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CIRCOM: A Circuit Description Language for Building
Zero-knowledge Applications

Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz-Tapia, Albert Rubio, and Jordi Baylina

Abstract—A zero-knowledge (ZK) proof guarantees that the result of a computation is correct while keeping part of the computation
details private. Some ZK proofs are tiny and can be verified in short time, which makes them one of the most promising technologies for
solving two key aspects: the challenge of enabling privacy to public and transparent distributed ledgers and enhancing their scalability
limitations. Most practical ZK systems require the computation to be expressed as an arithmetic circuit that is encoded as a set of
equations called rank-1 constraint system (R1CS). In this paper, we present CIRCOM, a programming language and a compiler for
designing arithmetic circuits that are compiled to R1CS. More precisely, with CIRCOM, programmers can design arithmetic circuits at a
constraint level, and the compiler outputs a file with the R1CS description, and WebAssembly and C++ programs to efficiently compute
all values of the circuit. We also provide an open-source library called CIRCOMLIB with multiple circuit templates. CIRCOM can be
complemented with SNARKJS, a library for generating and validating ZK proofs from R1CS. Altogether, our software tools abstract the
complexity of ZK proving mechanisms and provide a unique and friendly interface to model low-level descriptions of arithmetic circuits.

Index Terms—zero-knowledge proof, circuit, domain-specific language, compiler, blockchain.

F

1 INTRODUCTION

A zero-knowledge (ZK) protocol allows a prover to prove
a statement to a verifier without revealing any knowl-

edge beyond the fact that the statement is true [1]–[3]. ZK
proofs were introduced 30 years ago as theoretical objects,
but since then, there has been a lot of research into devel-
oping secure and efficient protocols that could be used in
practice. In general, efficiency is measured considering three
parameters: the computational cost of generating a proof,
the size of the proof, and the time required to verify it. In
the context of distributed ledgers, it is specially important
to have small proof sizes and short verification times.

The most popular, efficient, and general-purpose ZK pro-
tocols are ZK succinct arguments of knowledge (ZK-SNARKs)
[4]–[6]. A prominent application of ZK-SNARKs is Zcash [7],
a public blockchain based on bitcoin that uses these proofs
in its core protocol for verifying that private transactions
(named shielded transactions) have been computed correctly
while providing complete anonymity to the participants of
the network. Efficient ZK protocols are also very convenient
for distributed ledgers with the capability of executing smart
contracts. A smart contract is a program that allows devel-
opers to define a logic for processing transactions. Adding
the capability of processing transactions that include the
verification of a ZK proof opens up a wide range of pos-
sibilities for smart contracts. For example, with ZK proofs,
smart contracts can check logic statements while keeping
certain details private, which is crucial for the adoption
of public distributed ledger technology by enterprises and
businesses. Examples of such privacy-preserving schemes
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can be found in [8], [9]. Recently, ZK protocols are also used
in conjunction with smart contracts for enhancing the scal-
ability of distributed ledgers, giving rise to what is known
as layer-2 solutions. An example of a layer-2 solution is a
ZK-rollup, a mechanism in which thousands of transactions
are bundled into a single batch transaction [10]. This way, a
smart contract can check the processing of large amounts
of transactions by simply verifying a ZK proof of few
bytes. The key of ZK-rollups is that ZK proofs are smaller
and faster to verify than doing so with each individual
transaction [11].

Generally, ZK-SNARK protocols are used to prove the
correctness of a computation. In this context, the way of
expressing a computation is by defining it as an arithmetic
circuit [4], [12], [13]. An arithmetic circuit is a circuit built
with addition and multiplication gates, and wires that carry
values from a prime finite field Fp, where p is typically
a very large prime number. A prover uses a circuit to
prove that he knows a valid assignment to all wires of the
circuit, and if the proof is correct, the verifier is convinced
that the computation expressed as a circuit is valid, but
learns nothing about the wires’ specific assignment. The
common encoding of this type of circuits consists of a set
of equations called rank-1 constraint system (R1CS), which is
later used by the ZK-SNARK protocol to generate a proof.
A valid proof shows, without revealing secret values, that
the prover knows an assignment to all wires of the circuit
that fulfill all constraints of the R1CS. An issue that appears
when applying ZK protocols to complex computations, like
a circuit describing the logic of a ZK-rollup, is that the
amount of constraints to be verified is extremely large (up
to hundreds of millions of constraints). In these cases, it is
impractical to define circuits manually and we need tools for
that. We can classify tools in the ZK ecosystem in two large
categories: frontends (languages) and backends (libraries).

While frontends provide a way of specifying to-be-
proved statements, backends are involved in the generation
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and verification of the corresponding ZK proof. In this paper
we present CIRCOM, a low-level language, also known as
constraint-based language or hardware language [14], for
specifying to-be-proved statements as circuits but aided
by a domain-specific language (DSL) and its corresponding
compiler [15], [16]. To be best of our knowledge and ac-
cording to the available literature [14], CIRCOM is the only
implemented constraint-based DSL.

Programmers can use the CIRCOM language to define
arithmetic circuits and the compiler generates a file with the
set of associated R1CS constraints together with a program
(written either in C++ or WebAssembly) that can be run to
efficiently compute a valid assignment to all wires of the
circuit. One of the main particularities of CIRCOM is that it is
designed as a modular language that allows the definition of
parameterizable small circuits called templates, which can be
instantiated to form larger circuits. CIRCOM users can create
their own custom templates, but they can also use tem-
plates from CIRCOMLIB [17], a publicly available library with
hundreds of circuits such as comparators, hash functions,
digital signatures, binary and decimal converters, and many
more. The architecture behind CIRCOM not only provides a
simple interface to model arithmetic circuits and generate
their corresponding constraints, but it also abstracts the
complexity of the underlying ZK proving mechanism. In
particular, the output files of CIRCOM can be used directly by
SNARKJS [18], which is a library we developed to automatize
the generation and verification of ZK-SNARK proofs.

The article is organized as follows. In Section 2, we
provide background on ZK-SNARKs and arithmetic cir-
cuits. In Section 3, the present the main existing tools and
compare them to CIRCOM. In Section 4, we introduce the
characteristics of CIRCOM and give several examples of a
correct use of the language. In the following Section 5, we
present some practical applications that illustrate the power
of the CIRCOM language. In Section 6, we evaluate the per-
formance of CIRCOM in large circuits described by millions
of constraints. In Section 7, we define the concepts of correct
and safe CIRCOM programs, which can help programmers
understand the philosophy of the language and help them
with the writing of circuits. Conclusions are in Section 8.

2 BACKGROUND

A ZK proof enables a prover to convince a verifier that a
statement is true without revealing any information beyond
the veracity of the statement [1], [3]. In this context, a
statement is usually associated to an instance, a public input
known to both prover and verifier, and a witness, a private
input known only by the prover. In this section we provide
some background on a particular type of ZK proof systems
called ZK-SNARKs, and on arithmetic circuits.

