dedu-
plicated. Convergent encryption (CE) [1] is the first solution
to achieve encrypted deduplication, which derives the en-
cryption key from the data content. It utilizes the property of
deterministic encryption to realize encrypted deduplication.
Bellare et al. [10] formalize CE as the message-locked encryp-
tion (MLE) and analyze its security. They state that MLE is
vulnerable to offline brute-force attacks and can only provide
confidentiality for unpredictable messages. DupLESS [2]
deploys a key server to introduce a system-level secret for
MLE to offer confidentiality for both predictable and unpre-
dictable messages. However, the key server may become
a single point of failure and efficiency bottleneck. Some
schemes [11] [12] [13] focus on designing encrypted dedu-
plication schemes without additional independent servers.
But these schemes all require a certain percentage of clients
online, which makes it difficult to apply them in real scenar-
ios. In sum, how to provide semantic security for outsourced
data while achieving data deduplication is still an important
issue.

2.2 Client-side Deduplication

Deduplication can be divided into server-side and client-
side deduplication. The former needs clients to upload all
data to the server, then the server performs the data dedu-
plication. The latter needs clients first to upload data tags to
the server. If the server finds that the data have already been
stored, then it marks the client as a data owner. Therefore,
clients only need to upload the data that are not stored in
the server. Compared with server-side deduplication, client-
side deduplication can save both bandwidth and storage
overheads.

However, client-side deduplication suffers from owner-
ship cheating attacks [5]. Concretely, small data tags calculated
from the data are used to identify data ownership. The
adversary with only data tags can convince the server that
it has the whole data and can download data. Halevi et al.
[5] find this vulnerability and present a proof-of-ownership
(PoW) protocol based on the Merkle tree and specific en-
codings to let the client efficiently prove to the server that
it does have the whole data content. The limitation is that
the server in their scheme is trusted. Xu et al. [6] propose
a PoW scheme against the honest-but-curious server. Their
scheme is proved secure with regard to any distribution
with sufficient min-entropy. Most existing PoW schemes
[5] [6] [14] [15] [16] [17] focus on the data encrypted by
deterministic encryption (such as MLE) rather than random
encryption. How to design PoW for random ciphertexts is
still an unsolved problem.

Besides, the duplicate faking attack [10] is also a threat
to client-side deduplication. If a malicious uploader sends

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

a correct data tag and a fake ciphertext to the server, the
server will only store this fake ciphertext and deduplicate
the subsequent uploaded data. Then the subsequent data
uploader may download and restore the fake data, and the
data integrity is compromised.

2.3 Popularity-based Encrypted Deduplication
Recently, several encrypted deduplication schemes [3] [4]
try to provide a fine-grained security-to-efficiency trade-
off based on data popularity. They set different security
levels for user data based on how popular they are (see
Figure 1). If the number of data owners exceeds a popu-
larity threshold, then the data can be considered popular
and just need to be encrypted with CE. Otherwise, they
should be considered unpopular and be encrypted with
semantically-secure encryption algorithms. Stanek et al. [3]
use a threshold cryptosystem to design a popularity-based
encrypted deduplication scheme. When the data become
popular, the storage server (i.e. the cloud server) decrypts
the random ciphertexts into convergent ciphertexts using
enough decryption shares. PerfectDedup [4] leverages the
perfect hash function to enable clients to securely check data
popularity without leaking data information to the storage
server. However, existing schemes [3], [4] have the following
limitations.

• The storage of deterministic tags. Existing schemes
[3], [4] need to deploy a trusted third party to main-
tain the correspondence between deterministic tags
and random tags for recording data popularity, as
shown in Figure 2. The purpose of this is to let the
honest-but-curious storage server only store random
tags instead of deterministic tags (the hashes of
data) to prevent data information leakage. But, once
the deterministic tags are leaked to an adversary,
the semantic security for unpopular data will be
compromised. With the increasing amount of out-
sourced data, the number of deterministic tags that
the trusted third party needs to store also increases
rapidly. The storage of a large number of determinis-
tic tags greatly increases the risk of data information
leakage.

• Popularity tamper attack. Existing schemes [3], [4]
are vulnerable to the popularity tamper attack since
they do not perform PoW for unpopular data. Specif-
ically, during the uploads for unpopular data, exist-
ing schemes cannot verify whether a client indeed
has complete data content due to the lack of the PoW
for random ciphertexts. So, a malicious client with-
out complete data content can convince the storage
server of its data ownership by uploading only a data
tag. Assuming that an adversary has the data tag of a
target file Ft and compromises multiple clients, it can
have them upload data tags to the storage server to
tamper with data popularity. Once Ft becomes pop-
ular data, its security protection will be degraded.
For predictable data, the adversary can first launch
the popularity tamper attack to make them become
popular and degrade their security protection, then it
can launch offline brute-force attacks to restore data
information. In a word, the popularity tamper attack

is a serious security concern for popularity-based
deduplication schemes.

...

𝑭𝒑

Convergent encryption

Semantically-secure

encryption

𝑭𝒑

𝑭𝒑

𝑭𝒖𝒑

User

Storage Server

𝑭𝒑

𝑭𝒑 (popular file)

𝑭𝒖𝒑 (unpopular file)

𝑭𝒖𝒑

Fig. 1. The popular-based encrypted deduplication system.

1rT

2rT
⋮

nrT

1c

2c

nc
⋮

Random Tag Data

Storage Server

1dT

2dT

mdT
⋮

1 2 1
1 1 1, , }{ ...,

p
rTT Tr r

1 2 2
2 2 2, , }{ ...,

p
rTT Tr r

1 2
}, ,{ ...,

pm
m m mrT rTrT

⋮

1p

2p

mp
⋮

Deterministic Tag Random Tag Ctr

Trusted Third Party

Fig. 2. The records of the storage server and trusted third party.

2.4 Random Tag

Data tags in encrypted deduplication systems are used to
detect data duplication. If two pieces of data are identical,
then their tags should be identical. In existing encrypted
deduplication systems, the hashes of user data are generally
used as data tags. However, the hashes are deterministic and
are easy to leak data information. Abadi et al. [8] propose R-
MLE2, a fully randomized encrypted deduplication scheme
to provide lock-dependent security. They use fully random
data tags to detect data duplication. However, the time
complexity of their tag comparison algorithm is linear and
inefficient. µR-MLE2 [7] uses a decision tree to store random
tags and reduces the time complexity of tag equality-testing
to logarithmic time by having clients constantly interact
with the server. But the insertion or deletion of an inter-
mediate node in the decision tree requires the assistance of
clients. Therefore, their scheme requires the assumption that
many clients are always online, which makes their scheme
less practical. So, the equality-testing of random tags is still
a challenge.

3 PRELIMINARIES
3.1 Convergent Encryption

Convergent encryption (CE) uses the hash of message con-
tent as the encryption key to enable deduplication. It can be
defined with the following algorithms.

• CE.KeyGen(M): On input a message M , output a
convergent key K on M .

• CE.TagGen(M): On input a message M , output a
data tag T on M .

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

• CE.Enc(K,M): It is a symmetric encryption algo-
rithm. On input a convergent encryption key K and
a message M , output a convergent ciphertext C .

• CE.Dec(K,C): It is a symmetric decryption algo-
rithm. On input the convergent key K and conver-
gent ciphertext C , output the message M .

3.2 AVL Tree
The AVL tree [18] is a self-balancing binary search tree with
an equilibrium condition. In other words, the absolute value
(equilibrium factor) of the difference between the heights
of the left and right subtrees of each node in the tree is
at most 1. When inserting or deleting a node, the AVL
tree adjusts the related subtree structure according to the
algebraic relation between nodes, and always maintains the
equilibrium factor to less than or equal to 1. Hence, when
the AVL tree contains n nodes, the height h of the tree is
log(n). If a search, insert or delete operation is performed,
in the worst case, it needs to traverse the height of the tree,
and the time complexity is O(log(n)).

3.3 Homomorphic Encryption
Homomorphic encryption (HE) [19] [20] [21] is a probabilis-
tic encryption algorithm that allows users to perform arith-
metic operations on encrypted data without decryption. The
HE scheme consists of the following algorithms:

• HE.KeyGen(λ): On input a security parameter λ,
output the public key pk and secret key sk.

• HE.Enc(pk,m): On input a message m and the pub-
lic key pk, output the ciphertext ct of m.

• HE.Dec(sk, ct): On input the ciphertext ct of m and
the secret key sk, output the message m.

• HE.Add(ct1, ct2): On input ciphertexts ct1 and ct2 of
m1 and m2, output the ciphertext ctadd of (m1+m2).

• HE.Sub(ct1, ct2): On input ciphertexts ct1 and ct2 of
m1 and m2, output the ciphertext ctsub of (m1−m2).

3.4 MKH-PRE
Multi-key homomorphic encryption (MKHE) [22] [23] [24]
[25] is a generalization of HE in the multi-user setting, which
supports the homomorphic computation on ciphertexts en-
crypted with different key pairs. Yasuda et al. [26] propose
multi-key homomorphic proxy re-encryption (MKH-PRE),
which adds the function of the proxy re-encryption on
the basis of MKHE. In MKH-PRE, each key pair has a
corresponding id. Each ciphertext is accompanied by an id
set T , which is used to record all key pairs involved in
the encryption process. The set T0 of a freshly generated
ciphertext only consists of one element, while the set Tm of
the ciphertext after multi-key homomorphism computation
may become Tm = {id0, id1, ..., idn}. An MKH-PRE scheme
consists of the following algorithms:

• MP.KeyGen(λ): On input a security parameter λ,
output the public key pk and secret key sk.

• MP.Enc(pk,m): On input a message m and the
public key pk, output the ciphertext ct of m.

• MP.Add(ct1, ct2, {pki}i∈TA
): On input ciphertexts

(ct1, ct2) of (m1,m2) and the corresponding pub-
lic keys {pki}i∈TA

, output the ciphertext ctadd of

(m1 +m2). The id set of ctadd is TA, which is equal
to T1 ∪ T2. Note that T1 and T2 respectively denote
the id set of c1 and c2.

