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Abstract—Microservice architectures are widely used today to implement distributed systems. Securing microservice architectures is
challenging because of their polyglot nature, continuous evolution, and various security concerns relevant to such architectures. This
article proposes a novel, model-based approach providing detection strategies to address the automated detection of security tactics
(or patterns and best practices) in a given microservice architecture decomposition model. Our novel detection strategies are
metrics-based rules that decide conformance to a security recommendation based on a statistical predictor. The proposed approach
models this recommendation using Architectural Design Decisions (ADDs). We apply our approach for four different security-related
ADDs on access management, traffic control, and avoiding plaintext sensitive data in the context of microservice systems. We then
apply our approach to a model data set of 10 open-source microservice systems and 20 variants of those systems. Our results are
detection strategies showing a very low bias, a very high correlation, and a low prediction error in our model data set.
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1 INTRODUCTION

Microservice architectures consist of independently deploy-
able, scalable, and changeable services [1], [2], [3]. Key
characteristics are development in independent teams, poly-
glot technology stacks, cloud-native technologies and ar-
chitectures, lightweight containers, loosely-coupled service
dependencies, end-to-end tracing and monitoring, and con-
tinuous delivery [1], [2], [4]. This article focuses on the secu-
rity aspects of microservice architectures. Despite numerous
published guidelines and best practices [5], [6], [7], architect-
ing microservice systems is challenging concerning security.
This is due to the size and complexity of microservice sys-
tems, the many relevant security concerns in such systems,
their polyglot nature, and the need for continuous evolution
and frequent release of these systems. In this context, manu-
ally validating whether numerous required security features
are used as intended throughout the system is a time-
consuming and error-prone task. Architectural abstraction
can help focus only on the relevant aspects of architecturally
significant security features. However, substantial effort is
still required, e.g., to check a large-scale system’s architec-
ture for conformance to security recommendations.

This article presents an approach for checking the con-
formance to recommendations on security-related Architec-
tural Design Decisions (ADDs) via detection strategies. The
conformance relation is generally defined as the consistency
between models [8]. This concerns the relation between a
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software system’s architecture and its intended architec-
ture [9].

A Detection Strategy is defined as “the quantifiable ex-
pression of a rule by which design fragments that conform to
that rule can be detected.” [10]. To enable the formulation
of concrete detection strategies for conformance relations,
we defined four exemplary ADDs with security tactics as
decision options. Further, we specified metrics representing
the different options of the ADDs. We define these for
several security aspects not yet modeled by ADDs or metrics
in the literature, namely access management, traffic control,
and avoidance of sensitive plaintext data. Then we define
our detection strategies as rules on top of the metrics. In
contrast to prior work on detection strategies [10], we do not
base our approach on simple data filters only. Instead, we
use a statistical analysis based on ordinal logistic regression
to derive prediction models, which we then use to construct
our detection strategies. This article aims to study the fol-
lowing research questions:

• RQ1. How can we automatically detect conformance
to recommendations on ADDs and tactics on security
in microservice architecture models?

• RQ2. How well does this detection perform?

This work is based on a dataset of 10 open-source
microservice systems that we have manually modeled in
our previous work [11], [12] and that are partially (i.e., 3
of the 10 systems) automatically extracted from the source
code. We have added 20 variants in which possible vio-
lations of ADD options or refactorings for improvement
are introduced based on the discussions in the relevant
literature. In addition to the cases, our prior work provides
(1) a method for automatically extracting decomposition
models for polyglot microservice systems from the source
code [12] and (2) an approach for metrics detection in such
models [11]. These building blocks of our approach are only
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briefly introduced in this article. Our novel contributions,
which we will focus on, are (1) a new detection strategy
approach, (2) a novel set of ADDs and security tactics used
to validate our approach, and (3) a substantially extended
formalization for the models and metrics. We have estab-
lished a ground truth based on a manual assessment by
five industrial experts. We compare the detection strategies
statistically to the ground truth to evaluate our approach.
Our results show that for each of the four ADDs, we found
at least one detection strategy that uses a regression model
with very low bias, has low or very low prediction error and
a very high prediction correlation with ground truth data.
Our approach requires manual assessment and modeling
for creating the dataset and a regression model. Still, once a
fitting regression model has been established, the approach
can be applied automatically, e.g., as a component in an
analysis tool (see Section 6) or as an automated step in a
continuous delivery pipeline.

As an additional contribution, this article provides a
validation of the study results provided in [11]. That is,
the conformance detection approach introduced in [11],
which is used by our novel detection strategies, is repli-
cated here based on an entirely different set of ADDs, a
new formalization approach, an entirely new metrics set, a
new recommendation/ground truth analysis study and new
security extensions in our model data set.

This article is structured as follows: First, in Section 2, we
overview our approach and discuss the research methods
used. Then, Section 3 presents the ADDs for microservice
security tactics considered in this article and the ground
truth derived from them. Section 4 formally specifies the
metrics and detection strategies. Next, Section 5 presents
the analysis of the regression models and the derived de-
tection strategies. Section 6 describes an industrial resilience
assessment tool in which we have applied our approach
and the lessons learned. Section 7 discusses our findings
and potential threats to validity. Then we compare to related
work in Section 8, and in Section 9, we conclude.

2 OVERVIEW AND RESEARCH METHODS

Figure 1 illustrates our approach in use. A user either mod-
els a microservice system as a software decomposition (or
component & connector) model with security annotations
(as specified in Section 4) or automatically extracts such a
model (e.g., using the automatic code extraction approach
from our prior work [12]). The automatic extraction can
usually be run repeatedly, e.g., in the context of a continuous
delivery pipeline, without the need for additional manual
work. Once such as model is in place, our prototype can au-
tomatically detect all relevant metrics values. These provide
the necessary data for running the detection strategies to
detect conformance to ADD-based recommendations. The
ordinal logistic regression models are part of the detection
strategies and require the metrics as input. They are de-
rived from a representative model data set like the one
contributed in this paper and can be fine-tuned by, e.g.,
adding more or different models to the data set, if our
model data is inappropriate for a given use of our approach
(e.g., because the system under investigation’s domain, size,
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Fig. 1: Approach in Use

or technology concepts are substantially different to the
systems in our model data set).

Our research started with a data collection and analysis
in which we have studied existing microservice-specific rec-
ommendations by industry organizations such as NIST [5],
OWASP [6], or the Cloud Security Alliance [7]. Before they
got involved in this article, a team of industrial security
experts, including the last three authors of this study, in-
dependently analyzed these recommendations. In addition,
within the AssureMOSS EU project1, the author team con-
ducted a multi-vocal literature study (i.e., scientific and grey
literature) to confirm the findings.

The authors derived a catalog of ADDs with security
tactics as decision options from this data. We selected 4
of these ADDs that the industrial security experts and the
industry recommendations judge as highly relevant for mi-
croservice systems, covering different aspects. By purpose,
we selected an entirely different set of ADDs than used in
our prior works [11] – this way, this article provides another
validation of the approach in [11].

The authors then studied 10 open source microservices
systems as case studies line-by-line and manually anno-
tated each security feature in their source code (all are
published on GitHub, see Table 1). To enable us to study
the continuous evolution of these systems with a focus
on the security ADDs, we developed 20 variants of the
systems in which possible violations of ADD options or
refactorings for improvement are introduced, based on the
discussions in the relevant literature. Apart from the spe-
cific variations described for the variants in Column “Main
Security Features/Issues” Table 1, all other system aspects
remained stable. This is shown in an excerpt of Model PM0
in Figures 2 and 3. Figure 3 highlights the changes compared
to PM0 in red, described in the Figure caption. We as-
sume that our evaluation systems are, or reflect, real-world
practical examples of microservice architectures. Many of
them are open-source systems realized by practitioners to
demonstrate practices or technologies, and thus they are at

1. https://assuremoss.eu/en/
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most of medium size complexity. An essential feature of our
dataset to reflect current microservice practices is that the
systems are highly polyglot, using many different program-
ming languages and technologies. As is common in real-life
systems, in the dataset, the required information is located
in many different kinds of files, such as programs and
scripts in various programming and scripting languages
and configuration files of many different technologies (see
Column “Programming Languages and Technologies Used”
in Table 1).

We used our existing CodeableModels tool2, a Python
implementation for precisely specifying meta-models,
models, and model instances in code. Based on Codeable-
Models, we have automated code generators to generate
graphical visualizations of all meta-models and models in
PlantUML. We have also realized detectors to find all rele-
vant aspects of the metrics in the models and the automatic
calculation of metrics.

This modeling step was done manually in our work for
many of the case study systems. It is also possible to auto-
mate this step: Our existing static code analysis approach
for architecture reconstruction of polyglot microservice sys-
tems [12] can be applied here. Due to the polyglot nature of
microservice systems, this requires a modest initial specifi-
cation effort, though. Models for the systems RS0 and ES0
have been automatically reconstructed using this approach
in our prior work (see [12]). PM0 has been automatically
reconstructed, too (not published in prior work).

We then performed a systematic assessment on support
or violation of the collected security tactics. The three
industrial security experts in the author team plus two
additional industrial security experts (from the company
SEARCH-LAB) independently derived a recommendation
based on the results of our tactics study. The result provides
informal guidance for security experts to judge systems
such as those in our models manually. Next, the other
authors applied this recommendation as an ordinal rating
scheme to each model variant summarized in Table 1 to
create a ground truth for our study. Then the five industrial
security experts reviewed the rating scheme and the ratings
in the ground truth. In case of inconsistency of the votes,
we performed a discussion among the involved experts
to resolve the conflict. We would have applied a majority
vote if the debate would not yield consistent votes, but the
experts reached a consensus after the discussion in all cases.