2.1 ZK-SNARKs

ZK-SNARKs [4]–[6] belong to a group of ZK proofs known
as arguments of knowledge. An argument of knowledge
proves that, with very high probability, the prover does
know a concrete valid witness. An argument of knowledge is
considered a SNARK if it is non-interactive and, regardless
of the size of the statement being proved, has succinct proof

size (e.g. [6]-proofs are ≈ 200 bytes). Most ZK-SNARKs also
guarantee short verification time [6], [19].

The main downside of these protocols is that they need
an initial phase called trusted setup. This step requires the
generation of some random values that need to be imme-
diately destroyed. In fact, if the random values are ever
exposed, the security of the whole scheme is compromised.
To enhance the security of this setup phase, most implemen-
tations make use of a multi-party computation (MPC), which
allows multiple independent parties to collaboratively con-
struct the trusted setup parameters. In this process, it is
enough that one single participant deletes its secret coun-
terpart of the contribution to keep the whole scheme secure
[20]. Our software SNARKJS has a framework for generating
and verifying MPCs, providing a holistic architecture for
building privacy-enabled applications.

Like most ZK systems, ZK-SNARKs operate in the
model of arithmetic circuits, meaning that the language L is
that of satisfiable arithmetic circuits. An assignment to the
wires is valid if and only if for every gate, the value on the
output wires matches that gate’s operation and the values
on its input wires [21].

2.2 Arithmetic Circuits
The most widely studied language in the context of ZK-
SNARK proofs is the NP-complete language of circuit sat-
isfiability [4], [12], [13]. Essentially, a circuit consists of a set
of wires connected to gates that perform some operation.
Circuit satisfiability is a classical problem of computability
theory that consists of determining whether a given circuit
has an assignment of its inputs that makes the output true.
If that is the case, the circuit is called satisfiable. Otherwise,
the circuit is called unsatisfiable.

In cryptographic implementations of this problem, we
use a particular type of circuits called arithmetic circuits
(often simply called “circuits”). The gates of an arithmetic
circuit consist on additions and multiplications modulo p,
where p is typically a large prime number of approximately
254 bits [22]. The wires of an arithmetic circuit are usually
called signals, and they can carry any value from the prime
finite field Fp. As with electronic circuits, we can distinguish
between input, intermediate, and output signals.

Usually, there is a set of public signals known both to
prover and verifier, and the prover proves that, with that
public information, he knows a valid assignment to the rest
of signals that makes the circuit satisfiable. From now on, we
extend the meaning of the word witness to an assignment to
all signals a the circuit, both public and private.
Example 1. Circuit C from Fig. 1 is an arithmetic circuit de-
fined over the prime finite field F11 that, given four private
inputs s1, s2, s3, s4, it outputs the result of the operation

s1 × s2 × s3 + s4.

To perform the calculation, the circuit uses two multi-
plication gates and one addition gate, which requires two
intermediate signals s5, s6, and an output signal s7. Hence,
C is a circuit defined by the set of signals

S = {s1, s2, s3, s4, s5, s6, s7}.

An example of a witness for C is w = {2, 3, 3, 9, 6, 7, 5}.
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s1

''
s2

// ×
s5

  s3 // ×
s6

  s4 // +
s7 //

Figure 1: Representation of an arithmetic circuit C defined
over the finite field F11 that outputs the result of the opera-
tion s1 × s2 × s3 + s4 mod 11.

Recent years have seen a concentration of efforts towards
different encodings of arithmetic circuits [23]. In the fol-
lowing, we define a classical form for encoding circuits in
an algebraically useful way called rank-1 constraint system
(R1CS). An R1CS encodes a program as a set of conditions
over its variables, so that a correct execution of a circuit
is equivalent to finding a satisfiable variable assignment.
Due to the transformability of arithmetic circuits into R1CS,
programs specified in R1CS are often referred to as circuits,
and their variables as signals.

Formally, a quadratic constraint over a set of signals
S = {s1, . . . , sn} is an equation of the form

(a1s1 + · · ·+ ansn)× (b1s1 + · · ·+ bnsn)

−(c1s1 + · · ·+ cnsn) = 0,

where ai, bi, ci ∈ Fp for all i ∈ {1, . . . , n}. In short, we write
a constraint as a × b − c = 0, where a, b and c are linear
combinations of s1, ..., sn. A rank-1 constraint system (R1CS)
over a set of signals S = {s1, . . . , sn} is defined as a finite
collection of quadratic constraints over S.

Example 2. We can represent the circuit C from Fig. 1 as the
following R1CS over S:

s1 × s2 − s5 = 0 mod 11

s5 × s3 − s6 = 0 mod 11

s6 + s4 − s7 = 0 mod 11

Note that all expressions of the system above are quadratic
or linear. In fact, we could compact last two constraints into
one, resulting in an equivalent R1CS defined over S\{s6}:{

s1 × s2 − s5 = 0 mod 11

s5 × s3 + s4 − s7 = 0 mod 11

Compressing all constraints into a single one would not
result in an R1CS, since we would end up with a non-
quadratic equation:

s1 × s2 × s3 + s4 − s7 = 0 mod 11.

Hence, in this example, any R1CS arithmetic representation
of C will always have at least two quadratic constraints.

Since arithmetic circuits are composed by additions and
multiplications, the representation of arithmetic circuits as
R1CS is a natural transformation. Moreover, a valid witness
for an arithmetic circuit translates naturally into a solution
of the R1CS representing the circuit. This way, we say that

an arithmetic circuit is satisfiable if there exists a solution
to the R1CS representing the circuit. Checking satisfiability
in R1CS encoded form requires to check all gates of a
circuit. Most ZK protocols use aggregation techniques, such
as quadratic arithmetic programs, to check all gates at once [4].

Although there have been tremendous efforts into un-
derstanding, developing and improving ZK protocols and
ZK-SNARKs, not much work has been done towards for-
malizing, standardizing, and optimizing the construction
of arithmetic circuits. In fact, designing and implementing
specific circuits is still a very handcraft procedure that can
entail security flaws if done incorrectly, compromising any
ZK machinery applied later on a circuit. For this reason, we
developed the CIRCOM circuit programming language. With
CIRCOM, programmers can implement arithmetic circuits,
and the compiler takes care of the R1CS encoding and the
rest of elements needed to compute ZK-SNARK proofs.

3 RELATED WORK

The appealing properties of ZK-SNARKs set off the de-
velopment of software tools that allow practical ways to
define to-be-proved statements, and to generate and verify
ZK proofs. In this section, we give an overview of the main
tools that exist in the ZK-SNARK ecosystem. In Figure 2,
we give a visual classification of the tools according to their
functionality, and in Table 1, we summarize their features.