• MP.Sub(ct1, ct2, {pki}i∈TA
): On input ciphertexts

(ct1, ct2) of (m1,m2) and the corresponding pub-
lic keys {pki}i∈TA

, output the ciphertext ctsub of
(m1 −m2). The id set of ctsub is TA, which is equal
to T1 ∪ T2. Note that T1 and T2 respectively denote
the id set of c1 and c2.

• MP.Dec({ski}i∈T , ct): On input a ciphertext ct and
the corresponding secret keys {ski} in its id set T ,
output the message m.

The decryption of the multi-key ciphertext needs to in-
put all secret keys in the id set. However, it is unreasonable
to allow one party to own all secret keys. Therefore, the
MKH-PRE provides the distributed decryption, which consists
of the PartDec and FinDec. Specifically, one party divides
the ciphertext ct into several ciphertext shares cti according
to its id set, and then sends them to each party related to
the decryption. Each related party invokes the PartDec to
decrypt cti with its secret key ski, and outputs a partial
decryption share ρi. Finally, a party collects all ρi to invoke
the FinDec to restore the message m. The definitions of the
PartDec and FinDec are described as follows:

• PartDec(cti, ski): On input a ciphertext share cti and
a secret key ski, output a partial decryption share ρi.

• FinDec({ρi}): On input all partial decryption shares
{ρi}, output the message m.

Besides, the MKH-PRE also supports proxy re-
encryption. The algorithms of the re-encryption key gen-
eration and re-encryption are described as follows:

• MP.RKGen(skA, skB): On input the secret keys skA
and skB , output a re-encryption key rkA→B .

• MP.ReEnc(rkA→B , ctA): On input a re-encryption
key rkA→B and a ciphertext ctA, output a re-
encrypted ciphertext ctB . Note that ctA and ctB are
respectively protected by (pkA, skA) and (pkB , skB).

Remarks. The homomorphic encryption algorithms (HE
and MKH-PRE) in our schemes are implemented based on
the Brakerski-Fan-Vercauteren (BFV) [27] and NTRU [28].
The ciphertext polynomials in BFV and NTRU are both
defined over a ring. The plaintexts need to be encoded to
plaintext polynomials in binary. We set the plaintext mod-
ulus as 3, so a homomorphic ciphertext can be decrypted
into a plaintext polynomial with coefficients in {−1, 0, 1}.
After we decrypt the output ciphertext of HE.Sub(ct1, ct2)
and then obtain (m1 − m2), we could get the algebraic
relation between m1 and m2 by extracting the highest order
coefficient Co of (m1 − m2). If Co = 1, then m1 > m2. If
Co = 0, then m1 = m2. Otherwise, m1 < m2.

4 SECURE POPULARITY-BASED DEDUPLI-
CATION SCHEME
4.1 Main Idea
There are several challenges that need to be addressed in
popularity-based encrypted deduplication.

The first challenge is how to record data popularity
without compromising the semantic security of unpopular

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

data. Since data tags are used to perform the duplication
check, it is necessary to perform the equality-testing on
them to record the count of data owners to reflect the
data popularity. It is trivial to perform equality-testing on
deterministic tags. But they are vulnerable to offline brute-
force attacks. Therefore, we want to design a scheme with
fully random tags. However, it is non-trivial to directly
perform equality-testing on random tags. We use the ho-
momorphic ciphertexts of deterministic tags as random tags
to resolve this issue. HE supports equivalence comparison
on ciphertexts without decryption. So, we can perform
equality-testing on random tags. Moreover, HE can also
be used to resist offline brute-force attacks, in that it is
probabilistic rather than deterministic. As shown in Figure
3, our scheme deploys a crypto-service provider (CSP) to
manage the key pair of HE and perform the homomorphic
decryption. When the storage server (SS) performs the tag
equality-testing, it sends the homomorphism subtractions
between random tags to CSP . The latter decrypts them and
returns the comparison results to SS.

The second challenge is how to improve the efficiency
of the equality-testing of random tags. The linear time
complexity of the tag comparison is unacceptable when
there are a large number of random tags. Our solution is
to use binary search. Due to the property of HE, SS can
get the algebraic relationship between any two random tags
by interacting with CSP . Therefore, random tags could be
sorted and then stored in an AVL tree. The time complexity
of tag comparison can be reduced to logarithmic time by
the binary search in the AVL tree. Another advantage of
our scheme is that the equality-testing only requires the
interaction between SS and CSP , while clients do not need
to be involved. As a consequence, our scheme circumvents
the limitation in µR-MLE2 [7].

The third challenge is how to resist the popularity
tamper attack. As described in Section 2.3, in existing
popularity-based deduplication schemes [3] [4], an adver-
sary with only data tags can tamper with data popularity
due to the lack of PoW. In the worst case, the adversary can
launch the popularity tamper attack to make the target data
become popular and then launch offline brute-force attacks
to restore data information. Most existing PoW schemes
[5] [14] [15] [16] [17] aim at convergent ciphertexts. It is
impossible to apply them to resist the popularity tamper
attack since the unpopular data are encrypted randomly.
Besides, most existing PoW schemes leak data hashes, which
will compromise the semantic security of unpopular data.
To this end, we design a PoW protocol based on HE to
resist the popularity tamper attack without leaking any data
information. The idea of our PoW is to let clients compute
the hashes of some randomly sampled challenge blocks and
then encrypt these hashes with HE. These encrypted hashes
are used as the proofs for data ownership. SS can verify
whether the proofs are valid through the interaction with
CSP . Since the proofs are randomly encrypted, they do not
reveal any data information.

4.2 Architecture
As shown in Figure 3, our scheme consists of three entities:
clients, a storage server (SS), and a crypto-service provider
(CSP).

• The client outsources user data to SS to save local
storage overhead. To maintain privacy, the client
outsources encrypted data to SS.

• The storage server (SS) provides data storage ser-
vices for multiple users and performs cross-user
deduplication to save storage space.

• The crypto-service provider (CSP) is independent
of clients and the storage server. It is responsible for
managing the HE key pair. It authenticates clients
and distributes the HE public key to SS and all
authenticated clients.

Note that CSP can be implemented by the third-party
external cryptographic service [29], where a cryptographic
server performs some cryptographic operations [30] for
applications. Many cryptography-based schemes [2], [30],
[31], [32], [33] and well-resourced enterprises (e.g. Facebook
[34]) deploy external cryptographic services.

Key Distr
ibution

Storage Server (𝑆𝑆)

Crypto-service Provider (𝐶𝑆𝑃)

Client

Authentica
tion

Data Upload

Decryption Result
Comparison

Ciphertext

Data Download

Fig. 3. The architecture of our scheme.

4.3 Threat Model

We assume that CSP is a semi-trusted third party, which
is similar to the assumption for the key server in DupLESS
[2]. In our scheme, CSP cannot learn any data information,
but it needs to store the HE secret key sk securely. If
an adversary compromises CSP and learns sk, then the
security for all user data degrades to convergent security.
Besides, we consider the following two kinds of adversaries.

An honest-but-curious (HBC) storage server SS hon-
estly follows our proposed protocol, but attempts to com-
promise data confidentiality. It can access all outsourced
data and attempts to restore data information.

A malicious client C holds a random tag and a portion
of the data content of a target file Ft. It aims to launch
the popularity tamper attack to convince SS of its data
ownership and tamper with data popularity. Besides, it tries
to launch the duplicate faking attack for Ft to compromise
the data integrity of other users.

4.4 Security Goal

The security goals of our scheme are as follows.
Data confidentiality. Our scheme provides semantic

security and convergent security for unpopular data and
popular data, respectively.

Data integrity. Our scheme provides integrity for out-
sourced data. Any adversaries cannot tamper with user data
stored in SS without being detected.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Tag consistency. Our scheme provides tag consistency
including validity and security.

1) Validity. Only if two pieces of data are identical can
SS interact with CSP to identify that two tags are
identical.

2) Security. Tags should be indistinguishable from ran-
dom bit strings of equal length.

Attacks resistance. Our scheme resists the typical attacks
in encrypted deduplication, such as brute-force attacks [2],
popularity tamper attacks [9], ownership cheating attacks
[5], and duplicate faking attacks [10]. Any adversaries can-
not launch these attacks to compromise data confidentiality
or integrity.

4.5 Definition

Let λ andM be a security parameter and the message space
respectively. We denote by F({Ai({xi})})→ {ai} the event
that multiple parties {Ai} jointly engage in the protocol F
with the inputs {xi} and outputs {ai}. The empty string is
denoted by ε.

Our scheme consists of the algorithms and protocols
(KG, RTG, PopDet, PoW, Enc, Dec, CV, IV), which we define
as follows:

KG(λ) → (pk, sk). CSP uses a security parameter λ
to invoke the key generation algorithm to generate a key
pair (pk, sk). After that, we assume that all parties take λ as
input in all algorithms and protocols.

RTG(pk,m) → rT . The random tag generation algo-
rithm takes the public key pk and a message m ∈ M as
input, and outputs a random tag rT .

PopDet(SS(rT, TA), CSP (sk)) → (ctr, ε). During the
popularity detection protocol, SS inputs a random tag rT
and an AVL tree TA, while CSP inputs the secret key sk.
When the protocol concludes, SS outputs the data popular-
ity ctr, while CSP outputs nothing, denoted by the empty
string ε.

PoW(C(pk, Fc), SS(ca, cb, Pset), CSP (sk))→(ε, P ′set, ε).
During the PoW protocol, client C inputs pk and a
convergent ciphertext Fc, SS inputs two random seeds
(ca, cb) and a proof set Pset (described in Section 4.6), while
CSP inputs sk. When the protocol concludes, C and CSP
output nothing, while SS outputs an updated P ′set.

Enc(kE ,m) → Cm. The encryption algorithm takes a
key kE and a message m as input, and outputs a ciphertext
Cm.

Dec(kE , Cm) → m. The decryption algorithm takes a
key kE and a ciphertext Cm as input, and outputs the
message m.

CV(SS(pk, rT, Fc), CSP (sk)) → (f, ε). During the ci-
phertext verification protocol, SS inputs pk, a random tag
rT , and a convergent ciphertext Fc, while CSP inputs sk.
When the protocol concludes, SS outputs a flag f ∈ {0, 1}
to indicate whether the verification is successful, whileCSP
outputs nothing.