Independently of the work on the ground truth, on sim-
ple example cases, we developed our detection strategies.
To this end, we first developed a set of metrics that automat-
ically decide each decision point in our ADDs. These met-
rics are formally defined in Section 4. Next, our statistical
analysis assessed how well the hypothesized metrics could
predict the ground truth data by performing an ordinal
regression analysis. Ordinal regression is widely used for
modeling an ordinal response’s dependence on independent
predictors applicable in various domains. For the ordinal
regression analysis, we used the lrm function from the rms
package in R [13], [14].

The authors then used the ordinal regression models
to construct two possible detection strategies for each rec-

2. https://github.com/uzdun/CodeableModels

ommendation on the ADDs provided by the industrial
experts. The detection strategies use the regression model’s
means and fitted prediction methods as their basis [14].
We compare and evaluate the resulting detection strategies’
performances for our model data set using the Mean Square
Error (MSE) and Spearman correlation.

The resulting model data set, the model code, and the
statistical evaluations are provided as an open-source data
set to enable the replicability of our study3.

3 ADDS FOR MICROSERVICE SECURITY TACTICS
AND GROUND TRUTH ASSESSMENT

In this section, we describe the four ADDs containing mi-
croservice security tactics that are studied in this article.
Next, we describe the manual analysis of these ADDs to
establish a ground truth for our study.

3.1 ADD: Access Management/Backend Authorization
(BE AU)
When considering access management in the context of
microservice architecture decomposition models, we mainly
found various authorization-related tactics. It is important
to note that authorization is crucial for all parts of a mi-
croservice architecture, but especially for services reachable
directly or indirectly from the clients. Thus, we treat the two
decision scopes, backend authorization, and authorization
from the clients/UIs, in two separate ADDs that offer the
same decision options.

The following decision options (security tactics) can be
chosen for Backend Authorization (BE AU):

• Token-based Authorization: Authorization is per-
formed using a cryptographic access token issued
by a central access management server, such as an
OAuth 2.0 token.

• Encrypted Authorization Information: Some other
kind of encrypted authorization scheme is used, but
not with a standardized central access management
server.

• Plaintext Authorization Information: Authorization
information is transferred as plaintext.

• Plaintext-based Authorization Information over an
Encrypted Protocol: Authorization information is
transferred as plaintext over a secure (i.e., encrypted)
communication protocol such as TLS/SSL.

• No Authorization: No authorization method is used,
but authorization is required. That is, the fact that
authorization is not provided is a security flaw in the
system.

• Authorization Not Required: The connector does
not need any form of authorization, and the fact
that it is missing is not a security flaw. This is,
for instance, the case if access is allowed for each
identified client or in public APIs with no access
restrictions.

3. We will publish the data set as an open access data set on the long-
term archive Zenodo upon publication of this article. For the time of
the review, we provide it as an anonymously accessible link at https:
//ucloud.univie.ac.at/index.php/s/ROOCWYH5fpS1d7w, Password:
PtKbCZLn29cNkAA

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3276487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/uzdun/CodeableModels
https://ucloud.univie.ac.at/index.php/s/ROOCWYH5fpS1d7w
https://ucloud.univie.ac.at/index.php/s/ROOCWYH5fpS1d7w


4

«Client»
Client : Component

«API Gateway»
Zuul API Gateway :

Component

«RESTful HTTP, HTTP»

«RESTful HTTP, HTTP,
Token-based Authorization,
Authorization Scope / All
Requests»

«Service»
Notification Service :

Component

«RESTful HTTP, HTTP,
Token-based Authorization,

Authorization Scope / All
Requests»

«RESTful HTTP, HTTP,
Token-based Authorization,

Authorization Scope /
All Requests»

Feign Client«Service»
Statistics Service :

Component

«RESTful HTTP, HTTP,
Token-based Authorization,

Authorization Scope / All
Requests»

«RESTful HTTP, HTTP,
Token-based Authorization,
Authorization Scope /
All Requests»
Feign Client

«Service»
Account Service :

Component

«OAuth2 Server,
Component Code Contains
Sensitive Data as Plaintext»

OAuth 2 Server :
Component

«Auth Provider,
RESTful HTTP, HTTP,
Connector Code Contains
Sensitive Data as Plaintext»

«Auth Provider,
RESTful HTTP, HTTP,
Connector Code Contains
Sensitive Data as Plaintext»

«Auth Provider,
RESTful HTTP, HTTP,

Connector Code Contains
Sensitive Data as Plaintext»

«Auth Provider,
RESTful HTTP, HTTP»

«Service, External Component»
Exchange Rate Service :

Component

«RESTful HTTP, HTTPS»
Feign Client

Fig. 2: Excerpt of the Model PM0 (7 out of 16 components and their connectors) showing service interactions, API Gateway,
and OAuth2 server. Only the excerpt of the necessary stereotypes is shown for clarity.
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Fig. 3: Excerpt of the Model PM1 as an example to show changes in a variant. Changes highlighted in red: The variant
introduces a security flaw as it only uses limited plaintext authorization but fixes some issues regarding encrypted
communication by using HTTPS on several connections. The same traffic control and sensitive data issues are present
in the excerpt as in the PM0 excerpt.
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ID Number
Compo-
nents

Number
Connec-
tors

Domain Main Security Features/Issues Programming Languages and
Technologies Used

Source (URL)

AC0 7 10

Account
management

Some OAuth2 support (client-service), API gateway, some sen-
sitive data issues Java, Spring Boot,

Maven, MySQL, JDBC,
OAuth2, Zuul, Eureka,
Feign, JPA

https://github.com/piomin/
sample-spring-oauth2-micro
services/tree/with database

AC1 8 11 Only plaintext authorization, no API gateway, substantial sen-
sitive data issues

AC2 8 14 Token-based auth. (backend/client-service), some traffic con-
trol, small sensitive data issues

BA0 11 17

Bank accounts
and money
transfer

API-gateway based traffic control, no authorization, substantial
sensitive data issues Java, Scala, Groovy,

Javascript, Spring Boot,
Gradle, Swagger, Docker,
Docker Compose, Eventuate,
SQL, JDBC, Shell Scripts

https://github.com/cer/
event-sourcing-examples

BA1 12 21 Some authorization, some traffic control, substantial sensitive
data issues

BA2 12 24 Limited authorization, some traffic control, substantial sensi-
tive data issues

CI0 8 12

Cinema
booking
service

API-gateway based traffic control, no authorization, small sen-
sitive data issues JavaScript, Express, SPDY,

HTTP Proxy, Morgan, Helmet,
Docker, Docker Swarm, NPM,
RAML, Mongo DB, SSL,
Shell Scripts

https://github.com/
Crizstian/
cinema-microservice

CI1 12 21 Limited authorization, some traffic control, small sensitive data
issues

CI2 12 23 Plaintext/secure connection authorization, some traffic control,
small sensitive data issues

CO0 13 16

Store
management

No authorization and traffic control, sensitive data issues
Java, Maven, Glassfish, JBoss,
JavaEE, EJB, Java Servlets,
JSF, JAX-RS, JDBC,
Shell Scripts

https://github.com/cocome-
community-case-study/cocome-
cloud-jee-microservices-rest

CO1 12 19 Limited authorization, some traffic control, small sensitive data
issues

CO2 12 16 Plaintext/secure connection authorization, limited traffic con-
trol, small sensitive data issues

EP0 11 11

Enterprise
planner

API gateway, no authorization, some sensitive data issues C#, ASP.NET, Docker,
Docker Compose, JWT,
ASP.NET Core Auth, Linq,
Sql Server, Shell/Powershell
Scripts

https://github.com/
gfawcett22/EnterprisePlannert

EP1 16 22 Limited authorization, some traffic control, some sensitive data
issues

EP2 16 23 Token-based auth. (backend/client-service), limited traffic con-
trol, small sensitive data issues

ES0 18 29

eShop
reference
application

Backends-for-Frontends gateways, some authorization, some
sensitive data issues C#, Javascript, ASP.NET, Open

API, ASP.NET Core Auth, Web-
SPA, WebMVC, SQL Server, K8S,
Linq, Envoy, Azure, ELK,
Github Actions, Powershell Scr.

https://github.com/
dotnet-architecture/
eShopOnContainers

ES1 18 37 Limited authorization, some traffic control, some sensitive data
issues

ES2 18 35 Token-based auth. (backend/client-service), limited traffic con-
trol, small sensitive data issues

OB0 13 25

Online
boutique
application

Backends-for-Frontends gateways, no authorization, no sensi-
tive data issues Java, grpc, Gradle, Protobuf,

Kubernetes, Docker, Helm,
Istio, Kustomize, Terraform,
Skaffold, Cloud Build,
Shell Scripts

https://github.com/
GoogleCloudPlatform/
microservices-demo

OB1 13 23 Some encrypted/plaintext authorization, some traffic control,
small sensitive data issues

OB2 13 30 Limited encrypted/plaintext authorization, some traffic con-
trol, small sensitive data issues

PM0 16 37

Microservice
metrics
collecting

API Gateway, OAuth2 (client-service/some backend), substan-
tial sensitive data issues Java, Spring Boot, Maven,

Docker, Docker Compose,
Travis CI, Turbine, MongoDB,
Feign, Eureka, OAuth2, Zuul

https://github.com/sqshq/
piggymetrics

PM1 18 40 Limited plaintext auth. (many over secure conn.), some traffic
control, some sensitive data issues