  

Interfaces

Int
B

Int
A

DSL compilers

● Zokrates (Python-like)
● Snarky (Ocaml-like)
● Jsnark (Java-like)
● Xjsnark (Java-like)
● Zinc (Rust-like)
● Leo (Rust-like)
● Peper/Buffet/Pekin (C-like)
● Circom (circom)

Frontends
● Zokrates (Python-like)
● Snarky (Ocaml-like)
● Zinc (Rust-like)
● Leo (Rust-like)
● Xjsnark (Java-like)
● Buffet (C-like)
● Circom (Circom)

Program DSLs
● Python-like
● Ocaml-like
● Java-like
● Rust-like
● C-like

Backends
● Libsnark
● Snarkjs
● Bellman
● PySNARK
● EMP
● ZKPiEConstraint DSLs

● Circom

Compiler IR
● CirC

DSL specification
● CirC specification

Figure 2: Classification of the main existing tools in the ZK-
SNARK ecosystem.

3.1 Libraries, DSLs and Standardization Tools
The first type of tools that were developed were libraries,
also known as backends. Libraries are written in some gen-
eral purpose programming language and provide functions
that help users describe statements, and also generate and
verify ZK proofs. LIBSNARK [24] and BELLMAN [25] were
the first libraries that came out. The former is written in
C++ and is used as backend by many other tools. The
later is a Rust crate for building ZK-SNARK circuits that
provides circuit traits, primitive structures, and basic gad-
get implementations. The second most popular backend
in GitHub after LIBSNARK is SNARKJS [18], a JavaScript
library that we developed for generating and validating
ZK proofs from a set of R1CS constraints. SNARKJS can
run in desktops and servers with NodeJS, and since it is
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written in JavaScript, it can also run seamlessly in browsers,
bringing ZK proofs to the Web. A nice feature of this library
is that it creates Solidity code to validate ZK-SNARK proofs
within the Ethereum network. PYSNARK [26] is a library
for writing zk-SNARKs in Python 3. The library can be
used in combination with LIBSNARK and SNARKJS, and it
also produces Solidity smart contracts automatically. There
are also other backends that were designed for specific
application scenarios. For instance, EMP [27] is a library that
implements several interactive and communication-efficient
ZK protocols [28]–[30] for proving statements in the context
of neuronal networks. The protocols implemented by EMP
are interactive and not based on R1CS. On the other hand,
ZPiE [31], [32] is an implementation of ZK-SNARKs based
on R1CS compatible with SNARKJS that is specifically de-
signed for embedded systems. Since the application of these
backends is narrowed, they are less popular and widespread
than the aforementioned backends.

Over time, DSLs appeared as a more natural way of
expressing computational statements being proved in ZK. In
these cases, statements are expressed in a higher level DSL
and compiled by the corresponding DSL compiler to lower
level functions provided by a library. The main advantage
of a DSL over a library is that a DSL allows users to express
statements in the idiom and at the level of abstraction of the
problem domain [33]. Moreover, domain experts themselves
(in our context, cryptographers and developers) can more
easily understand, validate, modify, and develop DSL pro-
grams. Additionally, DSLs allow validation at the domain
level, which is performed by a compiler. In the context of
ZK, another advantage of a DSL is that the compiler can
apply specific techniques to simplify the set of constraints.
There are two categories of DSLs [14] for ZK (interface
named IntB in Figure 2): program-based DSLs and constraint-
based DSLs (called hardware DSLs in [14]).

In a program-based DSL, a statement is specified as a
“program" written with a subset of instructions of a regular
programming language that can be converted into primi-
tives provided by the backend. In this case, the frontend
compiler transcompiles the program and converts it into
a circuit definition consisting of a set of constraints that
can be proved by the backend. One of the first practical
program-based DSL was ZOKRATES [34], a Python-like DSL
with a compiler written in Rust. This frontend was intended
to help programmers use verifiable computation in their
decentralized application (DApp) from the specification of a
Python-like program for which proofs can be generated and
finally verified by a Solidity smart contract. SNARKY [35]
is an Ocaml-like program-based DSL with a backend based
on LIBSNARK. To our knowledge, this is the only DSL built
on top of a functional programming language. On the other
hand, ZINC [36], [37] is a program-based DSL that borrows
Rust’s syntax and semantics with minor differences. In
particular, ZINC does not allow recursion or variable loop
indexes. Leo [38] is another Rust-like program-based DSL
that abstracts the notions of native/non-native arithmetic
and constraint types, which results in more expensive cir-
cuits in terms of constraints [38]. XJSNARK is a Java-like
program-based DSLs for zk-SNARKs that uses as crypto-
graphic backend a Java interface to LIBSNARK. Finally, the
Pepper project is an academic research project that has de-

veloped some tools for practical verifiable computation. In
particular, their Buffet’s C-to-C compiler [39], [40] supports
proof-specific optimizations that is used by Pequin [41], a
toolchain to verifiably execute programs expressed in the C
programming language.

On the other hand, in a constraint-based DSL, the state-
ment being proved is specified directly as a circuit using
arithmetic constraints [14]. In this case, the DSL simplifies
the task of writing constraints by allowing the definition of
small circuits that act as components that can be connected
with each other to form larger circuits. The constraint-based
DSL compiler ensures that constraints are correctly speci-
fied and, like in all DSLs, it can also apply simplification
techniques over the set of constraints defining a circuit.

Finally, it is worth to mention that recently, there have
been efforts towards creating more generic tools for building
and prototyping compilers and also to standardize some of
the interfaces from the ZK ecosystem. A notable example
is CIRC [14], [42], which is a shared compiler infrastructure
for creating frontends that compile to constraint representa-
tions. To construct a compiler with CIRC, the developer es-
sentially writes an interpreter for the DSL using the CIRCIFY
library. The advantage is that the implementation using the
intermediate representation provided by the CIRCIFY library
is much shorter and faster to develop than building a full
compiler from scratch. CIRC is a very promising tool for
quickly creating compilers and for prototyping. Actually,
authors have created versions of ZOKRATES and CIRCOM
with less lines of code that the original compilers. Regarding
the efforts towards standardizing interfaces between fron-
tends and backends, a remarkable initiative is ZKINTERFACE
[43], [44], which specifies a protocol for communicating
constraints, assignments (witness), and proving protocols.
These data are specified using language-agnostic calling
conventions and formats to enable interoperability between
different authors, frameworks, and languages.

3.2 CIRCOM vs. Related Work
CIRCOM is a constraint-based description language for arith-
metic circuits. To the best of our knowledge and according
to the available literature [14], CIRCOM is the only imple-
mented DSL of this type. CIRCOM is in a level of abstraction
between a library and a program-based DSL.

On the one side, as with libraries, CIRCOM users can
specify the constraints of the circuit that defines the to-be-
proved statement. Moreover, libraries allow users can create
or use already created gadgets (smaller circuits) and connect
them with a program written in the language of the library.
Similarly, CIRCOM users can make use of templates, which
are small circuits that are parameterizable and can be in-
stantiated to form larger circuits. CIRCOM also allows users
to create their own custom templates or to use templates
from CIRCOMLIB. Among other things, the CIRCOM compiler
takes care that template definitions, parameters, intercon-
nections, and the R1CS constraints are correctly defined.
Compared to libraries, with CIRCOM, the circuit building
process is checked by the compiler and possible errors are
shown to users. This way, the CIRCOM language is a simple
DSL for specifying templates and their interconnections.