IV(kc,m) → f . The integrity verification algorithm
takes a convergent key kc and a message m as input, and
outputs a flag f to indicate whether the verification is
successful.

4.6 Construction

Here, we present the constructions of the algorithms and
protocols in our scheme.

Key generation (KG). Our scheme follows the key gen-
eration algorithm in HE. During the system setup, CSP
runs HE.KeyGen(λ) to generate HE key pair (pk, sk).

Random tag generation (RTG). To record data popular-
ity, we generate random tags based on HE. Specifically, to
upload an outsourced file F , client C first uses CE to gen-
erate a convergent ciphertext Fc = CE.Enc(kc, F), where
kc is the convergent key (kc = CE.KeyGen(F)). Then, C
generates a deterministic tag dT = H(Fc), where H(·) is a
cryptographic hash function. The purpose of using the hash
of the convergent ciphertext as the deterministic tag is to
prevent duplicate faking attacks [10], which is explained in
detail in Section 6.3. After that, C encrypts dT with HE to
obtain a random tag rT = HE.Enc(pk, dT), which can be
used for popularity detection and data retrieval.

Popularity detection (PopDet). After the generation of
rT , C sends it to SS for popularity detection. SS can
determine the algebraic relation between any two random
tags by the interactions with CSP . In consequence, all
random tags could form an ordered set and be stored in
an AVL tree. After receiving rT , SS first finds the root node
rT1 of the AVL tree TA (see Figure 4). Then it computes
a tag equality-testing ciphertext etct = HE.Sub(rT, rT1)
and sends it to CSP . CSP decrypts etct with sk, performs
a function I(·) on the decryption result to obtain the tag
comparison result rst ∈ {−1, 0, 1} (see Equation 1), and
returns rst to SS. Note that I(·) is a function that outputs
the highest order coefficient of the plaintext polynomial. As
described in Section 3.4, we set the plaintext modulus as 3.
So, we can get the algebraic relation between data tags by
computing the highest order coefficient of the subtraction of
them.

rst = I(HE.Dec(sk, etct))

=

−1 rT < rT1
0 rT = rT1
1 rT > rT1

(1)

As shown in Figure 4, SS can use multiple tag equality-
testing ciphertexts {etct} to interact with CSP and then
eventually find the node corresponding to rT . Then, SS can
detect the popularity ctr (number of owners) for the data
corresponding to the random tag of this node. Note that SS
will create a new node for rT if it can not match any existing
nodes in TA. The time complexity of the equality-testing
for random tags is logarithmic time, and the tag storage
structure supports efficient node insertion and deletion due
to the property of the AVL tree. Besides, neither the process
of the tag comparison nor the node update requires client
involvement, so we do not need to assume that the clients
are online.

Proof of Ownership (PoW). The random tag cannot be
considered as the proof of data ownership, since adversaries
may learn deterministic tags of user data (especially for
predictable data) and the HE public key pk is publicly
known. So, we design a PoW protocol to resist both the
ownership cheating attack and popularity tamper attack.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

if 5rT rT

1rT

2rT 3rT

4rT 5rT

…

… …

SS

1 1HE.Sub(,)tetc rT rT

1 1
(HE.Dec(,))t tres sk etc I

1
1tres

2 2HE.Sub(,)tetc rT rT

2 2
(HE.Dec(,))t tres sk etc I

2
1tres

5 5HE.Sub(,)tetc rT rT

5 5
(HE.Dec(,))t tres sk etc I

5
0tres

CSP

Fig. 4. Tag comparison.

Note that the PoW protocol needs to be run for both the
uploads of popular data and unpopular data.

We assume that client C uploads file F , its random
tag and convergent ciphertext are rT and Fc respectively.
We also assume that this is the first upload of F . After
the popularity detection, SS runs PoW with C . Specifi-
cally, SS generates two random seeds (c0, c1) and sends
them to C . Note that the current proof set Pset for rT
is empty since this is the first upload. C takes (c0, c1) as
seeds to generate two random sequences of block index
{c01, c02, ..., c0n} and {c11, c12, ..., c1n} (the length of each
index sequence is set to be n). Then C divides Fc into
fix-sized blocks {Fc[i]}lFi=1, where lF denotes the length
of the block set of Fc (lF ≥ n). C generates the proofs
p0 = HE.Enc(pk,H(H(Fc[c01])‖...‖H(Fc[c0n]))) and p1 =
HE.Enc(pk,H(H(Fc[c11])‖...‖H(Fc[c1n]))), and then sends
(p0, p1) to SS. The latter inserts {(c0, p0), (c1, p1)} into the
proof set Pset for subsequent uploads and then add C into
the list of owners.

If another client C ′ uploads file F ′ and its random tag is
equal to rT , SS will assume that C ′ may be the second
uploader of F and runs PoW with C ′. Specifically, SS
generates a random coin b ∈ {0, 1} and a new random
seed c2. Then it sends the challenge seeds (cb, c2) to C ′. C ′

generates proofs (p′b, p2) based on (cb, c2) and then sends
them to SS. The generation of (p′b, p2) is the same as that
of (p0, p1). SS computes a proof equality-testing ciphertext
etcp = HE.Sub(pb, p

′
b) and sends it to CSP , where pb is the

proof stored in Pset before. CSP returns the comparison
result rsp = I(HE.Dec(sk, etcp)) to SS. If rsp is equal to
0, then C and C ′ upload the same file and they both pass
PoW, then SS increases the owner number of F by one,
inserts (c2, p2) into Pset, and then add C ′ into the list of
data owners. Otherwise, eitherC orC ′ uploads a fake proof,
SS will treat F and F ′ as two different files and set their
popularity separately. If Cm is the m − th uploader for F ,
SS randomly selects ci ∈ {c0, c1, ..., cm−1} from Pset and a
new random seed cm to run PoW with Cm. The process is
the same as that of the second uploader.

In our PoW, SS sends two seeds (cu, c
′
u) to client C ,

where cu is selected from the proof set Pset and c′u is
freshly generated. C generates two proofs (pu, p

′
u) based

on (cu, c
′
u). Note that these seeds and proofs have different

roles. The role of (cu, pu) is to allow SS to verify that the
file of C is consistent with previously stored files and that
C has complete data content. Whereas (c′u, p

′
u) is used to

increase the size of Pset. If only a fixed seed and proof

are used in each PoW, the compromise of them will allow
the adversary without complete content to pass PoW. If
SS randomly generates a seed each time, the verification
will be infeasible because SS does not learn convergent
ciphertexts of unpopular data and cannot generate valid
proofs for verification. Therefore, SS constructs the proof set
Pset and selects a seed from it for verification during each
PoW. Increasing the size of Pset decreases the probability
that the adversary passes PoW after a certain seed and proof
are compromised. The exception is the first uploader C1. SS
uses two freshly generated seeds to run PoW with it since
Pset is empty at this point. If C1 uploads fake proofs, SS
can detect that during the PoW for subsequent uploaders.

Enc and Dec. After the popularity detection and PoW,
SS may require the client to upload encrypted data. Our
scheme employs the symmetric encryption algorithm (e.g.
AES). If the outsourced data are unpopular, the client
performs random encryption to provide semantic security.
Otherwise, the client performs CE to encrypt popular data
to provide convergent security. Also, the client performs
symmetric decryption to restore data.

Ciphertext verification (CV). The ciphertext verification
protocol is designed to prevent a malicious client from up-
loading correct data tags and forged convergent ciphertexts
to launch duplicate faking attacks. After receiving random
tag rT and convergent ciphertext Fc from the client, SS
computes a random tag rT ′ = HE.Enc(pk,H(Fc)) and a tag
consistency ciphertext etch = HE.Sub(rT, rT ′), and then
sends etch to CSP . The latter returns a comparison result
rsh = I(HE.Dec(sk, etch)). If rsh is equal to 0, then Fc is
consistent with rT , and SS outputs a flag f = 1 to indicate
the success of ciphertext verification. Otherwise, SS outputs
f = 0 to indicate failure.

Integrity verification (IV). After the client downloads
and restores its outsourced file F , it runs the integrity
verification algorithm to check data integrity. It computes
a convergent key k′c = CE.KeyGen(F) and then checks
whether k′c is equal to the original convergent key kc. If
so, it outputs a flag f = 1. Otherwise, it outputs f = 0.

4.7 The Workflow of the Scheme

The workflow consists of the system setup, data upload, and
data download. The specific processes are as follows.

System Setup. CSP runs KG(λ) to generate a system-
level HE key pair (pk, sk), sends the public key pk to SS,
and keeps the secret key sk secretly. Once a client joins the
system, it can obtain pk after authenticating with CSP . SS
sets a popularity threshold t for all user data. It is feasible
to set different thresholds for different data. Here, we use
a uniform threshold t for simplicity. We further discuss this
issue in Section 5.6.

Data Upload. As shown in Figure 5, to upload a file
F , client C first runs RTG(pk, F) to get a random tag
rT , and then sends rT to SS. SS performs the popularity
detection after receiving rT . Specifically, SS inputs rT and
AVL tree TA to run PopDet with CSP . After the popularity
detection protocol, SS can find the corresponding node of
rT in TA after multiple equality tests. The storage structure
of SS is shown in Figure 6. Each node corresponds to a
representative random tag rTi(i ∈ [1, n] ∩ Z) and a set of

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

random tags that are equal to rTi after the HE decryption.
The representative tag is used as an index, and it could be
any element of the set. SS looks over the current owner
number for the node corresponding to rT to detect data
popularity. For example, if rT is equal to rT2 after the HE
decryption, then its popularity is 101.

After the popularity detection, SS runs PoW with C .
SS increases the owner number by one and adds C into
the list of owners only if C passes PoW. If the number of
owners for F has not reached the threshold t, it means that
F is still unpopular, then SS will set an uploading response
urs to up. If the number of owners just reaches t, urs is set
to pc. Otherwise, urs is set to p. SS returns the uploading
response urs to C .