PM2 17 34 Plaintext auth. over secure connections, some traffic control,
substantial sensitive data issues

RS0 19 30

Robot
shop
application

API Gateway, no authorization, no sensitive data issues, no
encryption Javascript, Go, PHP, Java, Feign,

Express, DCOS, OpenShift, K8S,
Docker, Dock. Swarm/Compose,
MongoDB, Redis, RabbitMQ,
MySQL, Shell Scripts

https://github.com/instana/
robot-shop

RS1 19 32 Limited encrypted authorization, limited traffic control, some
sensitive data issues

RS2 19 34 Plaintext authorization/secure connections, some traffic con-
trol, some sensitive data issues

TE0 17 26

Tap-And-Eat
application

No traffic control, no authorization, no sensitive data issues
Java, Spring Boot, Docker,
Docker Compose, Maven,
MySQL, Shell Scripts

https://github.com/jferrater/
Tap-And-Eat-MicroServices

TE1 17 28 Limited plaintext auth. (backend/client-service), no traffic con-
trol, no sensitive data issues

TE2 17 30 Limited plaintext authorization (mainly client-service), no traf-
fic control, no sensitive data issues

TABLE 1: Overview of modeled systems (size, details, and sources)

These can be decided for each occurrence of the following
decision context: Each connector between two components in
the system (such as system services, databases, infrastructure
components, discovery services, or access management servers),
but not connections to clients and UIs (or between them) and/or
external services. To be decided for each connector.

3.2 ADD: Authorization on Paths from Clients or UIs to
System Services (CP AU)

For CP AU, the same decision options (security tactics) can
be chosen as for Backend Authorization (BE AU) but in a
different decision context. While BE AU is concerned with
each backend connection in the microservice architecture

(e.g., service to service or service to database), CP AU is
concerned with the paths between clients/UIs and sys-
tem services (direct connections or propagated connections
along the paths between them). That is, CP AU can be de-
cided for each occurrence of the following decision context:
Each direct or transitive connector between a client or UI to a
system service. In this context, transitive means that the connector
can cross API Gateways and similar frontend components first,
and then other system services, but no other kinds of components
(such as infrastructure services, databases, and so on). To be
decided for each connector.
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3.3 ADD: Traffic Control (TC)
When considering Traffic Control in our scope of archi-
tecture decomposition models, mainly different kinds of
Facades [15] that shield system services from direct access are
discussed as solutions in the security recommendations [5],
[7]. Such a Facade acts as a reverse proxy and routes requests
from clients to backend services. It also realizes cross-cutting
concerns such as authentication, authorization, SSL termina-
tion, and monitoring to support security tasks [5]. The most
common pattern for this is the API Gateway [3], but there are
also variants and homegrown solutions.

The following decision options (security tactics) can be
chosen for Traffic Control (TC):

• API Gateway [3] provides a single endpoint for the
clients and internally maps the requests to backend
microservices.

• Backends for Frontends [3] is a variation of API
Gateway that defines a separate gateway for each
kind of client, e.g., a Web app, a mobile app, and
a public API gateway.

• Frontend Service: While the prior options usually
use dedicated technologies for establishing traffic
control, some systems use a homegrown frontend
service that acts as a Facade [15] for other services
in the system. It can only offer the traffic control
features built into that service.

• Direct Access from Clients to Services: Clients
access system services directly, and thus no traffic
control is provided.

These can be decided for each occurrence of the following
decision context: Each possible path from a client or a UI to a
system service. To be decided for each such path.

3.4 ADD: Avoiding Plaintext Sensitive Data (SD)
Sensitive data in plaintext should not be used anywhere in
a system system [5], [7]. Instead, encrypted solutions and
keys should be used. In architecture decomposition models,
components can contain plaintext sensitive data, such as a
service or database storing user passwords. The interactions
(or connectors) between components can use plaintext sen-
sitive data, e.g., to transfer unencrypted credentials over the
wire.

The following decision options (security tactics) can be
chosen for Avoiding Plaintext Sensitive Data (SD):

• Avoiding Plaintext Sensitive Data in Components
means storing no secrets in components or using
encryption methods to secure them properly. This
tactic requires a systematic investigation of the data
that is classified as sensitive.

• Avoiding Plaintext Sensitive Data in Connectors
means to not use plaintext secrets in the interac-
tions realized by connectors, mainly distributed ones.
Again, encryption, e.g., of the connection and maybe
local storage of the secret, is needed to implement
this tactic. This tactic requires a systematic investiga-
tion of the data that is classified as sensitive.

• Plaintext Sensitive Data in Components means a
specific component stores sensitive data in plaintext
form. This should usually be avoided.

• Plaintext Sensitive Data in Connectors means a
specific connector uses or stores sensitive data in
plaintext form. This should usually be avoided.

These can be decided for each occurrence of the following
decision context: Each component and connector in the model.
To be decided for each such model element.

3.5 Recommendations and Ground Truth Assessment

To establish a ground truth for evaluating conformance
to the ADDs described in the previous sections, the three
industrial security experts on the author team first worked
with other experts in their organizations to create recom-
mendations based on the results of our tactics study (i.e.,
from security guidelines, gray literature, and scientific liter-
ature studies). The other authors then analyzed these rec-
ommendations, compared them to actual implementations
in the case study systems, and selected the recommenda-
tions that were the focus of our ADDs. The results are
the recommendations per ADD below, where more or less
preferred ADD options (tactics) are mapped on a 5-point
ordinal scale: ++: very well supported; +: well supported,
but aspects of the solution could be improved; ∼: serious
flaws in security design, but significant support is already
found in the system; −: serious flaws in security design, but
initial support can already be found in the system; −−: no
support for the security tactic can be found in the system.
The authors then discussed this evaluation scheme again
with the three industrial security experts until a consensus
was reached. The other authors then evaluated the 30 cases
for conformance to each of the ADDs. The ratings were
again reviewed by the three security assessment experts on
the author team. In addition, two industrial security experts
from another company reviewed our models, metrics, and
code.

Some parts of the recommendations below result in a
unique score, especially the extreme cases (++, −−) of-
ten refer to unique quantities such as all connectors or no
connectors. However, some other values contain fuzzy state-
ments such as the vast majority of connectors, where human
judgment is required depending on the system model to
decide how large the set must be to be acceptable in that
particular model. For example, system context, system size,
and the system’s domain can lead to individually different
judgments for different models.

The resulting recommendation scheme for Backend Au-
thorization (BE AU) is:

• ++: All distributed backend connectors are autho-
rized with Token-based Authorization provided by
a central access management server.

• +: All distributed backend connectors are autho-
rized with a Token-based Authorization, or some
other kind of Encrypted Authorization Information,
or with Plaintext-based Authorization Information
over an Encrypted Protocol, and not all are autho-
rized with Token-based Authorization.

• ∼: Either the large majority of distributed backend
connectors is authorized with Token-based Autho-
rization, Encrypted Authorization Information, or
Plaintext-based Authorization Information over an
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Encrypted Protocol; or all distributed backend con-
nectors are authorized, but some or all of those are
authorized using Plaintext Authorization Informa-
tion.

• −: At least some distributed backend connectors
are authorized, but either Plaintext Authorization
Information is used and not all connectors are au-
thorized; or, if no Plaintext-based Authorization
is used, less than the large majority of distributed
backend connectors is authorized with Token-based
Authorization, Encrypted Authorization Informa-
tion, or Plaintext-based Authorization Information
over an Encrypted Protocol.

• −−: No distributed backend connectors are autho-
rized.

If the Authorization Not Required option is selected, the con-
nector should not be further analyzed with regard to access
management aspects.

The recommendation scheme for Authorization on
Paths from Clients/UIs to Services (CP AU) is exactly the
same scheme as in the Backend Authorization, but not for
the context of distributed backend connectors, but for the
scope of paths from clients or UIs to system services.

The recommendation scheme for Traffic Control (TC) is:
• ++: All possible paths from a client/UI to a system

service are passing through a dedicated gateway
solution such as an API Gateway or Backends for
Frontends.

• +: All possible paths from a client/UI to a system
service are passing through a dedicated API Gate-
way or Backends for Frontends, or through some
kind of Frontend Service.

• ∼: The large majority of the possible paths from a
client/UI to a system service are passing through a
dedicated API Gateway or Backends for Frontends,
or through some kind of Frontend Service.

• −: At least some possible paths from a client/UI
to a system service are passing through a dedicated
API Gateway or Backends for Frontends, or through
some kind of Frontend Service.

• −−: No API Gateways, Backends for Frontends, or
Frontend Service are found on the possible paths
from a client/UI to a system service.

The recommendation scheme for Avoiding Plaintext
Sensitive Data (SD) is:
• +: No component and no connector contains, uses,

or stores plaintext sensitive data.
• ∼: Almost all of the components and connectors

contain, use, and store no plaintext sensitive data.
• −: The large majority of components and connectors

contain, use, and store no plaintext sensitive data.
• −−: Less than a large majority of components and

connectors contain, use, and store no plaintext sensi-
tive data.

The “++” recommendation is not used in SD, as no well-
supported but not optimal option exists.

Based on the recommendations, the ground truth assess-
ment in Table 2 was derived. That is, Table 2 lists the ground
truth assessments for each decision and for each of the case
study systems from Table 1.