On the other side, CIRCOM also supports splitting the
circuit description into a pure proving part (constraints) and
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Backend Application Language GitHub repository
Libsnark [24] Desktop and server C++ scipr-lab/libsnark (1,564 ?)
snarkjs [18] Browser, desktop, and server JavaScript iden3/snarkjs (1,153 ?)
Bellman [25] Desktop and server Rust zkcrypto/bellman (675 ?)
PySNARK [26] Python gadget library Python meilof/pysnark (113 ?)
EMP [27] Interactive protocols C++ emp-toolkit/emp-zk (43 ?)
ZPiE [31], [32] Embedded systems C xevisalle/zpie (13 ?)
Frontend Type DSL Compiler GitHub repository
ZoKrates [34], [45] Program Python-like Rust Zokrates/ZoKrates (1,425 ?)
circom [15], [16] Hardware circom Rust iden3/circom (627 ?)
snarky [35] Program OCaml-like OCaml o1-labs/snarky (426 ?)
Leo [38], [46] Program Rust-like Rust AleoHQ/leo (341 ?)
Zinc [36], [37] Program Rust-like Rust matter-labs/zinc (306 ?)
xJsnark [47], [48] Program Java-like Java akosba/xjsnark (158 ?)
Buffet [39], [40] Program C-like C, C++ pepper-project/tinyram (34 ?)
Tool Description GitHub repository
CirC [14], [42] Tool for compilers circify/circ (138 ?)
zkInterface [43], [44] Standard tool for ZK interoperability QED-it/zkinterface (109 ?)

Table 1: Open-source zero-knowledge tools and their properties. GitHub stars as for November 2022.

a pure witness computation part. This splitting is necessary
when the witness computation requires operations that can-
not be expressed as quadratic constraints. With this feature
of the language, the compiler can automatically generate
a program to efficiently compute a valid assignment to all
wires of the circuit (the witness). That is, when we compile
a circuit with CIRCOM, the compiler outputs the set of
associated R1CS constraints and, if asked, it also can output
programs for computing the witness efficiently. In particu-
lar, the compiler can output programs written in C++ (to
be executed in a desktop/server) and in WebAssembly (to
be executed in a browser). In comparison, program-based
DSLs provide a higher level of abstraction by allowing users
to specify the to-be-proved statement as a program and the
compiler transforms the program into a circuit description.
To do so, the compiler has to explore all paths through the
program, unrolling all loops, considering all branches, while
guarding all state modifications by the condition under
which the corresponding path is taken [14].

Although a program-based approach might be a right
level of abstraction for many programmers, it is worth not-
ing that when writing these programs, programmers can-
not completely abstract from the details of the underlying
system. To illustrate this, we will make use of an example
from the ZOKRATES official documentation [49, Section 3.4]:
a circuit that given an input signal x, if x 6= 0 then the
output is its inverse x−1, and if x = 0, then the output is 0.
The natural way of writing the circuit in ZOKRATES would
be the following one:

1 def main(field x) -> field {
2 return if x == 0 {
3 0
4 } else {
5 1 / x
6 };
7 }

However, as the official documentation states, the caveat
with the previous ZOKRATES code, is that it leads to an
execution failing because line 5 is executed even when
x = 0. The reason for this type of caveats is that, at the

end, the program is compiled down to an arithmetic circuit,
and hence, jumping on a branch condition does not work as
with traditional architectures. For this reason, programmers
should still take into consideration the limitations of this
type of circuits. By contrast, in CIRCOM, the program can be
written as:

1 template Inverse() {
2 signal input in;
3 signal output out;
4 signal inv;
5 signal iszero;
6
7 inv <-- in!=0 ? 1/in : 0;
8 iszero <== -in * inv + 1;
9 in * iszero === 0;

10 out <== (1 - iszero) * inv;
11 }
12
13 component main = Inverse();

In the previous CIRCOM code, the first two constraints
(lines 8 and 9) enforce that the signal named iszero is 1
if the input signal in is 0, and 0 otherwise (for a detailed
explanation of the iszero constraints see Section 4.10). The
last constraint (line 10), sets the output signal out to 0 if the
input signal in is 0, and with any other number, out is set
as the inverse of the given number. The differential factor
between the CIRCOM code and the ZOKRATES code is that
in CIRCOM, the user can explicitly specify how exactly the
inv intermediate signal is computed in the template (line
7), which avoids the division by zero issue of the ZOKRATES
code and allows the witness computation part to run with-
out issues. It is worth saying that the authors of ZOKRATES
are currently working on an experimental feature that only
activates constraints that are in a logically executed branch.
However, this feature comes with a significant overhead of
constraints [49].

On the other hand, the expressiveness and flexibility of
constraint-based languages may also be a better option for
those developers that, in order to create highly optimized
circuits, wish to have greater control about the set of signals
and constraints that define the computation. In this sense,
the spirit of CIRCOM is to provide an unopinionated tool
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in which users can use the CIRCOM language to implement
their optimizations at the template level. Moreover, as we
show in Section 6, the CIRCOM compiler can apply several
rounds of simplification of linear constraints, an option that
can be activated or deactivated by the user.

Many projects in the Ethereum network are using the
low-level approach provided by CIRCOM including payment
mixers like Tornado cash [50], anonymous multi-asset pools
like Zeropool [51], ZK signaling gadgets like Semaphore
[52], public-key cryptographic protocols like ECDSA [53],
decentralized ZK-RTS games like Dark Forest [54], and
ZK-rollups like Hermez [55], that use circuits described
by hundreds of millions of constraints. Moreover, projects
like zkREPL [56], which provide an online development
environment for zk-SNARKS, are built on top of CIRCOM.
Remark that authors of CIRC have developed an alternative
compiler implementation for the CIRCOM language. Obvi-
ously, their implementation is considerably smaller that our
Rust implementation of the compiler. They say that they
achieve roughly the same performance as our compiler. In
fact, they are referring to our previous version of the CIR-
COM compiler (version 0.5) which was a prototype written
in Javascript. Indeed, our current version written in Rust is
in average 5 times faster than the JavaScript/CIRC versions
for small/medium size circuits and can increase up to 10
times faster for large circuits.

4 CIRCOM

CIRCOM [16] is a constraint-based DSL that allows program-
mers to design and create their own arithmetic circuits for
ZK purposes. The CIRCOM compiler is mostly written in
Rust and it is open source1. It is designed as a low-level
circuit language, close to the design of electronic circuits.