𝐶 𝑆𝑆 𝐶𝑆𝑃
𝑟𝑇

{𝑒𝑡𝑐!}

𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
{𝑟𝑠!}

(𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦	𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛)
𝑝𝑟𝑜𝑜𝑓

(𝑃𝑟𝑜𝑜𝑓	𝑜𝑓	𝑜𝑤𝑛𝑒𝑟ship)𝑢𝑟𝑠

𝐹"							(𝑖𝑓	𝑢𝑟𝑠 == 𝑝𝑐)

𝐹#							(𝑖𝑓	𝑢𝑟𝑠 == 𝑢𝑝)

𝑒𝑡𝑐$
𝑟𝑠$

𝑁𝑢𝑙𝑙			(𝑖𝑓	𝑢𝑟𝑠 == 𝑝)

(𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡	𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

Fig. 5. The workflow for uploading data.

Index CiphertextNumber of owners Tag

171rT

101

1 11 1 },{ ,
p

rTrT

1 22 2 },{ ,
p

rTrT2rT

76

1 11 1

},{ ,
p

r rFF

2cF

nrT
1

},{ ,
pnn nr rTT

1

},{ ,
n npn

r rFF

Fig. 6. The storage structure of SS (the threshold t is set to 100).

If urs is equal to up, which means that F is unpop-
ular, C needs to upload a random ciphertext of F . C
generates a random key kr ← {0, 1}λ and computes a
random ciphertext Fr = SE.Enc(kr, F), where SE.Enc(·) is
a symmetric encryption (SE) algorithm. C uploads Fr and
stores (rT, kc, kr) locally for downloading and restoring F .
SS stores rT and Fr for C . SS only deduplicates popular
data, while unpopular data are randomly encrypted and
cannot be deduplicated. As shown in Figure 6, if the file
corresponding to a random tag is unpopular (e.g. rT1 and
rTn), SS will store all random tags that are equivalent to
that random tag along with their corresponding random
ciphertexts. If the file is popular, SS only stores one copy
of the convergent ciphertext (e.g. Fc2).

If urs is equal to pc, which means that the popularity
conversion needs to be performed. C needs to upload a
convergent ciphertext Fc. After receiving Fc, SS inputs
(pk, rT, Fc) to run the ciphertext verification protocol with
CSP to resist duplicate faking attacks. When the protocol
concludes, if SS outputs f = 1, then the protocol is success-
ful, and all random ciphertexts corresponding to rT will be
removed to save storage space. Otherwise, C may upload a

fake ciphertext and launch the duplicate faking attack, then
SS aborts the popularity conversion process.

If urs is equal to p, which means that F is popular, C
does not need to upload a complete encrypted file, while
SS just needs to add C to the owner list.

Data Download. To download file F , client C sends
random tag rT to SS. If F is unpopular, SS sends random
ciphertext Fr to C . The latter uses random key kr to restore
file F = SE.Dec(kr, Fr), where SE.Dec(·) is a symmetric
decryption algorithm. Otherwise, if F is popular, SS sends
convergent ciphertext Fc to C . C uses convergent key kc
to restore file F = CE.Dec(kc, Fc). After that, C runs
IV(kc, F) to perform the integrity verification. If the output
is f = 1, then the integrity verification passes. Otherwise,
the outsourced data may be tampered with adversaries, and
the decryption fails.

5 THE MULTI-TENANT POPULARITY-BASED SE-
CURE DEDUPLICATION SCHEME

In this section, we first point out the limitations of the
scheme in Section 4. Then, we propose a multi-tenant
popularity-based secure deduplication scheme to address
these limitations. Hereinafter, we call the scheme in Section
4 the single-tenant scheme and call the scheme in this section
the multi-tenant scheme.

5.1 Limitations of the Single-tenant Scheme
The single-tenant scheme has the following limitations. The
first limitation is that the centralized CSP may become
an efficiency bottleneck. As the number of users increases,
the computation overhead of CSP increases significantly,
which makes the system hard to scale up. A straightforward
solution is to deploy multiple CSP s with an identical
system-wide shared HE key pair. Nevertheless, this key
pair will become a single point of failure. If an adversary
breaks any one of CSP s and gets the key pair, the semantic
security of all unpopular data will be compromised, which
is a serious vulnerability. The second limitation is that the
single-tenant scheme cannot provide the key rotation. Once
the HE key pair is leaked, all tags need to be regenerated,
which is inconvenient and computationally expensive.

5.2 Overview of the Multi-tenant Scheme
We introduce MKH-PRE into our single-tenant scheme to
design a multi-tenant scheme, which achieves both scala-
bility and updatability. The architecture of the multi-tenant
scheme is shown in Figure 7. Users are divided into different
tenants. Each tenant deploys a CSP for managing the HE
key pair. To avoid the single point of failure, different CSP s
hold distinct HE key pairs. Based on the property of MKH-
PRE, SS can perform the equality-testing on cross-tenant
random tags by interacting with multiple CSP s. Further-
more, the multi-tenant scheme also supports key rotation
since MKH-PRE has the proxy re-encryption algorithm.

The threat model and security goal of the multi-tenant
scheme are similar to the single-tenant scheme (see Section
4.3 and 4.4). The only difference is that the multi-tenant
scheme adds a security goal of forward security. That is,
even if an adversary learns original system-level secret keys

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

and the updated outsourced data, it cannot restore any data
information.

𝑆𝑆

…

𝐶𝑙𝑖𝑒𝑛𝑡𝑠

𝐶𝑆𝑃!
𝐶𝑙𝑖𝑒𝑛𝑡𝑠

𝐶𝑆𝑃"

𝑇𝑒𝑛𝑎𝑛𝑡! 𝑇𝑒𝑛𝑎𝑛𝑡"

Fig. 7. The architecture of the multi-tenant scheme.

5.3 Definition of the Multi-tenant Scheme

The multi-tenant scheme consists of (KG, MRTG, CPopDet,
PoW, Enc, Dec, CV, IV, RKGen, Update). We define MRTG,
CPopDet, RKGen, and Update as follows, while the others
are the same as the single-tenant scheme.

MRTG(pk,m) → (rT, IDS). The multi-tenant random
tag generation algorithm takes the public key pk and a
message m ∈ M as input, and outputs a random tag rT
and an id set IDS of rT .

CPopDet(SS(rT, IDS , TA), {CSPi(ski)}) → (ctr, {ε}).
The cross-tenant popularity detection protocol is run by SS
and multiple CSP s. SS inputs a random tag rT , its id set
IDS , and an AVL tree TA, while each CSPi inputs its secret
key ski. When the protocol concludes, SS outputs the data
popularity ctr, while CSP s output nothing.

RKGen(sk, sk′)→ rk. The re-encryption key generation
algorithm takes two secret keys (sk, sk′) of MKH-PRE as
input, and outputs a re-encryption key rk.

Update(rki, {rTi}) → {rT ′i}. The update algorithm
takes a re-encryption key rki and a tag set {rTi} as input,
and outputs an updated tag set {rT ′i}.

5.4 Construction of the Multi-tenant Scheme

Here, we present the constructions of the algorithms and
protocols in the multi-tenant scheme.

Key generation (KG). All CSP s run MP.KeyGen(λ) to
generate key pairs.

Multi-tenant random tag generation (MRTG). We take
client Ci in tenant Ti as an example for illustration. Ci first
computes a deterministic tag dT , which is the same as the
single-tenant scheme. Then, it uses the public key pki of Ti
and dT to generate a random tag rT = MP.Enc(pki, dT),
whose id set is {i}.

Cross-tenant popularity detection (CPopDet). After re-
ceiving rT and {i}, SS first finds the root node rT1 of
the AVL tree TA (see Figure 8). Different from the single-
tenant scheme, the id set {j} of rT1 may be not equal
to that of rT . If two id sets are the same, then the pro-
cess of popularity detection is the same as the single-
tenant scheme. Otherwise, SS computes a tag equality-
testing ciphertext etct = MP.Sub(rT1, rT, {pki, pkj}), ex-
tracts (etcTi , etcTj) from etct, and then sends them to CSPi
and CSPj respectively. Note that the id set of etct is
{i, j}. CSPi and CSPj respectively run PartDec(etcTi , ski)

and PartDec(etcTj
, skj) to get decryption shares ρi and

ρj , and return them back to SS. The latter invokes
I(FinDec(ρi, ρj)) to restore the final decryption result rst ∈
{−1, 0, 1}. Then SS could determine the algebraic relation
between rT1 and rT based on rst.

As shown in Figure 8, SS can repeat the above steps to
find the corresponding node of rT in TA, and then obtain
the cross-tenant data popularity ctr. If rT cannot match any
existing node, SS will create a new node for it. In this case,
ctr will be set to 1, if the client passes PoW later. The cross-
tenant popularity detection is efficient due to the distributed
decryption, which can be demonstrated in Section 7.3.

𝐶!
𝑟𝑇 {i}

𝑆𝑆

𝑒𝑡𝑐!!
{𝑖, 𝑗}

𝐶𝑆𝑃!

𝑒𝑡𝑐!"
{𝑖, 𝑘}

…
𝑟𝑇" {𝑗}

𝑟𝑇# {k}

… …

𝐶𝑆𝑃$

𝐶𝑆𝑃%

…

Fig. 8. The equality-testing for tags in the multi-tenant scheme.

Re-encryption key generation (RKGen). CSPi of tenant
Ti inputs an original secret key ski and a new secret key sk′i
to run MP.RKGen(ski, sk

′
i), and outputs a re-encryption

key rki.
Update. After receiving a re-encryption key rki from

CSPi, SS first finds all random tags whose id set is {i}
to form a tag set {rTi}. Then, SS runs MP.ReEnc(rki, rTi)
on all elements in {rTi} and then obtains all updated tags
to form an updated tag set {rT ′i}.

The constructions of other algorithms and protocols are
the same as the single-tenant scheme.

5.5 The Workflow of the Multi-tenant Scheme
The workflow consists of the system setup, data up-
load/download, and key update. The specific processes are
as follows.

System Setup. All CSP s run KG(λ) to generate key
pairs and send their public keys to SS. The key pair ofCSPi
is (pki, ski). When a client Ci of tenant Ti joins the system,
it can obtain the public key pki after authenticating with
CSPi. SS sets a uniform popularity threshold t for all user
data from different tenants. The setting of t will be further
discussed in Section 5.6.