4 DETECTION STRATEGIES, MODELS, AND MET-
RICS SPECIFICATION

This section describes metrics for measuring conformance
to the common microservice security tactics described as
decision options in Section 3. Our metrics are based on a
microservices-based architecture decomposition model. For
a complete formal definition of this model, see [11], [16]. We
only present the necessary model elements and extensions
used in this article.

4.1 Basic Architecture Decomposition Model
Formally, an architecture decomposition model M is a tu-
ple (CPM , CNM , CPTM , CNTM , cn source, cn target,
cp type, cn type) where:

• CPM is a finite set of component nodes in Model M .
• CNM ⊆ CPM × CPM is an ordered finite set of

connector edges.
• CPTM is a set of component types.
• CNTM is a set of connector types.
• cn source : CNM → CPM is a function returning

the component that is the source of a link between
two components.

• cn target : CNM → CPM is a function returning
the component that is the target of a link between
two components.

• cp type : CPM → P(CPTM ) is a function that maps
each component to its set of direct and transitive
component types (for a formal definition of compo-
nent types and type hierarchies see [11], [16]).

• cn type : CNM → P(CNTM ) is a function that
maps each connector to its set of direct and transitive
connector types (for a formal definition of compo-
nent types and type hierarchies see [11], [16]).

Below, to simplify the metrics definition texts, when we
simply say Component cp or Connector cn is of type t,
we refer to the use of the function call cp type(cp) or
cn type(cn), respectively. Figures 2 and 3 show example
models from the PM case modeled using the UML.

4.2 Component and Connector Types
We distinguish various component and connector types
introduced in the text below where they are needed. The
full type hierarchies are modeled in the CodeableModels
distribution4. It uses microservice architecture component
types such as Service, API Gateway, Database, Monitoring, etc.
Microservice decompositions have many different kinds of
connector types between these components, such as RESTful
HTTP, HTTPS, JDBC, etc., to denote the kind of interactions
between the components.

Based on this, we define in this article some security-
specific extensions such as TokenBasedAuthorization,

4. The component type hierarchy can be found at
https://github.com/uzdun/CodeableModels/blob/master/docs/
images/Component Stereotypes.png, and the connector type

hierarchy is at https://github.com/uzdun/CodeableModels/
blob/master/docs/ images/Connector Stereotypes.png. Both
models are explained in the documentation of CodeableModels:
https://uzdun.github.io/CodeableModels/07 meta model with
stereotypes.html.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3276487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/uzdun/CodeableModels/blob/master/docs/_images/Component_Stereotypes.png
https://github.com/uzdun/CodeableModels/blob/master/docs/_images/Component_Stereotypes.png
https://github.com/uzdun/CodeableModels/blob/master/docs/_images/Connector_Stereotypes.png
https://github.com/uzdun/CodeableModels/blob/master/docs/_images/Connector_Stereotypes.png
https://uzdun.github.io/CodeableModels/07_meta_model_with_stereotypes.html
https://uzdun.github.io/CodeableModels/07_meta_model_with_stereotypes.html


8

Decision AC0 AC1 AC2 BA0 BA1 BA2 CI0 CI1 CI2 CO0 CO1 CO2 EP0 EP1 EP2 ES0 ES1 ES2 OB0 OB1 OB2 PM0 PM1 PM2 RS0 RS1 RS2 TE0 TE1 TE2
BE AU - - ++ -- - ∼ -- ∼ + -- - + -- + ++ - ∼ + -- ∼ + - ∼ + -- ∼ + -- ∼ ∼
CP AU ++ - ++ -- ∼ ∼ -- ∼ + -- ∼ + -- + ++ - - + -- - + ++ ∼ + -- ∼ + -- ∼ -

TC ++ -- - ++ ∼ ∼ ++ + + -- - ∼ ++ ∼ + ++ - ∼ + - - ++ + + ++ ∼ - -- -- --

SD - -- ∼ -- -- -- - - - -- - - - - ∼ - - - + ∼ ∼ -- - -- + ∼ ∼ + + +

TABLE 2: Ground Truth Assessment for the Case Study Systems

EncryptedAuthorizationInformation, Authorization-
WithP laintextInformation, and so on. They represent
security-specific information extracted from the code
and used for model annotation. Figures 2 and 3 show
example models from the PM case with the component and
connector types being rendered as stereotypes.

Below we use these types to define type-selection func-
tions. For instance, in the backend authorization metrics
below the distributed backend connectors requiring au-
thorization : P(CNM ) → P(CNM ) function is used as the
basis for calculation and common divisor. It is defined as:
distributed backend connectors requiring authorization(cn) =

connectors that require authorization(

distributed backend connectors(cn))

The function is essentially a cascade of type se-
lections. distributed backend connectors first selects the
connectors which are neither connecting to Client
nor UI components to get all backend connectors.
And then, the distributed backend connectors are the
subset of these connectors, which are not of type
InMemConnector (i.e., in-memory connectors). The
function connectors that require authenthorization :
P(CNM ) → P(CNM ) selects the connectors that are not of
the type AuthorizationNotRequired. This type indicates
connections that explicitly should not get authorized, e.g.,
because they are offered in a public API.

4.3 Paths
A basic notion in a number of the metrics below is a path: A
path p is a sequence of components p = (c1, . . . , cn) with
c1 . . . cn ∈ CPM which are all connected via connectors
such that ∀cn, cn+1 ∈ P ∃ cn ∈ CNM : cn source(cn) =
cn ∧ cn target(cn) = cn+1. Let PM denote the set of all
paths in model M .

The function all paths from clients or uis to
system services : P(CPM ) → P(PM ) selects all paths
from clients or UIs to system services. The function
first selects all components of type Client or UI as
clients and all components of type Service as system
services. A service is a system service if it is not of the
type ExternalComponent (i.e., no external services are
system services), MiddlewareService (i.e., no middleware
infrastructure services such as a Discovery Service), or
Facade (i.e., no frontend services or gateways with the
sole purpose of shielding the system from clients). Then
the function uses a simple Depth-First Search algorithm to
calculate all paths from clients to services. From those paths,
we select only the ones that are well-formed in the sense
that first Clients or UIs are on the paths, then zero, one, or
more Facades (e.g., APIGateways or frontend services are
of type Facade), and finally one or more system services
(as defined above). Paths going across other components

such as Databases or MiddlewareServices are excluded;
paths going into the system, then out of the system, and
back into the system are also excluded, too.

The function client service path connectors requir-
ing authorization : P(CPM ) → P(CNM ) is based on this
function. It first selects the connectors from the result of
all paths from clients or uis to system services us-
ing another function connectors on client service paths :
P(PM ) → P(CNM ). This function returns the set of all
connectors on a set of paths (without connectors having
Facades or ExternalComponents as targets or that
are of type InMemoryConnector). Then, it selects the
connectors that require authentication using the function
connectors that require authorization.

4.4 Detectors

Detectors are functions that calculate Detector Results DR,
such as detector : P(ME PM )→ P(DR). MEM are model
elements of a model M , with: ∀CNM , CPM ∈M : MEM ⊃
CPM ∧MEM ⊃ CNM . The detectors either work on such
model elements or on paths: ME PM = MEM ∪ PM .
DR is a tuple (mp, res) with mp ∈ ME PM and res ∈
{successful, undefined, failed}.

The function d success : P(DR) → P(DR) selects
only the successful detection results in a detector result
set, d fail : P(DR) → P(DR) the failed ones, and
d undefined : P(DR) → P(DR) the undefined ones. The
function d elements : P(DR) → MEM returns the model
elements contained in a detector result set.

In a set of model elements and paths ⊃ ME PM , let
the function components : P(ME PM ) → P(CPM ) select
the components in the set, connectors : P(ME PM ) →
P(CNM ) the connectors in the set, and paths :
P(ME PM )→ P(PM ) the paths in the set.

4.5 Metrics Definitions

The formal metrics definitions are provided in Table 3. All
metrics have values ranging from 0 to 1, with 1 indicating
full support and 0 indicating no support.

The first compartment in the table provides met-
rics on backend authorization. They are all based
on the distributed backend connectors requiring au-
thorization function explained above. The first metric AUB
detects general support for authorization in the backend
without considering the used type of authorization. The
following metrics AUB T, AUB E, AUB P, and AUB C
are calculating a similar ratio but only for specific types
of authorization, or any authorization over an encrypted,
secure connection. Finally, AUB A combines the authoriza-
tion methods that are considered to be secure enough, i.e.
AUB T, AUB E, and AUB C in one metric.
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The second compartment in the table
provides metrics on authorization on clien-
t/service paths. They are all based on the
client service path connectors requiring authorization
function, which uses components as input and delivers
a connector set. Apart from that, the AUC metrics are
constructed in the same fashion as the AUB metrics.

In the third compartment of the table, we see metrics
on traffic control. Firstly, the superior method of using
gateways is measured in the GWP metric, and then FEP
measures the acceptable practice of realizing traffic control
with frontend services. Finally, GFP measures the ratio of
both practices in the paths, leading to different results than
just looking at the two individual metrics GFP and FEP,
e.g., as both practices could be applied on a path. GFP,
however, can be biased as an implicit weight is introduced
(the number of gateway vs. frontend services).

Finally, in the fourth compartment, the plaintext sensi-
tive data use is measured, first for the components in CMP,
then for the connectors in CNP, and finally for both in CCP.
It makes sense to have CMP and CNP in addition to CCP, as
the number of components and connectors are introducing
an implicit weight in the metric, which can potentially bias
the results of CCP.