4.1 Introduction

CIRCOM allows programmers to define the constraints of an
arithmetic circuit in a low-level but friendly way. Recall that
arithmetic circuits consist of operations in a finite field Fp

that can be expressed as constraints of the form a×b−c = 0,
where a, b and c are linear combinations over a set of signals
{s1, ..., sn}. From a CIRCOM circuit description, the CIRCOM
compiler outputs the corresponding set of constraints and
a program that, given a set of input values, can compute
an assignment to the rest of circuit signals. By default,
CIRCOM takes p as the order of BN-128 elliptic curve, but
the compiler also accepts the large prime dividing the order
of BLS12-381, and the Goldilocks-like prime 264 − 232 + 1.
The user can select the prime to be used with a compiler’s
command-line option.

Example 3. Before going into details, we first illustrate how
CIRCOM works with a circuit that will allow us to prove that
the product of two secret input signals are equal to a certain
public output.

1. The CIRCOM compiler can be installed following the in-
structions from https://docs.circom.io/getting-started/
installation. The source code has more than 150K lines of Rust,
WebAssembly, and C++, and is available at https://github.com/
iden3/circom.git.

1 pragma circom 2.0.0;
2
3 template Multiplier () {
4 // declaration of signals
5 signal input a;
6 signal input b;
7 signal output c;
8 // constraints
9 c <== a * b;

10 }

The first line of this code is a pragma instruction that
specifies the version of the CIRCOM compiler that is used
to ensure that the circuit is compatible with the compiler
version indicated after the pragma instruction. If it is incom-
patible, the compiler throws a warning. All files with the
.circom extension should start with such pragma instruc-
tion, otherwise, it is assumed that the code is compatible
with the latest compiler’s version.

In line 3, we use the reserved keyword template to
define the configuration of a circuit, in this case called
Multiplier. Inside the template definition, we start by
defining the signals that comprise it. Signals can be named
with an identifier, in our example, these are identifiers a, b
and c. In this case, we have two input signals a and b, and
an output signal c.

After declaring the signals, we write the constraints that
define the circuit. In this example, we used the operator
<==. The functionality of this operator is twofold: on the
one hand, it sets a constraint that expresses that the value
of c must be the result of multiplying a by b; and on the
other hand, the operator instructs the compiler in how to
generate the program that computes the assignment of the
circuit signals. The compiler also accepts the left-to-right
operator ==> with the same semantics, but for simplicity,
from now on, we will always use the right-to-left operator
<==.

4.2 Creating a Circuit

Templates are parametrizable general descriptions of a cir-
cuit that have some input and output signals and describe,
sometimes using other subcircuits, the relation between the
inputs and the outputs. In the previous snippet of CIRCOM
code, we created the template called Multiplier, but to
actually build a circuit, we have to instantiate it. The tem-
plate Multiplier does not depend on any parameter, but
as we show in next examples, it is possible to create generic
parametrizable templates that are later instantiated using
specific parameters to construct the circuit. In CIRCOM, the
instantiation of a template is called component, and it is
created as follows (line 10):

1 pragma circom 2.0.0;
2
3 template Multiplier () {
4 signal input a;
5 signal input b;
6 signal output c;
7 c <== a * b;
8 }
9

10 component main = Multiplier();

By means of the declaration of components and tem-
plates, CIRCOM allows programmers to work in a modular
fashion: defining small pieces and combining them to create
large circuits that can entail millions of operations.
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4.3 Compiling a Circuit
As we said in Section 4.1, the use of the operator <== in
the template Multiplier has a double functionality: it
captures the arithmetic relation between the signals, but
it also provides a way of computing c from a and b.
In general, the description of a CIRCOM circuit also keeps
this double functionality. This way, the compiler can easily
generate the R1CS describing a circuit but also the instruc-
tions to compute the intermediate and output values of a
circuit. More specifically, given a circuit with the .circom
extension the compiler can return four files. For example, we
can compile multiplier.circom with the next options:

1 circom multiplier.circom --r1cs --c --wasm --sym

With the previous options, we are telling the compiler to
generate a file with the R1CS constraints (symbolic task) and
the programs for computing the values of the circuit wires in
C++ and WebAssembly (computational task). The last option
tells the compiler to generate a file of symbols for debugging
and printing the constraint system in an annotated way.

After compiling a circuit, we can calculate all the signals
that match the set of constraints of the circuit using the C++
or WebAssembly programs generated by the compiler. To
do so, we simply need to provide a file with a set of valid
input values, and the program will calculate a set of values
for the rest of signals of the circuit. Recall that a valid set of
input, intermediate and output values is called witness.

Regarding the prime number being used, it is included
in the header of the R1CS file, so that the backend can
appropriately build the proof. The prime specification is also
used by the compiler to generate the witness-calculator pro-
grams, which are linked to the correct modular arithmetic
libraries to efficiently deal with the selected prime modular
operations. Currently, we provide support and libraries for
the three primes mentioned in Section 4.1.

4.4 Generating a ZK Proof
Imagine we want to show that we know two numbers a and
b such that a × b = 33, while keeping a and b private. For
that, we could use the previous template Multiplier by
setting the inputs a and b as private signals of the circuit,
and the output c as a public signal. However, by default, the
inputs of a CIRCOM circuit are all considered private signals,
whereas outputs are always public signals. Hence, we can
use the template Multiplier already as it is.

In Figure 3 we show the complete process of generating
and validating a ZK proof with our architecture. As we can
see, we should first create a file containing the inputs written
in the standard JSON format: {"a": 3, "b": 11}. Next,
we pass the file with the inputs to the C++ or WebAssembly
program generated by the compiler, which will generate a
file containing the witness in binary format. After compiling
the circuit and running the witness calculator with an appro-
priate input, we will have a file with extension .wtns that
contains all the computed signals and, a file with the .r1cs
extension that contains the constraints describing the circuit.

With the witness and the R1CS files, we can compute
and verify ZK proofs using SNARKJS. All ZK protocols
implemented in SNARKJS require a trusted setup. In some
cases, it is possible to reuse a trusted setup, like in [19],

R1CS
file

 circom compiler

 circom circuit description

witness-calculator
program

witness file

computational problem

Figure 3: Our architecture for generating and verifying ZK-
SNARK proofs using CIRCOM and SNARKJS software tools.

whereas in others, it is necessary to generate a new trusted
setup per circuit, as in [4] and [6]. For this reason, SNARKJS
already provides the necessary commands to create MPC
ceremonies for generating the trusted setup and also ver-
ifying that an existing trusted setup has been computed
correctly. From the R1CS and the MPC, SNARKJS produces
a generation and a verification key for the circuit. Finally,
with the generation key and the witness, the prover can
generate a ZK-SNARK proof and send it to a verifier, who
uses the verification key and a file with the public signals of
the circuit to check if the prover’s proof is valid2.

Note that we could have started the process choosing
different input values. For example, we could have used
{"a": 1, "b": 33} as input and generated a valid proof
for our circuit. Hence, a proof for the circuit Multiplier
would not really show that we know how to factor 33. In
Section 4.10, we will use a template that checks if a signal
is zero to modify the template Multiplier to only accept
inputs that are not 1.