Data Upload/Download. When a client Ci of tenant
Ti outsources its file F to SS, it runs MRTG(pki, F) to
generate a random tag rT and its id set {i}, and then sends
(rT, {i}) to SS. The latter runs CPopDet with multiple
CSP s to get the popularity ctri of rT and then runs PoW
(the same as the single-tenant scheme) with Ci. If Ci passes
PoW, SS increases the data popularity by one and adds
Ci into the list of owners. The following steps are the
same as the single-tenant scheme. Specifically, SS returns
an uploading response urs ∈ {up, pc, p} according to the
current data popularity, while Ci uploads data in different
ways according to urs (see Section 4.7). The steps for data
download are the same as the single-tenant scheme.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Key Update. If HE secret keys are compromised by
adversaries, then the security of unpopular data will be
reduced to convergent security. Hence, CSP s rotate HE key
pairs as a regular routine to protect against key compromise.
In the multi-tenant scheme, CSP s of different tenants can
update their keys independently. If CSPi performs the
key update, it invokes KG(λ) to generate a new key pair
(pk′i, sk

′
i). Then, it uses the original secret key ski and the

new secret key sk′i to invoke RKGen(ski, sk
′
i) to get a re-

encryption key rki, and then sends rki to SS. The latter
runs Update to get an updated tag set {rT ′i}. After the key
update, the updated tags are protected by the new key pair
(pk′i, sk

′
i), while the original key pair (pki, ski) is invalid.

5.6 Discussion

Here, we discuss some issues of our schemes.
Security protection. Compared to the state-of-the-art

popularity-based encrypted deduplication schemes [3], [4],
our schemes need a weaker security assumption and pro-
vide stronger security protection. First, our schemes deploy
a semi-trusted third party (CSP) rather than a fully trusted
party. Second, our schemes perform PoW to resist the popu-
larity tamper attack, while existing schemes are vulnerable
to it. Besides, we shrink the size of the data that needs
to be securely stored. Recall that existing schemes need to
maintain confidentiality for all deterministic tags, while our
schemes just need to protect HE secret keys. This feature
reduces the size of sensitive data that needs to be protected,
while reducing the risk of sensitive data leakage.

Popularity threshold. We use a uniform threshold t to
classify data as popular or unpopular for simplicity. Actu-
ally, SS can set various thresholds based on real scenarios.
Note that the number of thresholds needs to be controlled
to prevent uncontrollable boom [3]. After SS publishes
candidate thresholds, users can choose a preferred threshold
for their outsourced data. During the data upload, the client
needs to state the threshold it chooses for outsourced data.
The popularity of the same file with distinct thresholds
needs to be recorded separately [3]. Otherwise, security will
be easily compromised.

User revocation. For cloud storage systems, user revo-
cation is an important issue. In our schemes, to revoke an
owner Ur of an unpopular file Fr , SS removes Ur from
the owner list, decreases the owner number of Fr by one,
and then deletes the random tags and random ciphertexts
uploaded by Ur. Since unpopular data are encrypted by
random keys, a revoked user cannot restore any data in-
formation even if it intercepts the unpopular data uploaded
by other users. To efficiently revoke an owner of a popular
file, we can tweak our schemes by using the encryption
schemes in REED [33] to encrypt popular data. Specifically,
when uploading popular data, clients use convergent all-
or-nothing transform (CAONT [35]) to transform data into
trimmed packages and stubs. Then the trimmed packages
are encrypted with deterministic encryption algorithms and
are used to be deduplicated to save storage space, while
the stubs are encrypted with random keys and are used to
perform the efficient key update and user revocation. As
a result, our scheme can revoke users’ access rights by re-
encrypting the stubs of popular data. The user revocation

is efficient since the size of the stub is small (0.78% of the
original data [33]), and the security can be reduced to the
property of CAONT.

6 SECURITY ANALYSIS
In this section, we analyze the security of our schemes under
our threat model (see Section 4.3).

6.1 Data Confidentiality
Both single-tenant and multi-tenant schemes encrypt pop-
ular data with CE, so they are provided with convergent
security, as analyzed in [10]. As a result, our security anal-
ysis focuses on the semantic security of unpopular data.
We take the single-tenant scheme as an example to analyze
the security for unpopular data, while the analysis for the
multi-tenant scheme is similar. The specific security model
is defined by a security game G played between adversary
A and challenger C below, which respectively model an
honest-but-curious SS and an honest client.

Setup. C runs KG(λ) to generate a HE key pair (pk, sk)
and sends pk to A.

Query.A adaptively issues queries on selected messages.
For a queried message mi, C generates a random symmetric
key ki, invokes SE.Enc(ki,mi) to generate a symmetric
ciphertext Cmi

, and then returns Cmi
to A. Note that C

generates a fresh symmetric key for each query.
Challenge. A outputs two messages m0 and m1 (the

sizes of them are equal). C picks a bit b ∈ {0, 1} and
generates a random symmetric key kc. Then, C computes a
random tag rTb = RTG(pk,mb) and a random ciphertext
Cb = SE.Enc(kc,mb). Besides, C generates two random
seeds (c0, c1), a convergent ciphertext C ′b of mb, and then
uses (c0, c1, C

′
b, pk) to generate a proof set Pb for mb by

locally emulating PoW. Finally, C returns (rTb, Cb, Pb) to A.
Guess. A outputs a guess b′ ∈ {0, 1} of which message is

chosen by C.
We define the advantage AdvA of A in the above game

G as

AdvA = |Pr[b = b′]− 1/2|, (2)

where the probability is over the random bits used by the
challenger and the adversary.

Definition 1. Our scheme provides semantic security for un-
popular data only if for any probabilistic polynomial-time (PPT)
adversary A, there exists a negligible function negl(λ) such that

AdvA ≤ negl(λ).

Theorem 1. If SE and HE are semantically secure, then our
scheme provides semantic security for unpopular data.

Proof. We prove by defining a sequence of indistinguishable
security games, each differs slightly from the previous.

G0: is identical to G.
G1: The challenger C replaces the random ciphertext Cb

by a random bit string Cr, whose length is equal to Cb. The
indistinguishability of G1 to G0 follows from the semantic
security of SE.

G2: The challenger C replaces the random tag rTb by a
random bit string rTr of equal length. Then C replaces all

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

elements in the proof set Pb by random bit strings of equal
length to output a set Pr , whose elements are all uniformly
random. The indistinguishability of G2 to G1 follows from
the semantic security of HE.

In G2, the information available to A are (rTr, Cr, Pr),
which are all uniformly random values. Therefore, in G2, A
could only outputs b′ randomly. So, its probability advan-
tage AdvA is negligible. Since G2 and G0 are indistinguish-
able, the probability advantage for A in G0 is negligible.

The security of the multi-tenant scheme. The security
analysis for the multi-tenant scheme is similar to the single-
tenant scheme. The only difference is that the semantic
security of unpopular data is reduced to MKH-PRE. If there
is a PPT adversaryA compromises the semantic security for
unpopular data, then we can construct another adversary
A′ to break the semantic security of MKH-PRE or SE.

Remarks. Note that A could learn the owner number
of a file corresponding to a random tag (see Figure 6). But
this information does not affect the semantic/convergent
security of unpopular/popular data, since all outsourced
data are semantically/convergently encrypted.

6.2 Attack Resistance
We analyze the resistance to popularity tamper attacks
(PTA), duplicate faking attacks (DFA), and brute-force at-
tacks (BFA) for our schemes. Note that the resistance to PTA
is the same as the resistance to ownership cheating attacks.
The analysis for these attacks in the single-tenant and multi-
tenant schemes is the same, so we do not differentiate them.

Definition 2. Let ε be a security parameter, if the probability
Ppass that a malicious client passes PoW satisfies that Ppass ≤
2−ε, then our schemes achieve the resistance to PTA.

Theorem 2. Assuming that there are no collisions in the hash
function, and the malicious client owns a certain portion p of a
target file F , then our schemes could achieve the resistance to
PTA if the number n of challenge blocks in PoW satisfies that
n ≥ −ε · ln 2

ln p .

Proof. Assuming that the malicious client Ae knows p of
F . In other words, given any block B of F to Ae, the
probability that it owns B is p. For any challenge block,
the probability that Ae owns it is p. If Ae has the challenge
block, it can use its hash to compute the proof of ownership.
Otherwise, it can only guess the hash of the challenge block.
Suppose that the length of the hash is K bits, then the
probability that Ae guesses the correct hash of a challenge
block is 2−K . So, we can deduce that the probability that
Ae passes PoW is Ppass =

(
p+ (1− p) · 2−K

)n
. Generally,

K is about 128 or 256. So, (1− p) · 2−K can be considered
a negligible value. Therefore, we have Ppass ≈ pn. To resist
PTA, we need to ensure that Ppass ≤ 2−ε. Through simple
arithmetic, we can deduce that the minimum bound of n is
−ε · ln 2

ln p .

Theorem 3. Assuming that there are no collisions in the hash
function, then our schemes could achieve resistance to DFA.

Proof. If a malicious client Ae successfully launches DFA,
it needs to let SS output f = 1 during the ciphertext

verification. In other words, its forged convergent ciphertext
F ′c(F

′
c 6= Fc) needs to satisfy H(F ′c) = H(Fc), where Fc is

an honestly generated ciphertext. In this case,Ae finds colli-
sions in the hash function, which breaks the assumption.

Theorem 4. If both SE and HE are semantically secure, then our
schemes could resist BFA for unpopular data and unpredictable
popular data.

Proof. All tags, proofs, and communication transcripts be-
tween SS and CSP are encrypted by HE. Based on the
semantic security of HE, any adversary can not launch BFA
on them to restore data information. Unpopular data are
encrypted with SE, so the BFA on them can not work if
SE is semantically secure. Popular data are encrypted with
CE, so their semantic security can be achieved if they are
unpredictable. If the popular data are predictable, then they
are vulnerable to BFA [2].

6.3 Data Integrity

The honest-but-curious SS can access all outsourced data.
However, based on the HBC assumption, it does not ma-
liciously modify, delete, or destruct user data. This is a
reasonable assumption since SS needs to maintain its in-
dustry reputation and accountability. For a malicious client
Ae, according to Theorem 3, it can not successfully launch
DFA to compromise data integrity without being detected.
For legitimate users, they can use random keys or conver-
gent keys to restore outsourced data and then verify the
data integrity via integrity verification. Note that the key
generation of CE is a hash function. If the data integrity is
compromised, and the integrity verification can be passed,
then the adversary finds collisions in the hash function,
which breaks the assumption.