4.6 Detection Strategies

Based on our metrics, we define two alternative detection
strategies that use the mean and fitted prediction methods
for ordinal logistic regression, as provided, e.g., in R’s rms
package [14]. First, we define the Means Predictor Detection
Strategy. Let ORadd denote an ordinal regression model for
the ADD add (with add ∈ {BE AU,CP AU, TC, SD}, i.e.
it is in the set of all ADDs), predictmean the prediction
function using the means prediction method, and m ∈ M
the input model for the prediction. The mean prediction
computes the estimated mean Y by summing values of
Y multiplied by the estimated probabilities P (Y = j)
[14]. Then, means predictor detection strategy : ORadd×
M → {‘ + +’, ‘ + ’, ‘ ∼ ’, ‘− ’, ‘−−’} is a detection strategy
function computing the levels ++, +, ∼, and - of our ground
truth scheme from Section 3.5:

means predictor detection strategy(ORadd,m) =

‘ + +’ : if predictmean(ORadd,m) ≥ int(‘ + +’)− 0.5

‘ + ’ : if predictmean(ORadd,m) ≥ int(v + ’)− 0.5

‘ ∼ ’ : if predictmean(ORadd,m) ≥ int(‘ ∼ ’)− 0.5

‘− ’ : if predictmean(ORadd,m) ≥ int(‘− ’)− 0.5

‘−−’ : otherwise

The Fitted Predictor Detection Strategy function
fitted predictor detection strategy : ORadd × M →
{‘++’, ‘+’, ‘ ∼ ’, ‘−’, ‘−−’} is based on the fitted prediction
method, which gets all the individual probabilities Y = j
[14]. We define level of max as a function that first
selects the maximum probability in the vector returned by
predictfitted. Then it gets the ordinal level ++, +, ∼, -, – of
the vector value with the maximum probability:

fitted predictor detection strategy(ORadd,m) =

‘ + +’ : if level of max(predictfitted(ORadd,m)) = ‘ + +’

‘ + ’ : if level of max(predictfitted(ORadd,m)) = ‘ + ’

‘ ∼ ’ : if level of max(predictfitted(ORadd,m)) = ‘ ∼ ’

‘− ’ : if level of max(predictfitted(ORadd,m)) = ‘− ’

‘−−’ : otherwise

5 ANALYSIS OF REGRESSION MODELS AND DE-
TECTION STRATEGIES

In this section, we first describe and then analyze the ordinal
regression models for our ADDs and then compare the
detection strategies applied using these models.

5.1 Ordinal Regression Models

The final element required in our approach is the ordinal
regression models for each of our ADDs. As explained, these
are computed using R’s lrm function from the rms package.
As described in Section 3.5, the dependent outcome vari-
ables are the ground truth assessments for each ADD. The
metrics defined in Table 3 are used as the independent pre-
dictor variables. The actual values, automatically computed
with our detectors from the models of our data set, are re-
ported in Table 4. The objective of the regression analysis is
to predict the likelihood of the dependent outcome variable
per ADDs.

In Table 5 we show the best three ordinal regression
models we have found for each of the four ADDs. The p-
value assesses the statistical significance of each regression
model; the smaller the p-value, the stronger the model is. A
p-value smaller than 0.05 is generally considered statistically
significant. The C-index (which is also called the concor-
dance index and is equivalent to the area under the Re-
ceiver Operating Characteristic (ROC) curve) is frequently
reported in the statistical literature to measure the predictive
power of ordinal regression models [17]. A C-index of 0.5
indicates random splitting, whereas a C-index of 1 indicates
perfect prediction.

Harrel [13] suggests bootstrapping to obtain nearly un-
biased estimates of a model’s future performance based on
re-sampling. A simple technique to adjust for optimism
or overfitting is data splitting, but it is inefficient since
the model is only fitted to a subset of the available data.
Bootstrapping is thus the better and therefore a recom-
mended method to adjust for optimism or overfitting [13].
We used lrm’s validate function to perform bootstrapping
and calculated the bias-corrected C-index in addition to the
original C-index. The C-indexes, reported in Table 5, are all
larger than 0.9. For each ADD, we have found at least two
models with a bias-corrected C-index above or almost at
0.9, which indicates that the models are good enough for
predicting the outcomes of individuals.

We used lrm’s function pentrace to assist in the selec-
tion of penalty factors for fitting regression models using
penalized maximum likelihood estimation (see [13]). In the
reported models, we generally used a simple penalty of
1 and a non-linear penalty of 5. The penalized regression
models offer slightly improved performance compared to
non-penalized models.
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Metric Description Formal Definition

Authorized Backend Connectors (AUB). The AUB : P(CNM )→ [0, 1]
metric applies the authorized connectors detector to the distributed
backend connectors requiring authorization. The number of successful
detections is divided by the number of all these connectors. This deter-
mines the overall ratio of authorization in the backend.

AUB(cn) =

|d success(authorized connectors(
distributed backend connectors requiring authorization(cn))) |
|distributed backend connectors requiring authorization(cn)|

Backend Connectors Authorized with Authorization Tokens (AUB T).
AUB T : P(CNM )→ [0, 1] includes only the backend connectors with
authorization based on the TokenBasedAuthorization type (using
the authorized with authorization tokens detector).

AUB T (cn) =

|d success(authorized with authorization tokens(
distributed backend connectors requiring authorization(cn))) |
|distributed backend connectors requiring authorization(cn)|

Backend Connectors Authorized with Encrypted Information (AUB E).
AUB E : P(CNM )→ [0, 1] includes only the backend connectors with
authorization based on the EncryptedAuthorizationInformation
type (using the authorized with authorization tokens detector).

AUB E(cn) =

|d success(authorized with encrypted information(
distributed backend connectors requiring authorization(cn))) |
|distributed backend connectors requiring authorization(cn)|

Backend Connectors Authorized with Plaintext Information
(AUB P). AUB P : P(CNM ) → [0, 1] includes only
the backend connectors with authorization based on the
AuthorizationWithP laintextInformation type (using the
connectors authorized with plaintext information detector).

AUB P (cn) =

|d success(connectors authorized with plaintext information(
distributed backend connectors requiring authorization(cn))) |
|distributed backend connectors requiring authorization(cn)|

Authorized Backend Connectors Over a Secure Connection (AUB C).
The AUB C : P(CNM ) → [0, 1] metric calculates the ratio of the dis-
tributed backend connectors requiring authentication that offer a secure
connection and are authorized in some manner to all these connectors.

AUB C(cn) =

|d success(authorized connectors(d elements(d success(secure connectors(
distributed backend connectors requiring authorization(cn))))))|

|distributed backend connectors requiring authorization(cn)|

Authorized Backend Connectors Using a Secure Method or Transferred
Over a Secure Connection (AUB A) The AUB A : P(CNM ) → [0, 1]
metric calculates the ratio of those distributed backend connectors
requiring authentication that either use authorization tokens, encrypted
information, or authorization over a secure connection to all such connec-
tors. authorized connectors using secure method or comm-
unication : P(CNM ) → P(DR) is a function returning all successful
detector results for a set of connectors that use either authorization
tokens, encrypted information, or a secure communication method.

authorized using secure method or communication(cn) =

d success(authorized with authorization tokens(cn))

∪ d success(authorized with encrypted information(cn))

∪ d success(authorized connectors(d elements(d success(secure connectors(cn)))))

AUB A(cn) =

|authorized using secure method or communication(
distributed backend connectors requiring authorization(cn))|
|distributed backend connectors requiring authorization(cn)|

Authorized Connectors on Client/UI to Service Path (AUC). The AUC :
P(CPM )→ [0, 1] metric applies the authorized connectors detector
to the client/service path connectors requiring authorization and divides
the number of successful results by the number of all such connectors.

AUC(cp) =

|d success(authorized connectors(
client service path connectors requiring authorization(cp)))|
|client service path connectors requiring authorization(cp)|

Connectors on Client/UI to Service Path Authorized with Autho-
rization Tokens (AUC T). AUC T : P(CPM ) → [0, 1] includes
only the client/service path connectors with authorization based on the
TokenBasedAuthorization type.

AUC T (cp) =

|d success(authorized with authorization tokens(
client service path connectors requiring authorization(cp)))|
|client service path connectors requiring authorization(cp)|

Connectors on Client/UI to Service Path Authorized with Encrypted
Information (AUC E). AUC E : P(CPM ) → [0, 1] includes only
the client/service path connectors with authorization based on the
EncryptedAuthorizationInformation type.

AUC E(cp) =

|d success(authorized with encrypted information(
client service path connectors requiring authorization(cp)))|
|client service path connectors requiring authorization(cp)|

Connectors on Client/UI to Service Path Authorized with Plaintext
Information (AUC P). AUC P : P(CPM ) → [0, 1] includes only
the client/service path connectors with authorization based on the
AuthorizationWithP laintextInformation type.

AUC P (cp) =

|d success(connectors authorized with plaintext information(
client service path connectors requiring authorization(cp)))|
|client service path connectors requiring authorization(cp)|

Authorized Client/Service Path Connectors Over a Secure Connection
(AUB C). The AUC C : P(CPM )→ [0, 1] metric calculates the ratio of
the client/service path connectors requiring authentication with a secure
connection and some authorization to all such connectors.

AUB C(cp) =

|d success(authorized connectors(d elements(d success(secure connectors(
client service path connectors requiring authorization(cp))))))|

|client service path connectors requiring authorization(cp)|

Authorized Client/Service Path Connectors Using a Secure Method
or Transferred Over a Secure Connection (AUC A) The AUC A :
P(CPM ) → [0, 1] metric calculates the ratio of the client/service path
connectors requiring authentication that either use authorization tokens,
encrypted information, or authorization over a secure connection to all
such connectors.