4.5 The Main Component
The CIRCOM compiler needs a specific component as entry
point. This initial component is called main and, as we did
in Example 3, it needs to be instantiated with some template.

Unlike other intermediate components that we will in-
troduce later, the main component defines the global input
and output signals of a circuit. As mentioned in Section 4.4,
by default, the global inputs are considered private signals
while the global outputs are considered public. However,
the main component has a special attribute to set a list of
global inputs as public signals. The general syntax to specify
the main component is the following:

1 component main {public [s1,..,sn]} = templateID(v1,..,vn);

The {public [s1,..,sn]} part is an optional argument
that specifies the list of public signals of the circuit. Any
other input signal not included in this list is considered a
private signal.
Example 4. Let us illustrate the use of public signals follow-
ing the previous example. For simplicity, we will no longer
start out code with the pragma instruction.

2. For further information about the creation of a trusted setup and
the generation and verification of ZK-SNARK proofs with SNARKJS, we
refer the reader to https://github.com/iden3/snarkjs.
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1 template Multiplier() {
2 signal input a;
3 signal input b;
4 signal output c;
5 c <== a * b;
6 }
7
8 component main {public [a]} = Multiplier();

In this code snippet, we declare the main component
with the global input a as a public input signal, whereas b
remains as a global private input signal of Multiplier.

Recall that the prover needs all signals (private and
public) to generate a ZK proof, while the verifier only needs
the public signals to verify a proof, which in this case are
signals a and c.

4.6 Connecting Templates

CIRCOM is a modular language that allows the definition
of small circuits called templates. Typically, templates are
then instantiated to form larger circuits. The idea of building
large and complex circuits from smaller parts makes it easier
to test, review, and audit large CIRCOM circuits.

Example 5. Let us illustrate how to connect templates by
continuing our previous example. In Example 3, we created
a template for a multiplier of two signals. In this case, we
will extend this idea by connecting two of these 2-input
multipliers to get a multiplier for three signals.

1 include "multiplier.circom";
2
3 template Multiplier3() {
4 signal input in1;
5 signal input in2;
6 signal input in3;
7 signal output out;
8
9 component multiplierA = Multiplier();

10 component multiplierB = Multiplier();
11
12 multiplierA.a <== in1;
13 multiplierA.b <== in2;
14 multiplierB.a <== multiplierA.c; // in1 * in2
15 multiplierB.b <== in3;
16 out <== multiplierB.c; // (in1 * in2) * in3
17 }
18
19 component main {public [in1, in2]} = Multiplier3();

In line 3, we create a template called Multiplier3
that has three inputs called in1, in2 and in3, and one
output called out. Notice that in the instantiation of the
template (line 19), we specify that in1 and in2 are public,
and in3 is private. To build the multiplication of the three
input signals, we create two subcomponents that are 2-input
multipliers (lines 9 and 10). To do so, we have to import the
definition of the 2-input multiplier template from a separate
file using the keyword include (line 1). Then, we connect
the inputs in1 and in2 to the input wires of the first
subcomponent multiplierA using the dot (.) operator.
Next, we use the second subcomponent to do the other
multiplication by connecting the output of the previous
2-input multiplier (line 14) and in3 (line 15). Finally, to
provide the multiplication of the three inputs, we assign
the output of the second 2-input multiplier to the output of
Multiplier3 (line 16).

Remark. From a template, we can only access the inputs and
outputs of its direct subcomponents.

4.7 Debugging
The CIRCOM language provides a small logging function
that is called with log(arg1,...,argn) that can greatly
help users debug their circuits. This function can be called
with strings, values of signals, or expressions. This way,
when the witness computation program is executed, the
console prints the logged values.
Example 6. Following Example 5, we can use the logging
function to show a string followed by the value of the signal
multiplierA.c.

1 log("The result is ", multiplierA.c);

4.8 Building More Complex Circuits
In our previous example, we created a template composed
of different subcomponents. The capability of building large
circuits from smaller pieces is far more powerful in CIRCOM.
For instance, we can create parametrized templates using
flow control structures like for loops and if statements,
include variables for using them, and even define arrays of
signals and arrays of subcomponents.
Example 7. Let us illustrate how to build more complex
circuits by generalizing Example 5 to an n-multiplier. That
is, we will create a parametrized template that will allow the
instantiation of circuits that will verify the multiplication of
n input values.

1 include "multiplier.circom";
2
3 template MultiplierN(n) {
4 signal input in[n];
5 signal output out;
6
7 component multiplier[n-1];
8
9 multiplier[0] = Multiplier();

10 multiplier[0].a <== in[0];
11 multiplier[0].b <== in[1];
12
13 for(var i=1; i<(n-1); i++){
14 multiplier[i] = Multiplier();
15 multiplier[i].a <== in[i+1];
16 multiplier[i].b <== multiplier[i-1].c;
17 }
18
19 out <== multiplier[n-2].c;
20 }
21
22 component main = MultiplierN(4);

In the previous code snippet, we create a template
called MultiplierN which depends on a parameter n.
The template uses an array called in of n elements to
describe the template inputs (line 4). Then, we create n-1
Multiplier subcomponents (line 7), which are referenced
with an n-1-dimensional array called multiplier. Then,
we appropriately initialize the first subcomponent (lines 9–
11). Next, we use a for loop with a control variable called
i, which is created using the keyword var. Notice how
inside the for loop we create subcomponents and wire the
connections between them.
Remark. It is useful to think of building CIRCOM circuits
as a similar process of building electronic circuits. With
CIRCOM circuits, the compiler must know all the required
parameters of the circuit. As a result, in loops that involve
constraints (symbolic part), CIRCOM only allows to define the
loop condition based on the template parameters. In our
previous example, the loop condition used n, which was
perfectly valid. For further information, see Section 4.13.
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4.9 Splitting Between Computation and Constraints
In this section, we explain what happens when the calcula-
tion of a signal does not come from a quadratic formula. To
give some intuition, we start with an example of a template
that performs a division.
Example 8. A division c = a/b is an operation that cannot be
computed using a quadratic formula but it can be checked
using the quadratic expression a = b · c.

1 template Divider() {
2 signal input a;
3 signal input b;
4 signal output c;
5 c <-- a/b;
6 a === b * c;
7 }

In this case, we have to split the computational task, which
instructs the compiler in how to compute signals, from
the symbolic task, which instructs the compiler in how to
create constraints that verify a computation. As we can see
in the code, the computational task is expressed using the
individual operator <-- (line 5). The language also accepts
the left-to-right operator --> with the same semantics. On
the other side, the symbolic task is expressed separately
using the individual operator ===, which adds a constraint
that captures the quadratic relation between signals (line 6).

As an implementation detail, just mention that the ===
operator also adds an assert to the program that computes
the witness. As expected, if after computing a witness there
is an assert instruction that is not satisfied, the program stops
and returns an error. Therefore, the === operator also plays
a small role in the computational task.