6.4 Tag Consistency

Based on the collision resistance of the hash function and
the decryption correctness of HE, our data tags achieve
validity. Assuming that a malicious client Ae constructs the
same tag rT for two distinct files F1 and F2. Based on the
decryption correctness of HE, we have H(F 1

c) = H(F 2
c),

where F 1
c and F 2

c are the convergent ciphertexts of F1 and
F2 respectively. Since F1 6= F2, then the probability that
F 1
c = F 2

c is negligible. Therefore, C finds a collision in
the hash function, which breaks the assumption. Besides,
since random tags are encrypted by HE, they are indistin-
guishable from random bit strings of equal length based on
the semantic security of HE, which proves that our schemes
provide security for tags.

6.5 Forward Security

The forward security of the multi-tenant scheme can be
easily drawn from the security of the proxy re-encryption in
MKH-PRE. Based on the security of the proxy re-encryption,
the original keys are useless after the key rotation. The
original keys and new keys are both uniformly and ran-
domly chosen from the key space, and the updated tags are
consistent with the new keys and are indistinguishable from
random bit strings based on the security of MKH-PRE.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 1
Security comparison for popularity-based encrypted deduplication schemes.

Confidentiality Resistance to PTA Resistance to DFA Scalability Updatability

Stanek et al. [3] " % " % %

PerfectDedup [4] " % " % %

Single-tenant scheme " " " % %

Multi-tenant scheme " " " " "

6.6 Security Comparison
We compare the security properties of our schemes with
state-of-the-art schemes [3] [4]. As shown in Table 1, existing
schemes can not provide resistance to PTA, since they do not
introduce the PoW protocol. Compared to the single-tenant
scheme, the multi-tenant scheme further provides scalability
and updatability based on the properties of MKH-PRE. Note
that the confidentiality in Table 1 refers to the semantic
security of unpopular data and the convergent security of
popular data.

7 EVALUATION
We implement prototypes of our schemes, which consist
of three entities: the client C , the storage server SS, and
the crypto-service provider CSP . We use MD5 as the tag
generation function for deterministic data tags and SHA-
256 as the key generation function for convergent keys. The
symmetric encryption algorithm used in our prototypes is
AES-128-CTR. These cryptographic primitives are all im-
plemented based on the OpenSSL library [36]. The codes
of HE and MKH-PRE are implemented in different ways.
HE can be implemented more efficiently than MKH-PRE,
since it does not need to support the proxy re-encryption or
homomorphic computation on ciphertexts under different
key pairs. The code of HE is implemented based on the
open-source library SEAL [37] [38]. The MKH-PRE is im-
plemented based on the schemes of [39] and [40], and the
code of MKH-PRE is implemented based on FNTRU [41].
All entities in our prototypes are implemented in C++.

We also implement the prototypes of existing schemes
[3], [7]. We call the scheme proposed by Stanek et al. [3]
Sdedup for short. We instantiate the bilinear map in the
prototypes of [3] and [7] with type-F pairing provided by
the PBC library [42]. Our experiments run on a machine
equipped with a quad-core 2.7GHz Intel Core-i7-7500U,
5400RPM SATA hard disk, and 8GB RAM, and installed
with 64-bit Ubuntu 20.04.12.

We first evaluate the time overheads of data upload
in three scenarios: unpopular data upload, popularity con-
version, and popular data upload. Then, we evaluate the
overheads of the tag equality-testing and key update to
demonstrate their efficiency. Finally, we use a real-world
dataset to evaluate the storage overhead.

7.1 Comparison with Sdedup
One of the differences between our schemes and Sdedup is
that we use HE/MKH-PRE to generate random tags and in-
troduce a PoW protocol, while Sdedup uses the convergent
threshold cryptosystem. Thus, we compare the performance

of the cryptography tools in our schemes and Sdedup. The
performance comparison is shown in Figure 9.

We select a test file Ft and analyze the performances
of various cryptography tools by evaluating the time over-
heads of generating the random tag and proofs of own-
ership. Note that the overheads of the generations of the
random tag and proofs all depend only on the file hash, not
the file size, so we do not specify the size of Ft. The PoW
protocols in single-tenant and multi-tenant schemes are
denoted by PoW-S and PoW-M in Figure 9 respectively since
different homomorphic encryption algorithms are used. The
time overhead of the threshold cryptosystem in Sdedup
is 31.1 ms, while the counterparts of HE/MKH-PRE and
PoW-S/PoW-H are 0.4/3.3 ms and 2.8/7.9 ms respectively.
Therefore, compared with Sdedup, the cryptography tools
used in both single-tenant and multi-tenant schemes are
more efficient. Besides, we can find that the speed of HE
encryption is significantly faster than that of MKH-PRE.

Threshold HE PoW-S MKH-PRE PoW-M
0

5

10

15

20

25

30

Ti
m

e
(m

s)

Fig. 9. The performance comparison among the threshold cryptosystem,
HE, MKH-PRE, and PoW.

Then, we compare the time overheads for uploading un-
popular data among Sdedup, our single-tenant and multi-
tenant schemes with multiple test files ranging in size
from 1 MiB to 500 MiB. The result is shown in Figure 10.
The time overheads include the overheads of random tag
generation, data encryption, PoW (only in our schemes),
and data communication. When uploading a file of 1 MiB,
our single-tenant and multi-tenant schemes can respectively
reduce 51.9% and 17.4% time overheads compared with
Sdedup. When the file size becomes 500 MiB, these two
ratios become 1.0% and 0.9%. We can find that the time
overheads for uploading unpopular files with relatively
large sizes are close among these three schemes, although
our schemes seem to have slightly less overhead. The reason
is that the overheads of computing file hashes and data
encryption account for about 90% of the total, and these two
parts in Sdedup and our schemes are similar. The processes

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

of popularity conversion and uploading popular data in
Sdedup and our schemes are basically the same, so the time
overheads of these two processes are also close.

1 5 10 100 200 300 400 500

File Size (MiB)
0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
(m

s)

Single-tenant
Multi-tenant
Sdedup

Fig. 10. The performance comparison between our schemes and Sd-
edup when uploading unpopular data.

7.2 Performance Comparison under Three Scenarios

We take the single-tenant scheme as an example to evaluate
the time overhead of each part in three scenarios. The situa-
tion of the multi-tenant scheme is similar. The size of the test
file is 10 MiB. We assume that SS has already stored 10,000
random tags. There are six main components in the process
of data upload: random tag generation, PoW, popularity de-
tection, ciphertext verification, data encryption (the random
encryption for unpopular data), and communication.

As shown in Figure 11, the overheads of random tag
generation respectively account for 60.2%, 64.4%, and 95.2%
of the total overheads in these three scenarios, which are
the most time-consuming. The overheads of the random
tag generation include the overheads of generating the
convergent ciphertext, deterministic tag, and random tag.
The overheads of PoW and popularity detection in these
scenarios only account for 1.8% ∼ 2.6% and 0.3% ∼ 0.6%
respectively, which only have little impact on performance.
Compared with the unpopular data upload, the popularity
conversion has the overhead of ciphertext verification in-
stead of data encryption. The overheads of the ciphertext
validation include the overheads of generating the deter-
ministic tag, once HE encryption, and once HE decryption,
which are close to the overheads of the data encryption. So,
these two scenarios have close overheads. It is obvious that
the popular data upload has the lowest overhead since it
requires neither data encryption nor ciphertext verification.
The communication overhead in popular data upload is also
very low since the whole data do not need to be uploaded.
As a result, the overhead for the popular data upload is
reduced by 39.2% and 35.8% respectively compared with
the unpopular data upload and popularity conversion.

We use multiple test files to evaluate the time over-
heads for data upload in three scenarios. In Figure 12, we
can see that the overhead for uploading data will become
lower once the data become popular. When the size of the
outsourced data is 500 MiB, uploading popular data can
save 34.6% and 32.2% of the time overhead compared with
uploading unpopular data and popularity conversion.

unpopular data popularity conversion popular data0

25

50

75

100

125

Ti
m

es
 (m

s)

random tag generation
PoW
popularity detection

data encryption
communication
ciphertext verification

Fig. 11. The time overheads of each component in each scenario.

1 5 10 100 200 300 400 500

File Size (MiB)
0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
(m

s)

unpopular data
popularity conversion
popular data

Fig. 12. The performance comparison in three scenarios.

7.3 Performance of Tag Equality-testing
We compare the time overheads of the linear and binary
search for random tags. The result is shown in Figure 13.
The performance evaluation of linear and binary searches
is under the single-tenant scheme. We insert 1,000 random
tags continuously into the linear structure and the AVL tree.
The binary search based on the AVL tree is more efficient.
The insertion of the 1,000th random tag takes only 15 ms
using binary search, while the delay of the linear search is
99 ms.

0 100 200 300 400 500 600 700 800 900 1000
Number of Tags

0

20

40

60

80

100

Ti
m

e
(m

s)

Binary Search
Linear Search

Fig. 13. Linear and binary search for random tags.

The overheads of inserting 1,000 random tags continu-
ously in our single-tenant/ multi-tenant schemes and the
static/dynamic schemes in [7] are shown in Figure 14. We
can find that the single-tenant and multi-tenant schemes
respectively have the highest and lowest overheads for the
tag equality-testing, while the static and dynamic schemes
in [7] are in the middle. The use of the MKH-PRE mildly

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

increases the overhead of tag equality-testing. But continu-
ously inserting 1,000 random tags into the AVL tree in multi-
tenant schemes only needs 71 ms, which is also very effi-
cient. The distributed decryption in MKH-PRE can improve
the performance of the tag equality-testing in the multi-
tenant scheme. The decryption processes of multiple CSP s
are performed in parallel, which ensures that the multi-
keys decryption does not bring significant time overhead.
Note that the fluctuation in Figure 14 is mainly due to
the instability of the decryption time and the adjustment
of the tree height when inserting nodes. Compared with
[7], the superiority of our schemes is that our tag equality-
testing does not need the involvement of clients and does
not require the assumption that the clients are online when
performing the tag equality-testing. During the evaluation
of the static/dynamic schemes in [7], we set up a client that
is always online.