AUC A(cp) =

|d success(authorized using secure method or communication(
client service path connectors requiring authorization(cp)))|
|client service path connectors requiring authorization(cp)|

Gateway Paths (GWP) The GWP : P(CPM )→ [0, 1] metric calculates
the ratio of client/service paths containing a gateway to all such paths.
The gateway paths detector is successful for the paths that contain a
component of type API Gateway or Backends for Frontsends.

GWP (cp) =

|d success(gateway paths(
all paths from clients or uis to system services(cp)))|
|all paths from clients or uis to system services(cp)|

Frontend Service Paths (FEP) The FEP : P(CPM ) → [0, 1] metric
calculates the ratio of client/service paths containing a frontend service
to all such paths. The frontend service paths detector is successful
for the paths that contain a component that has the types Facade and
Service and for which gateway paths is not successful.

FEP (cp) =

|d success(frontend service paths(
all paths from clients or uis to system services(cp)))|
|all paths from clients or uis to system services(cp)|

Gateway or Frontend Service Paths (GFP) The GFP : P(CPM ) →
[0, 1] metric calculates the ratio of client/service paths containing
either a gateway or a frontend service to all such paths. The
gateway or frontend service paths detector is the union of results
of the frontend service paths and gateway paths detectors.

GFP (cp) =

|d success(gateway or frontend service paths(
all paths from clients or uis to system services(cp)))|
|all paths from clients or uis to system services(cp)|

Components Without Plaintext Sensitive Data (CMP) The CMP :
P(CPM ) → [0, 1] metric calculates the ratio of compo-
nents containing no plaintext sensitive data (found with the
components without plaintext sensitive data detector) to all
components.

CMP (cp) =
|d success(components without plaintext sensitive data(cp))|

|cp|

Connectors Without Plaintext Sensitive Data (CNP) The CNP :
P(CNM ) → [0, 1] metric calculates the ratio of connec-
tors containing no plaintext sensitive data (found with the
connectors without plaintext sensitive data detector) to all con-
nectors.

CNP (cn) =
|d success(connectors without plaintext sensitive data(cn))|

|cn|

Components and Connectors Without Plaintext Sensitive Data (CCP)
The CCP : P(MEM ) → [0, 1] metric calculates the ratio of compo-
nents and connectors containing no plaintext sensitive data (found with
the components without plaintext sensitive data detector) to all
components.

CCP (me) =

|d success(components without plaintext sensitive data(components(me))∪
connectors without plaintext sensitive data(connectors(me)))|

|components(me) ∪ connectors(me)|

TABLE 3: Metric Definitions
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Metric AC0 AC1 AC2 BA0 BA1 BA2 CI0 CI1 CI2 CO0 CO1 CO2 EP0 EP1 EP2 ES0 ES1 ES2 OB0 OB1 OB2 PM0 PM1 PM2 RS0 RS1 RS2 TE0 TE1 TE2

AUB 0.22 0.88 1.0 0.93 0.81 0.91 1.0 0.5 1.0 1.0 1.0 0.17 0.83 1.0 0.94 1.0 0.14 1.0 1.0 0.73 1.0 1.0 1.0

AUB T 0.22 1.0 0.25 0.33 1.0 0.17 0.26 0.24 0.14

AUB E 0.22 1.0 0.25 0.36 0.31 0.38 0.67 1.0 0.17 0.61 0.56 0.78 0.32 0.14 0.73 0.64 0.08

AUB P 0.88 0.93 0.56 0.55 0.69 0.5 0.62 0.33 0.22 0.44 0.17 0.68 1.0 1.0 0.36 1.0 0.92

AUB C 0.38 1.0 0.53 0.81 0.55 0.69 1.0 0.33 1.0 0.22 1.0 0.06 1.0 0.61 1.0 0.23 0.4 0.17 0.24

AUB A 0.22 0.38 1.0 0.53 0.81 0.91 1.0 1.0 1.0 1.0 0.17 0.83 1.0 0.78 1.0 0.14 0.61 1.0 0.73 1.0 0.17 0.32

AUC 1.0 0.5 1.0 1.0 0.83 0.86 1.0 1.0 1.0 1.0 1.0 0.4 0.33 1.0 0.93 1.0 1.0 1.0 1.0 0.83 1.0 1.0 0.67

AUC T 1.0 1.0 0.83 0.5 1.0 0.4 0.33 0.71 1.0

AUC E 1.0 1.0 0.83 1.0 1.0 0.4 0.33 0.71 0.43 0.67 1.0 0.83 0.33

AUC P 0.5 1.0 0.86 1.0 1.0 1.0 0.29 0.5 0.33 1.0 1.0 1.0 1.0 0.33

AUC C 1.0 0.83 0.86 1.0 0.7 1.0 1.0 1.0 1.0 0.38 1.0 0.42 1.0

AUC A 1.0 1.0 0.83 0.86 1.0 0.7 1.0 1.0 1.0 0.4 0.33 1.0 0.43 1.0 1.0 0.38 1.0 0.83 1.0 0.33

GWP 1.0 0.5 1.0 0.8 0.83 1.0 0.91 0.85 1.0 0.38 0.33 1.0 0.65 0.71 1.0 0.5 0.67 1.0 0.92 0.67

FEP 0.09 0.15 0.15 0.7 0.5 0.67 1.0 0.49 0.5 0.5 0.33

GFP 1.0 0.5 1.0 0.8 0.83 1.0 1.0 1.0 0.15 0.7 1.0 0.88 1.0 1.0 0.65 0.71 1.0 0.49 0.5 1.0 1.0 1.0 1.0 0.92 0.67

CMP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.92 0.83 0.62 0.58 0.58 1.0 0.81 1.0 1.0 1.0 1.0 1.0 0.77 0.92 0.88 0.89 0.88 1.0 0.95 0.74 1.0 1.0 1.0

CNP 0.5 0.27 0.86 0.18 0.33 0.38 0.67 0.71 0.78 0.75 0.84 0.81 0.73 0.91 0.87 0.76 0.81 0.8 1.0 1.0 1.0 0.62 0.65 0.59 1.0 1.0 1.0 1.0 1.0 1.0

CCP 0.71 0.58 0.91 0.5 0.58 0.58 0.8 0.79 0.8 0.69 0.74 0.71 0.86 0.87 0.92 0.85 0.87 0.87 1.0 0.92 0.98 0.7 0.72 0.69 1.0 0.98 0.91 1.0 1.0 1.0

TABLE 4: Metric Calculation Results for the Case Study Systems

The reported models in Table 5 do not always use the
complete set of our metrics. As recommended, we applied
data reduction [13] (i.e., eliminating variables from the
models to find models that performed. We only report those
three with the highest bias-corrected C-indexes among the
numerous models that we tested. As a consequence, all
suggested metrics are relevant in our prediction models, but
in no decision all of them are needed.

5.2 Detection Strategy Analysis

To analyze and compare the use of our models in the
two alternative detection strategies defined in Section 4.6,
we calculate the Mean Square Error (MSE) and Spearman
correlation. MSE is commonly used as an evaluation mea-
sure for ordinal regression predictions [18], [19]. Spearman
correlation can be additionally utilized for error-sensitive
evaluation for ordinal target variables [19].

The results are reported in Table 6. First of all, it can
be seen that all strategy/model combinations have very
high positive correlation values for all ADDs (all > 0.9).
The MSE values overall mostly show low errors in the
prediction. The direct comparison of the values, together
with the bootstrapped C-Index values from Table 5, enable
us to select the best strategy/model combinations for our
data set per ADD:

• For BE AU, all strategy/model combinations have
low MSE values. Overall, the Means Predictor Detec-
tion Strategy combined with Model 3 offers the best
performance in our data set, which also provides a
very high bootstrapped C-Index value.

• For CP AU, all strategy/model combinations, the
Fitted Predictor Detection Strategy combined with
Models 1 or 2 offers the best MSE values. While
Model 2 has a slightly better MSE value, Model 1
has a slightly better bootstrapped C-Index value.

• For TC, only one MSE value < 0.25 can be observed
in the Fitted Predictor Detection Strategy of Model
3. But this model has the worst bootstrapped C-
Index of 0.76. This indicates slight overfitting in
this model. Thus, combining the Means Predictor

Detection Strategy with Model 1, offering an MSE
value of 0.25, a very high bootstrapped C-Index,
and a very high correlation seems to be the strategy
with the best performance.

• For SD, both strategies perform very well with Model
3. As this has a bootstrapped C-Index of 0.9, select-
ing one of them is a good option. If a bootstrapped
C-Index of > 0.9 is needed, the Means Predictor
Detection Strategy with Model 2 performs best.

6 AUTOMATED APPLICATION OF DETECTION
STRATEGIES FOR RESILIENCE ASSESSMENT

To further evaluate our approach, we have applied it to an
industrial resilience assessment tool currently being devel-
oped by EU-VRi. Resilience assessment refers to evaluating
a system’s ability to withstand and recover from adverse
conditions or attacks. Our detection strategies approach can
be utilized in the resilience assessment of a system as an au-
tomated component (once the architecture model extraction
has been specified, see Section 2). The tool aims to assess,
monitor and optimize the resilience of a system based on
existing industry guidelines such as the ones studied in our
data collection and analysis step (described in Section 2).