At this point, it should be clear that the following tem-
plates A and B are equivalent:

1 template A() {
2 signal input in;
3 signal output out;
4 out <-- in;
5 out === in;
6 }

1 template B() {
2 signal input in;
3 signal output out;
4
5 out <== in;
6 }

These two templates are equivalent because their com-
pilations will produce the same R1CS and the code of the
witness computation program will be the same except for
the fact that the code from template A will have an extra
assert instruction with respect to the code generated from
template B. Anyway, in this particular case the assert will
always be fulfilled, so the witness computation programs
are effectively equivalent.

In general, the dual operator <== is preferred whenever
possible, because it always guarantees the equivalence be-
tween the computed witness and the constraints that check
the computation. Notice that, if not handled with care, the
use of the individual operators <-- and === might produce a
situation in which the witness does not fulfil the constraints
or in which the constraints are unconnected to the witness.
Example 9. Let us look at the following template, which
given two inputs a and b, it outputs c = a+b.

1 template Incorrect() {
2 signal input a;
3 signal input b;
4 signal output c;
5 c <-- a+b;
6 c === a * b;
7 }

In this template, the computational program will output
c = a+b, but the R1CS describing the template will consist
of the constraint c = a*b. Therefore, given two inputs, the
witness computed by the witness computation program will
not be correct in general. In this case, only inputs such that
a+b = a*b will be valid inputs for the circuit. Circuits
in which a computation is not reflected as an equivalent
constraint, are considered incorrect circuits.

To avoid these cases, individual operators must only be
used in cases in which the dual operator cannot express a
computation like it happened in Example 8. In Section 7, we
analyse these situations in greater detail.

Remark. Neither the operator === nor <== can be used with
signal expressions that are not quadratic.

4.10 Checking If Zero

Now that we know the basic syntax of the CIRCOM lan-
guage, we present the template IsZero, which has some
subtleties. IsZero checks if a certain signal in a circuit
is zero or not. In this case, the output signal out is 1 if
the input signal in is zero, and out is 0, otherwise. The
implementation is based on a trick from [4].

1 template IsZero() {
2 signal input in;
3 signal output out;
4 signal inv;
5 inv <-- in!=0 ? 1/in : 0;
6 out <== -in * inv +1;
7 in * out === 0;
8 }
9

10 component main = IsZero();

First, we use an intermediate signal inv to compute
the inverse of the input signal in. Since signals of CIRCOM
circuits are elements of a prime field Fp, the only element
that has no inverse is 0. Hence, if in is not 0, we can assign to
inv the inverse of in. In the other case, where such inverse
does not exist because in is zero, we assign 0 to inv. Note
that the value of the signal inv depends on a conditional
expression and hence, we cannot use the operator <== and
we use the individual computational operator <-- instead.

After that, we assign the value -in*inv + 1 to the sig-
nal out (line 6), which will be 1 if in = 0 and 0, otherwise.
Since we do the assignment using the dual operator <==, the
constraint out = -in*inv + 1 is also added to the R1CS.

Observe that the previous constraint ensures that out is
1 if in is zero, but if in is not zero, the value of inv is
not captured in any constraint, since its assignment is done
only with the individual computational operator. Hence,
inv could be manipulated to take any value. For this reason,
if we want to enforce that out is really 0 when in is not zero,
we add a new constraint in*out === 0 (line 7).

Note that when in is 0, we decided to assign 0 to inv,
but in fact, we could have chosen any other value. Indeed,
when in is zero, both constraints (lines 6 and 7) are satisfied.
In this case, we say that the circuit is safe, but not strongly
safe, since there is more than one valid solution for inv. We
analyse this type of situations in greater detail in Section 7.

Example 10. The template IsZero is used very frequently.
An illustrative example, is to use it to modify our first
template Multiplier from Example 3 to enforce that none
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of its inputs is 1. For that, we use the fact that a is not 1 if
and only if a-1 is not zero, and the same stands for b.

1 include "iszero.circom"
2
3 template Factorization() {
4 signal private input a;
5 signal private input b;
6 signal output c;
7
8 component isz1 = IsZero();
9 component isz2 = IsZero();

10
11 isz1.in <== a-1;
12 isz2.in <== b-1;
13 isz1.out === 0; // enforce that a-1 != 0
14 isz2.out === 0; // enforce that b-1 != 0
15
16 c <== a * b;
17 }
18
19 component main = Factorization();

4.11 Functions and Constants
The CIRCOM language also allows the usage of functions to
encapsulate computation logic. Functions in CIRCOM have a
syntax similar to functions in the C programming language.
In the body of a function, we can use control flow statements
and variables. However, functions should only be used for
computational purposes, so contrary to circuit templates,
functions cannot create new constraints or use signals.
Example 11. An example of a basic function is the following
one, which adds one to a given value:

1 function my_function(x){
2 return x+1;
3 }

The use of functions is not strictly necessary to define
circuit templates and their main usage in CIRCOM is to
define global constants. The reason for this, is that CIRCOM
does not admit the definition of global constants. Thus,
whenever we want to have a global constant we can just
define a function that always returns the same value, and
call it every time we need it in our circuit.
Example 12. The following function will be later used in
Section 5.2 and it returns a parameter of an elliptic curve.

1 function baby_const_a(){
2 return 168700;
3 }

4.12 Symbolic Variables
In Section 4.8, we explained several uses of the variables
when building circuits. However, variables have another
important use, which is to store symbolic expressions when
building the constraints. We call symbolic variables to those
variables that contain symbolic expressions on signals.
Example 13. Let us analyse an example of a template that
uses symbolic variables. The following template implements
a multiAND circuit that depends on a parameter n. That
is, MultiAND is a template that takes an array of n binary
inputs and outputs 1 if and only if all inputs are 1.

1 include "iszero.circom"
2
3 template MultiAND(n) {
4 signal input in[n];
5 signal output out;
6 var sum = 0;

7
8 for(var i=0; i<n; i++) {
9 sum = sum + in[i];

10 }
11
12 component isz = IsZero();
13
14 sum - n ==> isz.in;
15 isz.out ==> out;
16 }
17
18 component main = MultiAND(4);

In the previous code snippet, we implemented a mul-
tiAND gate for four binary inputs (line 15). To do so, we
add the values of the inputs and checked if the result was
equal to the number of inputs by subtracting and checking
if the result is zero. If the result is zero, the output should
be one and zero, otherwise.

Notice that we used two variables: i and sum. The
variable i is a regular index variable used in the for loop,
while sum is a symbolic variable that is used to create a
constraint in which we add up the values of the n input
signals. Inside the loop, the symbolic variable sum is used
to create the sum of signals in[0] + ... + in[n-1]. In
line 9, sum is finally used to generate the constraint:

in[0] + ... + in[n-1] - n = isz.in.