0 100 200 300 400 500 600 700 800 900 1000
Number of Tags

0

20

40

60

80

100

Ti
m

e
(m

s)

Single-tenant
Multi-tenant
Static
Dynamic

Fig. 14. Inserting 1,000 random tags continuously into our schemes and
the structure in [7].

We also evaluate the overhead of each part in the tag
equality-testing. Specifically, we evaluate the overheads of
inserting 10, 100, 200, 300, 400, and 500 tags, respectively.
Figure 15 shows the evaluation result in the single-tenant
scheme. The overheads of the tag equality-testing include
the overheads of the subtraction of multiple HE cipher-
texts (denoted as HE.Sub), the HE decryption (denoted as
HE.Dec), the adjustment of the AVL tree, and the commu-
nication overhead. The overheads for the HE decryption
and communication dominate the total. These overheads
account for more than 90% of the total. Figure 16 shows the
evaluation result in the multi-tenant scheme. The overhead
for the HE decryption (MP.Dec) accounts for more than 94%
of the total. The reason is that the homomorphic decryption
in MKH-PRE is significantly slower than HE. Besides, we
can find that the communication overhead does degrade
the performance in the single-tenant scheme, but in the
multi-tenant scheme, the performance bottleneck of the tag
equality-testing is the homomorphic decryption.

7.4 Performance of Key Update

The performance of the key update in the multi-tenant
scheme is shown in Figure 17. We can find that the key
update is efficient. Update 500 random tags only needs less
than 2.6 s. The reason is that our key update is transparent
to users, and the process of the re-encryption only consists
of twice polynomial multiplications. The re-encryption is

10 100 200 300 400 500

Number of Tags
0

200

400

600

800

1000

1200

1400

Ti
m

e
(m

s)

HE.Sub
HE.Dec

Communication
Adjustment of the AVL tree

Fig. 15. The overhead of each part in the tag equality-testing (single-
tenant scheme).

10 100 200 300 400 500

Number of Tags
0

5000

10000

15000

20000

25000

30000

Ti
m

e
(m

s)

MP.Sub
MP.Dec

Communication
Adjustment of the AVL tree

Fig. 16. The overhead of each part in the tag equality-testing (multi-
tenant scheme).

implemented based on NTRU [28] [40], in which the poly-
nomial coefficients are relatively small, and the polynomial
multiplications can be efficiently performed using the Fast
Fourier Transform (FFT) [43].

0 50 100 150 200 250 300 350 400 450 500
Number of Tags

0

500

1000

1500

2000

2500

3000

Ti
m

e
(m

s)

Fig. 17. The performance of key update.

7.5 Storage Efficiency
We evaluate the storage efficiency of our schemes based
on a real-world dataset: PB dataset [44], which contains
the metadata of 679,515 unique torrents from The Pirate
Bay, collected on December 5th, 2008. The dataset does not
provide the granularity of torrent contents, so we consider
each torrent to correspond to one file for measurement.
As analyzed in [3], this simplification does not positively
impact the evaluation results. We sum the number of “seed-
ers” (peers already having the whole file) and “leechers”

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

(peers having only part of the file, but intending to get the
whole file in the future) of a file as the data popularity.
The files with zero size and zero popularity are removed,
then we can get a dataset consisting of 442,332 unique
files. We randomly select 200, 400, 600, 800, and 1000 files
from the dataset to evaluate storage efficiency. The storage
overheads of our single-tenant and multi-tenant schemes
are almost the same, so we do not differentiate them. We
compare our schemes with a baseline scheme non-dedup,
which does not deduplicate any duplicate files. Besides, we
set the popularity threshold t to 50, 100, and 200 to evaluate
its impact on storage efficiency.

Figure 18 shows the evaluation result for storage over-
head. As the number of selected files increases, our schemes
save storage overhead more significantly compared with
non-dedup. When 200 files are stored, the storage overheads
for non-dedup and our schemes are 3674 MB (non-dedup),
1424 MB (t=50), 1915 MB (t=100), and 2364 MB (t=200)
respectively. Our schemes achieve storage savings of 35.7%-
61.2%. When 1000 files are stored, the storage savings can
be increased to 41.9%-66.5%. Moreover, we can find that a
smaller threshold t can result in higher storage efficiency.
This is because a smaller t can lead to more popular files,
while our schemes save storage overhead by deduplicating
popular files.

200 400 600 800 1000
Number of files

0

5000

10000

15000

20000

25000

30000

Fi
le

 S
iz

e
(M

B
)

non-dedup
t = 50
t = 100
t = 200

Fig. 18. Storage overheads of our schemes.

8 RELATED WORK
After MLE [10] and DupLESS [2] are proposed, researchers
present many novel encrypted deduplication schemes. Liu
et al. [11], [12] and Yu et al. [13] design encrypted dedu-
plication schemes without additional independent servers.
Besides, Shin et al. [45] propose decentralized server-aided
encryption for secure deduplication to alleviate the single
point of failure in DupLESS. Li et al. [46] [47] propose
defense schemes for frequency analysis attacks in encrypted
deduplication systems. Zhao et al. [48] propose the updat-
able MLE (UMLE), which allows the efficient update of
the encrypted files stored in the cloud server. SGXDedup
[49] is proposed to speed up encrypted deduplication via
Intel SGX. Yang et al. [50] and Xu et al. [51] propose ac-
cess control schemes for encrypted deduplication. Yu et al.
[52] and Zhang et al. [53] propose encrypted deduplication
schemes against side-channel attacks. R-MLE2 [8] and µR-
MLE2 [7] are proposed to provide lock-dependent security

for secure deduplication. None of the above schemes con-
siders data popularity. The state-of-the-art popularity-based
secure deduplication schemes are [3] and [4]. As described
in Section 2.3 and 6.6, these schemes need to deploy trusted
third parties, are vulnerable to popularity tamper attacks,
and cannot provide scalability and updatability, while our
schemes address these limitations.

9 CONCLUSION
In this paper, we first propose a single-tenant popularity-
based encrypted deduplication scheme with fully random
tags. We use HE to generate random tags, avoiding storing
deterministic tags to record data popularity. Besides, we
reduce the time complexity of tag equality-testing by the
binary search in the AVL tree. We also design a PoW pro-
tocol to resist the popularity tamper attack. For scalability
and key rotation, we expand our single-tenant scheme to
a multi-tenant scheme by introducing MKH-PRE. In the
multi-tenant scheme, users in different tenants use different
HE key pairs to generate data tags, while the server could
record the cross-tenant data popularity. The multi-tenant
scheme also supports key rotation based on the proxy re-
encryption of MKH-PRE. We implement prototypes of our
schemes and evaluate their performances. The results show
that our schemes have high storage efficiency and achieve
efficient data encryption and key update.

10 ACKNOWLEDGEMENT
This work is supported by National Natural Science Foun-
dation of China (61972215,62172238, 61972073); the National
Key R&D Program of China (2018YFA0704703); Natural
Science Foundation of Tianjin (20JCZDJC00640; The Fun-
damental Research Funds for the Central Universities of
China.

REFERENCES

[1] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed
file system,” in Distributed Computing Systems, 2002. Proceedings.
22nd International Conference on, 2002.

[2] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Dupless: Server-
aided encryption for deduplicated storage,” in Usenix Conference
on Security, 2013.

[3] J. Stanek and L. Kencl, “Enhanced secure thresholded data dedu-
plication scheme for cloud storage,” IEEE Transactions on Depend-
able & Secure Computing, vol. PP, no. 4, pp. 1–1, 2016.

[4] P. Puzio, R. Molva, M. Önen, and S. Loureiro, “Perfectdedup:
Secure data deduplication,” Tech. Rep., 2015. [Online]. Available:
https://doi.org/10.1007/978-3-319-29883-2 10

[5] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs
of ownership in remote storage systems,” in ACM Conference on
Computer & Communications Security, 2011, p. 491.

[6] J. Xu, E. C. Chang, and J. Zhou, “Weak leakage-resilient client-side
deduplication of encrypted data in cloud storage,” ASIA CCS 2013
- Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security, pp. 195–206, 2013.

[7] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, and W. Lou, “Secure and
Efficient Cloud Data Deduplication with Randomized Tag,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 3, pp.
532–543, 2017.

[8] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev,
“Message-locked encryption for lock-dependent messages,” in
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, ser. Lecture Notes in Computer Science, R. Canetti and J. A.
Garay, Eds., vol. 8042. Springer, 2013, pp. 374–391.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[9] G. Ha, H. Chen, C. Jia, R. Li, and Q. Jia, “A secure deduplication
scheme based on data popularity with fully random tags,” in
20th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, TrustCom 2021, Shenyang, China,
October 20-22, 2021. IEEE, 2021, pp. 207–214.

[10] M. Bellare and S. Keelveedhi, Message-Locked Encryption and Secure
Deduplication. Springer Berlin Heidelberg, 2013.

[11] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of en-
crypted data without additional independent servers,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-16, 2015,
I. Ray, N. Li, and C. Kruegel, Eds. ACM, 2015, pp. 874–885.

[12] J. Liu, L. Duan, Y. Li, and N. Asokan, “Secure deduplication of
encrypted data: Refined model and new constructions,” pp. 374–
393, 2018.

[13] C. Yu, “POSTER: efficient cross-user chunk-level client-side data
deduplication with symmetrically encrypted two-party interac-
tions,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-
28, 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi, Eds. ACM, 2016, pp. 1763–1765.

[14] J. B. Alı́s, R. D. Pietro, A. Orfila, and A. Sorniotti, “A tunable proof
of ownership scheme for deduplication using bloom filters,” in
IEEE Conference on Communications and Network Security, CNS 2014,
San Francisco, CA, USA, October 29-31, 2014. IEEE, 2014, pp. 481–
489.

[15] L. González-Manzano, J. M. de Fuentes, and K. R. Choo, “ase-
pow: A proof of ownership mechanism for cloud deduplication
in hierarchical environments,” in Security and Privacy in Com-
munication Networks - 12th International Conference, SecureComm
2016, Guangzhou, China, October 10-12, 2016, Proceedings, vol. 198.
Springer, 2016, pp. 412–428.