The tool provides an API to integrate building blocks,
such as the metrics provided by our approach. It provides
an indicator-based approach to calculate a resilience level
index for a system as a composite, multi-level indicator.
The tool supports before/after analysis, multi-assessment
monitoring over time, and decision support based on sensi-
tivity analysis. As we expect the tool to perform automated
assessments, we have designed our metrics and models to
be integrated within this tool as an automated component.

Our lessons learned are that the approach can be in-
tegrated into existing tools and processes for resilience
assessment. By integrating the approach into a resilience
assessment tool, developers, architects, or assessors can
automatically calculate metrics for the software architectural
parts of a composite resilience level index. This can assist in
identifying areas where improvements can be made and in
evaluating the overall resilience of a system.
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ADD Measure Name Model 1 Model 2 Model 3

Backend Authorization
(BE AU)

Metrics used in the model AUB T, AUB P, AUB A AUB, AUB P, AUB C,
AUB A

AUB T, AUB E, AUB P,
AUB C

Model p-value 3.883560e-13 2.167155e-13 1.191269e-13
C-Index (original) 0.9699140 0.9885387 0.9828080
C-Index (bootstrapped, bias-corrected) 0.9548209 0.916884 0.9554083

Authorization on Paths
from Clients or UIs to
System Services (CP AU)

Metrics used in the model AUC T, AUC E, AUC P,
AUC C

AUC, AUC P, AUC C AUC E, AUC P, AUC C,
AUC A

Model p-value 2.971512e-12 8.518408e-12 5.328848e-12
C-Index (original) 0.9719101 0.9382022 0.9719101
C-Index (bootstrapped, bias-corrected) 0.9639256 0.9204635 0.938125

Traffic Control (TC)

Metrics used in the model GWP, GFP GWP, FEP FEP, GFP
Model p-value 5.780931e-13 2.275191e-11 2.157718e-12
C-Index (original) 0.9805014 0.9832869 0.9916435
C-Index (bootstrapped, bias-corrected) 0.9484889 0.9343593 0.7607799

Avoiding Plaintext
Sensitive Data (SD)

Metrics used in the model CMP, CNP CNP, CCP CMP, CNP, CCP
Model p-value 2.285205e-11 6.307177e-13 9.261480e-13
C-Index (original) 0.9907121 0.9907121 0.9969040
C-Index (bootstrapped, bias-corrected) 0.9141409 0.9402864 0.8958514

TABLE 5: Regression Analysis Results

ADD Detection Strategy Measure Name Model 1 Model 2 Model 3

Backend Authorization
(BE AU)

Means Predictor
Detection Strategy

Mean Squared Error (MSE) 0.1557119 0.1468277 0.1277475
Spearman Correlation 0.9469793 0.9672109 0.9600839

Fitted Predictor
Detection Strategy

Mean Squared Error (MSE) 0.2 0.1666667 0.1666667
Spearman Correlation 0.9309631 0.9585881 0.9380393

Authorization on Paths
from Clients or UIs to
System Services (CP AU)

Means Predictor
Detection Strategy

Mean Squared Error (MSE) 0.1834024 0.2569814 0.2160254
Spearman Correlation 0.9495478 0.9198208 0.9592745

Fitted Predictor
Detection Strategy

Mean Squared Error (MSE) 0.1666667 0.1333333 0.3
Spearman Correlation 0.9583582 0.9666581 0.92638

Traffic Control (TC)

Means Predictor
Detection Strategy

Mean Squared Error (MSE) 0.2529702 0.3094919 0.2644267
Spearman Correlation 0.9688093 0.9715577 0.9798029

Fitted Predictor
Detection Strategy

Mean Squared Error (MSE) 0.2666667 0.3 0.2333333
Spearman Correlation 0.939046 0.934118 0.9537935

Avoiding Plaintext
Sensitive Data (SD)

Means Predictor
Detection Strategy

Mean Squared Error (MSE) 0.1478888 0.1267839 0.1128048
Spearman Correlation 0.94364 0.94364 0.9525137

Fitted Predictor
Detection Strategy

Mean Squared Error (MSE) 0.1666667 0.1666667 0.1
Spearman Correlation 0.9084704 0.9223994 0.9492435

TABLE 6: Comparison of Detection Strategies

The approach is scalable and can be applied to systems
of varying sizes. As microservice-based systems are highly
modular, each service can be analyzed separately for the de-
sign options of the ADDs. Thus, in our experience, the scale
of the system under investigation plays only a minor role,
and the analysis results also tend to be well-fitting for larger
applications. However, the application’s scale does play a
role in understanding the automated assessment results. For
large-scale systems, the metrics generated by the approach
are better suited for understanding the assessment results,
while for small-scale systems, inspecting the models can be
enough. In general, the metrics generated by the approach
are easy to understand and can help identify areas for
improvement. The models are better suited for inspecting
specific service issues or issues of a few interacting services.

The approach has a limitation in that it relies on ADDs
to model security recommendations, which may not encom-
pass all pertinent security concerns. However, in the re-
silience assessment tool, these are supplied by other compo-
nents. Furthermore, our approach mandates manual model
creation or calibration for constructing a regression model.
Therefore, if additional systems with distinct practices are
not well reflected in our open-source systems dataset, they
must be manually included before our approach can be em-
ployed for such cases. Nevertheless, microservice systems’
modularity permits adding a few mid-sized systems (e.g.,

open-source) to our data set to incorporate these practices.
Thus, there is no need to manually analyze large-scale
systems to apply our approach at scale, which is a positive
aspect.

7 DISCUSSION AND THREATS TO VALIDITY

In this section, we first discuss our lessons learned and then
discuss potential threats to validity.

7.1 Discussion of Research Questions
In RQ1, we have aimed to investigate how to detect confor-
mance to ADDs for microservice system security automat-
ically. Our proposal is based on an analysis of experts’ se-
curity recommendations, modeling them as ADDs and then
letting the experts judge these recommendations using an
ordinal scheme typically used in such human assessments.
All further steps can then be automated based on a suitable
model data set, like ours. Our open-source model data set is
thus also a major contribution of this article, as such datasets
are needed to calibrate statistical models like ours.

For this first step of our approach, this article has es-
sentially provided validation and extension of the methods
introduced in our prior work [11]. Based on a different set
of ADD and metrics and a substantially extended formal-
ization, we again achieved excellent regression results, as
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reported in Section 5.1. Thus, we are confident that these
models are a good basis for our new approach and core con-
tribution, the detection strategies, analyzed in Section 5.2.

Overall, we have proposed 24 detection strategies (two
kinds of strategies applied for each of the three regres-
sion models found for each of the four ADDs). The novel
detection strategies are metrics-based rules. In contrast to
earlier detection strategy proposals [10], our approach is
based on a statistical model’s predictions to avoid the
problem of having to decide on metric value thresholds
for the rules manually. The original detection strategy pro-
posal [10] used simple data filters like HigherThan(value)
or Between(value1, value2), which inherently leads to the
issue of how to select appropriate threshold values for the
rules. In contrast, our novel approach uses two kinds of
statistical predictors and tests each for multiple models to
develop the best-performing models.

The comparison of the 24 detection strategies then pro-
vided the answer to RQ2. In particular, our results show
that all 24 detection strategies show a very high Spearman
correlation (> 0.9) to the ground truth of our model data
set. Overall, all 24 reported strategy/model combinations
perform reasonably well. In Table 5, we only report the
three best regression models found. Many models were
tested that did not perform well or showed significant bias
(e.g., due to optimism or overfitting). Essentially by data
reduction (eliminating variables from the models), we found
models that performed well in all considered measures.
Using detailed analysis, we further were able in Section 5 to
select the few best performing models: For all but the ADD
TC, we found at least one strategy with an MSE value < 0.2,
for most, even < 0.15. The lowest value for TC is also low
( 0.23). In the regression analysis, we used bootstrapping as
the recommended technique to avoid bias due to optimism
or overfitting [13], and for each ADD one detection strategy
with a low MSE value, a very high Spearman correlation
(> 0.9), and a very low bootstrapped C-index (< 0.9) was
found.

Our approach uses the paths described in Section 4.3.
This was used for analyzing specific propagations of se-
curity flaws in a system, e.g., if a service can be transi-
tively reached from a client without proper authorization
measures. The paths enable many other analysis options
regarding the potential propagation of security flaws in a
system. For example, in our prior works, we have developed
a method for avoiding excessive data exposure in microser-
vice APIs [20]. Our paths would enable checking for this
flaw in the whole microservice backend. Many other such
analyses are possible for future work.

As shown by our analysis of 10 mid-size open-source
systems created by practitioners and our experience in
applying our approach in the context of the resilience as-
sessment tool, summarized in Section 6, we can assess that
the proposed approach can be used in practice to assess
architectural security and resilience aspects of a system. As
discussed in Section 6, our experience shows that applying
our approach as an automated component for systems using
similar techniques as those used in the open-source sys-
tems dataset for creating the regression model is possible.
Otherwise, extending the dataset with additional systems
is necessary to reflect the missing techniques (which can

be done as an extension to our dataset provided in our
replication package). If other ADDs are to be analyzed than
the ones modeled in our approach, manual dataset creation,
annotation, and initial analysis are needed. If the systems to
be analyzed follow a modular distributed systems approach,
such as with microservices, our experience is that it is
possible to scale the approach to larger systems based on
a dataset of mid-sized systems. This is positive as it reduces
the upfront manual work required. For this reason, we have
limited our study to microservice systems.