[16] J. Xiong, Y. Zhang, L. Lin, J. Shen, X. Li, and M. Lin, “ms-posw: A
multi-server aided proof of shared ownership scheme for secure
deduplication in cloud,” Concurr. Comput. Pract. Exp., vol. 32, no. 3,
2020.

[17] J. Dave, A. Dutta, P. Faruki, V. Laxmi, and M. S. Gaur, “Secure
proof of ownership using merkle tree for deduplicated storage,”
Autom. Control. Comput. Sci., vol. 54, no. 4, pp. 358–370, 2020.

[18] G. M. Adel’son-Vel’skii and E. M. Landis, “An algorithm for
organization of information,” in Doklady Akademii Nauk, vol. 146,
no. 2. Russian Academy of Sciences, 1962, pp. 263–266.

[19] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009,
M. Mitzenmacher, Ed. ACM, 2009, pp. 169–178.

[20] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” ACM Trans.
Comput. Theory, vol. 6, no. 3, pp. 13:1–13:36, 2014.

[21] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster
fully homomorphic encryption: Bootstrapping in less than 0.1
seconds,” in Advances in Cryptology - ASIACRYPT 2016 - 22nd
International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Pro-
ceedings, Part I, ser. Lecture Notes in Computer Science, vol. 10031,
2016, pp. 3–33.

[22] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly mul-
tiparty computation on the cloud via multikey fully homomorphic
encryption,” in Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 -
22, 2012. ACM, 2012, pp. 1219–1234.

[23] C. Peikert and S. Shiehian, “Multi-key FHE from lwe, revisited,” in
Theory of Cryptography - 14th International Conference, TCC 2016-B,
Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, ser.
Lecture Notes in Computer Science, vol. 9986, 2016, pp. 217–238.

[24] Z. Brakerski and R. Perlman, “Lattice-based fully dynamic multi-
key FHE with short ciphertexts,” in Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, ser.
Lecture Notes in Computer Science, vol. 9814. Springer, 2016, pp.
190–213.

[25] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-key ho-
momorphic encryption with packed ciphertexts with application
to oblivious neural network inference,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019. ACM, 2019, pp.
395–412.

[26] S. Yasuda, Y. Koseki, R. Hiromasa, and Y. Kawai, “Multi-key
homomorphic proxy re-encryption,” in Information Security - 21st
International Conference, ISC 2018, Guildford, UK, September 9-12,
2018, Proceedings, ser. Lecture Notes in Computer Science, vol.
11060. Springer, 2018, pp. 328–346.

[27] Z. Brakerski, “Fully homomorphic encryption without modu-
lus switching from classical gapsvp,” in Advances in Cryptology–
CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings. Springer, 2012, pp.
868–886.

[28] J. Hoffstein, J. Pipher, and J. H. Silverman, “Ntru: A ring-based
public key cryptosystem,” in Algorithmic Number Theory: Third
International Symposiun, ANTS-III Portland, Oregon, USA, June 21–
25, 1998 Proceedings. Springer, 2006, pp. 267–288.

[29] T. Berson, D. Dean, M. K. Franklin, D. K. Smetters, and M. Spre-
itzer, “Cryptology as a network service,” in Proceedings of the
Network and Distributed System Security Symposium, NDSS 2001,
San Diego, California, USA. The Internet Society, 2001.

[30] R. W. F. Lai, C. Egger, D. Schröder, and S. S. M. Chow, “Phoenix:
Rebirth of a cryptographic password-hardening service,” in 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver,
BC, Canada, August 16-18, 2017, E. Kirda and T. Ristenpart, Eds.
USENIX Association, 2017, pp. 899–916.

[31] A. Everspaugh, R. Chatterjee, S. Scott, A. Juels, and T. Ristenpart,
“The pythia PRF service,” in 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015,
J. Jung and T. Holz, Eds. USENIX Association, 2015, pp. 547–562.

[32] R. W. F. Lai, C. Egger, M. Reinert, S. S. M. Chow, M. Maffei, and
D. Schröder, “Simple password-hardened encryption services,” in
27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018, W. Enck and A. P. Felt, Eds.
USENIX Association, 2018, pp. 1405–1421.

[33] C. Qin, J. Li, and P. P. C. Lee, “The design and implementation of
a rekeying-aware encrypted deduplication storage system,” ACM
Trans. Storage, vol. 13, no. 1, pp. 9:1–9:30, 2017. [Online]. Available:
https://doi.org/10.1145/3032966

[34] A. Muffet, “Facebook: Password hashing and authentication,”
Available: https://video.adm.ntnu.no/ pres/54b660049af94/,
2015.

[35] M. Li, C. Qin, and P. P. C. Lee, “Cdstore: Toward reliable, secure,
and cost-efficient cloud storage via convergent dispersal,” in 2015
USENIX Annual Technical Conference, USENIX ATC ’15, July 8-10,
Santa Clara, CA, USA. USENIX Association, 2015, pp. 111–124.

[36] “Openssl project,” Available: http://www. openssl.org/.
[37] K. Laine, “Simple encrypted arithmetic library 2.3.1.”

https://www.microsoft.com/en-us/research/uploads/prod/
2017/11/sealmanual-2-3-1.pdf., 2017.

[38] “Seal 2020. microsoft seal (release 3.6).” https://github.com/ Mi-
crosoft/SEAL. Microsoft, 2017.

[39] R. Li, C. Jia, and Y. Wang, “Multi-key homomorphic proxy re-
encryption scheme based on ntru and its application,” Tongxin
Xuebao/Journal on Communications, vol. 42, no. 3, pp. 11 – 22, 2021.

[40] D. Nuñez, I. Agudo, and J. López, “Ntrureencrypt: An efficient
proxy re-encryption scheme based on NTRU,” in Proceedings of the
10th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS ’15, Singapore, April 14-17, 2015. ACM, 2015,
pp. 179–189.

[41] “Fntru,” https://github.com/vernamlab/FNTRU.
[42] “Pbc library-the pairing-based cryptography library, [online].”

Available: https://crypto.stanford.edu/pbc/.
[43] J. Hermans, F. Vercauteren, and B. Preneel, “Speed records for

NTRU,” in Topics in Cryptology - CT-RSA 2010, The Cryptographers’
Track at the RSA Conference 2010, San Francisco, CA, USA, March
1-5, 2010. Proceedings, ser. Lecture Notes in Computer Science, vol.
5985. Springer, 2010, pp. 73–88.

[44] D. H. Fabio Hecht, Thomas Bocek, “The
pirate bay 2008-12 dataset,” Available:
http://www.csg.uzh.ch/publications/data/piratebay/.

[45] Y. Shin, D. Koo, J. Yun, and J. Hur, “Decentralized Server-aided
Encryption for Secure Deduplication in Cloud Storage,” IEEE
Transactions on Services Computing, vol. 1374, no. c, pp. 1–14, 2017.

[46] J. Li, P. P. Lee, C. Tan, C. Qin, and X. Zhang, “Information
Leakage in Encrypted Deduplication via Frequency Analysis,”
ACM Transactions on Storage, vol. 16, no. 1, 2020.

[47] J. Li, Z. Yang, Y. Ren, P. P. Lee, and X. Zhang, “Balancing storage
efficiency and data confidentiality with tunable encrypted dedu-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

plication,” Proceedings of the 15th European Conference on Computer
Systems, EuroSys 2020, 2020.

[48] Y. Zhao and S. S. M. Chow, “Updatable Block-Level Message-
Locked Encryption,” Tech. Rep., 2019.

[49] Z. Yang, P. P. C. Lee, T. Chinese, and H. Kong, “Accelerating
Encrypted Deduplication via SGX Yanjing Ren and Jingwei Li ,
University of Electronic Science and Technology of China ; This
paper is included in the Proceedings of the,” Usenix Atc, 2021.

[50] H. Tang, Y. Cui, C. Guan, J. Wu, J. Weng, and K. Ren, “Enabling
ciphertext deduplication for secure cloud storage and access con-
trol,” in Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2016, Xi’an, China, May 30 -
June 3, 2016. ACM, 2016, pp. 59–70.

[51] R. Xu, J. Joshi, and P. Krishnamurthy, “An integrated privacy pre-
serving attribute-based access control framework supporting se-
cure deduplication,” IEEE Trans. Dependable Secur. Comput., vol. 18,
no. 2, pp. 706–721, 2021.

[52] C. Yu, S. P. Gochhayat, M. Conti, and C. Lu, “Privacy aware data
deduplication for side channel in cloud storage,” IEEE Trans. Cloud
Comput., vol. 8, no. 2, pp. 597–609, 2020.

[53] Y. Zhang, Y. Mao, M. Xu, F. Xu, and S. Zhong, “Towards thwarting
template side-channel attacks in secure cloud deduplications,”
IEEE Trans. Dependable Secur. Comput., vol. 18, no. 3, pp. 1008–1018,
2021.

Guanxiong Ha received the M.S. degree in
computer science and technology from Nankai
University, Tianjin, P. R. China, in 2021. He is
currently working toward the Ph.D. degree from
the College of Cyber Science, Nankai Univer-
sity, Tianjin, P. R. China. His research interests
include cloud data security and applied cryptog-
raphy.

Chunfu Jia A Ph.D. supervisor, a professor and
the Head of Department in the Department of
cyber Sciences, Nankai University. His main re-
search interests include network and system
security, cryptography application and malware
analysis.

Yixuan Huang was born in 1999. She is cur-
rently a Master Candidate at the College of Cy-
ber Science, Nankai University, Tianjin, China.
Her research interests mainly include homomor-
phic encryption.

Hang Chen is studying for a master’s degree at
the College of Cyber Science, Nankai University,
Tianjin, China. Her main research interests are
cryptography and data deduplication.

Ruiqi Li received the Ph.D. degree in computer
science and technology from Nankai University
in 2021. He is currently an Assistant Professor
with the College of Safety Science and Engi-
neering, Civil Aviation University of China. His
current research interests include fully homo-
morphic encryption, lattice-based cryptography
and cloud computing security.

Qiaowen Jia is currently a Ph.D candidate
in Institute of Software, University of Chinese
Academy of Sciences. Her research interest in-
cludes concurrent program and software verifi-
cation.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3285173

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