While we do not claim that our approach can detect
something not identifiable with other techniques, the use
of ADDs and detection strategies provides a unique way to
assess architectural security concerns in microservice-based
systems. The analysis of the introduced ADDs can require
substantial effort even for mid-size systems in our dataset
(e.g., inspecting each direct or transitive client-service path)
and is required after each system modification. Our de-
tection strategies can be run as part of a more extensive
automated analysis (e.g., as discussed in Section 6) or as
an automated check in a continuous delivery pipeline. This
way, e.g., accidentally introduced security issues can be
spotted during a resilience assessment or before a system
gets deployed without repeated manual effort.”

7.2 Threats to Validity
We mainly relied on third-party systems as the basis for
our study to increase internal validity and thus avoid bias
in system composition and structure. It is possible that
our search procedures resulted in some unconscious exclu-
sion of specific sources; we mitigated this by assembling
a team of authors with many years of experience in the
field (including three industry experts) and conducting a
very general and broad search. Because our search was
not exhaustive and practitioners created the systems we
found for demonstration purposes, i.e., they were relatively
modest in size. This means that some potential architectural
elements were not included in our metamodel. Furthermore,
this poses a potential threat to the external validity of gen-
eralization to other, more complex systems. However, we
are confident that the documented systems are a representa-
tive cross-section of current practice in this area. Another
potential risk is the fact that the author team developed
the system variants. However, we did this following best
practices documented in the literature and with reviews
from industrial experts. We were careful to change only
certain aspects in a variant and keep all other elements
stable.

Another possible source of internal validity impairment
is the modeling process. The author team has considerable
experience with similar methods, and the systems’ models
have been repeatedly and independently cross-checked, but
the possibility of some interpretive bias remains. Other re-
searchers may have coded or modeled differently, resulting
in different models. Because our goal was only to find a
model that could describe all observed phenomena, and we
achieved this, we do not consider this risk to be particularly
problematic for our study. The individual metrics used to
assess the presence of each pattern were deliberately kept
as simple as possible to avoid false positives and allow for
a technology-independent assessment.
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However, it might be the case that the expert judgment
for the ground truth would differ for substantially differ-
ent kinds of systems, e.g., systems from other domains or
substantially larger systems. Then it would be necessary to
re-run our statistical analysis with data from a few such
systems to calibrate the prediction models to the changed
circumstances. Thanks to the complete automation of our
approach, once suitable models are created (modeled or
reconstructed), the analysis steps can be automated.

To avoid threats concerning the generalizability of our
approach, we limited our scope to microservice-based sys-
tems, even though some aspects of our approach are
likely applicable to other kinds of distributed systems than
microservice-based systems.

We do not claim completeness of the detection strategies
or the metrics we present in this article. They are only
complete in the sense that they cover all options of the
ADDs they address.

8 RELATED WORK

This section compares related works on tactics, best prac-
tices and patterns, detection strategies, and conformance
checking in general, and then specialized metrics-based
approaches for security and microservices.

8.1 Related Works on Tactics, Best Practices, and Pat-
terns

The collection and systematization of microservice patterns
have been the subject of much research. Richardson [3]
collected microservice patterns related to key design and
architectural practices. Zimmermann et al. [21] presented
microservice API-related patterns. Skowronski [22] collected
best practices for event-driven microservice architectures.
Microservice fundamentals and best practices are also dis-
cussed by Fowler and Lewis [2] and summarized in a
mapping study by Pahl and Jamshidi [23]. Taibi and Lenar-
duzzi [24] examined microservice bad smells, i.e., practices
that developers should avoid, which in our work would cor-
respond to ADD violations. This paper uses such guidance
as a basis for modeling microservice architectures.

Similarly, attempts have been made to define security
patterns [25], [26]. Microservice-specific recommendations
from industry organizations [5], [6], [7] are proposed that
represent broad-level summaries of existing industry best
practices. We used such guidelines to guide our selection of
security practices for study in our work.

8.2 Related Works on Detection Strategies and Confor-
mance Checking

Detection strategies [10] are metrics-based rules for detect-
ing design flaws. Whereas our work focuses on architectural
design flaws for security and microservice best practices,
the original detection strategies approach by Marinescu
addresses generic object-oriented design smells. Whereas
our approach leverages statistical predictors in constructing
the metric-based rules, Marinescu uses simple data filters
such as HigherThan(value) or Between(value1, value2).
Thus, in such approaches, the issue of defining threshold

values for parameterizing the detection strategies can in-
troduce substantial bias. In our approach, this can be fully
automated, and developers can measure the accuracy of the
result with established measures such as the bootstrapped
C-index, MSE, and Spearman correlation. The following two
sections discuss specialized detection approaches based on
security and microservice metrics.

Conformance assessment has been applied in various
areas of software engineering, such as service composi-
tion [8] and traceability to guidelines [27]. In general, the
conformance relation is defined as the consistency between
models [8]. In software architecture, conformance assess-
ment addresses the relation between a software system’s
architecture and its intended architecture [9]. Our approach
shares with those works the general notion of architectural
conformance assessment.

Once metrics can be checked automatically, our ap-
proach can be classified as a metrics-based, microservice-
specific approach for software architecture conformance
checking. In general, approaches for architecture confor-
mance checking are often based on automated extraction
techniques [28], [29]. Conformance to architecture pat-
terns [28], [30] or other architectural rules [29] can usually
be checked by such approaches. Techniques based on a
broad set of microservice-related metrics to cover multiple
microservice tenets and security do not yet exist.

8.3 Related Works on Security Metrics-Based Ap-
proaches

Security experts can use security metrics to understand the
current security state and potentially improve it [31]. While
several organizations such as Microsoft [32] and OWASP
[33] propose processes and checklists for building secure
architectures, very few tools can automate these processes
for tailored solutions [34] due to the dynamic and polyglot
nature of these systems.

Ramos et al. [35] conducted a detailed review of the
main existing model-based quantitative security metrics
focusing on network security metrics. Model-based secu-
rity metrics use techniques to describe a system using an
abstract model that captures necessary attributes based on
attacker assumptions and system behavior. Noel et al. [36]
describe a set of metrics for measuring network-wide cyber-
security risk based on a vulnerability model to multi-stage
attacks. Their system for calculating security metrics from
vulnerability-based network attack graphs uses data im-
ported from sources commonly used in enterprise networks,
such as vulnerability scanners and firewall configuration
files. Attack Graphs are a model widely used to quantify
network security. It uses the causal relationships between
vulnerabilities, quantifying the likelihood of potential multi-
step attacks that combine multiple vulnerabilities [37].

Such general security metrics and indicators are a foun-
dation for our work. However, since none of them considers
the specifics of microservice architectures, they cannot be
applied to our research problems or only with significant
adaptations. For this reason, we decided to develop met-
rics based on existing recommendations (such as NIST [5],
OWASP [6], or Cloud Security Alliance [7]) specifically for
microservice-based systems.
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8.4 Related Works on Microservice Metrics-Based Ap-
proaches

Several studies have used metrics to assess microservice-
based software architectures. Pautasso and Wilde [38] pro-
pose a composite, facet-based metric for assessing loose
coupling in service-oriented systems. Zdun et al. [16] study
the independent deployment of microservices based on
metrics for evaluating architecture conformance to microser-
vice patterns. Bogner et al. [39] propose a maintainability
quality model which combines eleven easily extracted code
metrics into a broader quality assessment. Engel et al. [40]
present a method using real-time system communication
traces to compute metrics on conformance to recommended
microservice design principles such as loose coupling and
small service size. Each of these approaches is focused on
narrow sets of architecture-relevant tenets (e.g., loose cou-
pling). Still, no general approach for an assessment across
different aspects, such as the security-related ADDs in our
work, exists.

While a couple of works specifically focus on microser-
vice security metrics, many of these focus on runtime-
related or non-architectural aspects [41], [42], [43], [44].
Chondamrongkul et al. [45] present an early approach to
automatically investigate specific security vulnerabilities in
a decomposition architecture, such as man-in-the-middle or
denial-of-service attacks. In contrast, our work is based on
ADD models, suggests detection strategies, and is based on
empirical data, whereas the work of Chondamrongkul et al.
uses only modeling examples.

9 CONCLUSION

In this article, a novel approach for automated conformance
checking of ADD-based security recommendations for poly-
glot microservice systems based on detection strategies was
developed. The detection strategies and novel metrics for
microservice security were formally defined and imple-
mented in a model-based tool. They were applied to an open
source model dataset for security in software decomposition
models of 10 open source systems and 20 variants of these
systems (modeling possible conformance violations and/or
improvements to test the suitability of our method for con-
tinuous evolution) and in an industrial resilience assessment
tool. The novel detection strategies are metrics-based rules.
Unlike previous proposals for detection strategies [10], our
approach is based on the predictions of statistical models
to avoid the problem of having to set thresholds for metric
values for the rules manually. We proposed a total of 24
detection strategies (two types of strategies for each of the
three regression models found for each of the four ADDs).
The strategies and their metrics were statistically evaluated
and compared. We found at least one strategy per ADD with
a very high correlation and a low MSE value that also had a
very low estimated bias (e.g., due to overfitting) according
to the bootstrapped C-index value.

In the future, we plan to develop detection strategies for
metrics that we have developed in previous work and to
develop novel traceability strategies that allow root cause
analysis based on detection strategies.

10 ACKNOWLEDGMENTS

Our work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 952647 (AssureMOSS project). This
work was supported by: FWF (Austrian Science Fund)
project API-ACE: I 4268; FWF (Austrian Science Fund)
project IAC2: I 4731-N. We thank the two experts, Gergely
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