Example 14. In the following example, we analyse a tem-
plate that given an input signal in, it outputs the binary
representation of in as an n-array of signals called out[n].
For a given number n, we could use the following list of
quadratic constraints:

1 out[0] * (out[0]-1) === 0
2 ...
3 out[n-1] * (out[n-1]-1) === 0
4
5 out[0] * 2^0 +...+ out[n-1] * 2^(n-1) - in === 0

The first lines guarantee that all elements of the array out
are binary, and the last line, that out is indeed the binary
representation of the input in. We can rewrite the previous
code using a loop:

1 signal input in;
2 signal output out[n];
3 var bsum = 0;
4 var exp2 = 1;
5
6 for (var i = 0; i<n; i+=1){
7 out[i] * (out[i]-1) === 0;
8 bsum += out[i] * exp2;
9 exp2 * = 2;

10 }
11 bsum === in;

Note that, in the previous code, we used the individual
symbolic operator ===. We cannot use the dual operator
because the constraints to check the binary representation
of in cannot be computed using quadratic expressions.
For this reason, we need to build the constraints without
providing a way to compute their values. This has to be
done separately with the following simple algorithm that
extracts one by one the bits of in:

1 for (var i = 0; i<n; i+=1) {
2 out[i] <-- (in >> i) & 1;
3 }

Notice how we used the individual operator for compu-
tation <-- to assign computed values to signals without
generating new constraints.
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Now, putting the two pieces together, we can implement
a circuit template called Num2Bits(n) that outputs the bit
representation of up to n bits of an input signal.

1 template Num2Bits(n) {
2 signal input in;
3 signal output out[n];
4 var bsum = 0;
5 var exp2 = 1;
6 for (var i = 0; i<n; i+=1){
7 out[i] <-- (in >> i) & 1;
8 out[i] * (out[i]-1) === 0;
9 bsum += out[i] * exp2;

10 exp2 * = 2;
11 }
12 bsum === in;
13 }

Note that in the body of control flow statements we can
have both symbolic and computational expressions (lines 7-
10). In general, CIRCOM programmers can write constraints
and signal computations together, even when the symbolic
and computational descriptions differ.

4.13 Dealing with the unknown

Recall that, when writing CIRCOM programs, it is useful to
think of them as physical circuits of wires and gates. As
with physical circuits, CIRCOM circuit descriptions cannot
depend on the value of its wires. That is, the R1CS of any
CIRCOM program must be the same for any set of inputs.
In fact, the compiler builds the R1CS without knowing the
values of the inputs, and hence, it considers the values of
the signals unknown at compilation time. As a result, since
Boolean expressions on conditional expressions and loops
can only depend on values known at compilation time (i.e.
template parameters but no signal values), if we try to add
a constraint inside a conditional or a loop that depends on
unknown expressions, CIRCOM will output a compilation
error.

Formally, a block of code is unknown if it depends on a
Boolean expression which is unknown at the program point
where it was evaluated. For instance, the body of a loop
is unknown, if its condition depends on the value of an
input. An expression is unknown at a program point pp,
if there is a variable involved in the expression which is
unknown at pp. Finally, a variable x is unknown at pp if,
for a given instantiation of the template, there exists a path
in the control-flow graph ending at pp in which, for the
last assignment modifying x, the new value depends on an
unknown expression or such an assignment belongs to an
unknown block.

Notice this definition is recursive and thus, the CIRCOM
compiler performs a fixed-point analysis to detect the un-
known variables present in the program. A hint for the pro-
grammer when getting a compilation error for an unknown
variable is to pay attention to two common situations:

1) The addition of a constraint that depends on a
Boolean condition involving an unknown variable.

2) The addition of a constraint with an array access
using as index an unknown variable or a signal.

Example 15. Let us see an example of a CIRCOM program
that does not compile because of the unknown.

1 template ErroneousTemplate1(n) {
2 signal input in;
3 signal output out1;
4 signal output out2;
5 for(var i=0; i<n; i++) {
6 out1 <== in * in;
7 if(in >= 0){
8 out2 <== in + 2;
9 }

10 }
11 }
12
13 component main = ErroneousTemplate1(4);

When compiling this program, we obtain an error derived
from the instruction in line 8, where we are trying to add
a new constraint to the R1CS only if the value of signal in
is greater or equal than 0. In this case, the compiler detects
that the execution of line 8 depends on the condition from
line 7, but signal in has an unknown value at compilation
time, and hence, the compiler throws an error. Notice that
line 6 is correct, since it is inside the loop from line 5, whose
Boolean condition depends on the value of n, which is a
template parameter known at compilation time.

Example 16. In this other example, we illustrate the situ-
ation in which, to create a constraint, a symbolic variable
(unknown) is used to access an array.

1 template ErroneousTemplate2(n) {
2 signal input in[5];
3 signal output out;
4 var aux;
5
6 if(n > 0)
7 aux = in[0] + 3;
8 else
9 aux = 2;

10 out <== in[aux];
11 }
12
13 component main = ErroneousTemplate2(4);

Observe that at line 10, the variable aux is unknown, since
for the given instantiation of the template (n = 4), aux is
modified (line 7) and its new value depends on the value of
the signal in[0]. Therefore, we will get a compilation error,
since the constraint out = in[aux] cannot be added to
the R1CS without knowing the value of aux used to index
the array in.

As a result of the previous discussion, circuits, which
are defined by a set of R1CS constraints, must be known
at compilation time. However, in certain occasions, it may
be useful to do computations requiring accesses to positions
in arrays or memories that unknown at compilation time,
e.g. depending on the value of an input signal. When using
CIRCOM, the user has to build the circuits that arithmetize
this type of computations. These arithmetizations are not
built-in features of CIRCOM, because by design, CIRCOM
is unopinionated in how arithmetizations are implemented
and rather, these arithmetizations should be part of template
libraries. In the literature, we find several approaches for
such types of arithmetizations. For instance, [57] uses a line-
by-line compilation approach with instructions for memory
reads and writes, and a hash structure to store the current
memory state, while [13] uses a permutation network to
verify that the sequence of memory reads and writes is
consistent. Buffet [39], [40] uses a combination of [57], and
[13] to build an efficient arithmetization of the random
access memory.
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4.14 CIRCOMLIB

As we have explained in the previous sections, the use of
templates allows CIRCOM developers to build large circuits
from smaller individual subcircuits. In this regard, CIRCOM
users can create their own custom templates, but in addition
to the language and the compiler, we also provide an open-
source library of CIRCOM templates called CIRCOMLIB [17],
with hundreds of different circuits. On the one side, CIR-
COMLIB has the implementation of basic operations, such as
binary logic gates, comparators, conversions between field
elements and their binary representations, and multiplex-
ers. On the other side, the library contains more complex
circuit structures that are used in the context of distributed
ledgers and cryptocurrencies, such as digital signatures,
elliptic curve-based cryptographic schemes, hash functions,
and Merkle tree structures. We would like to remark that
apart from CIRCOMLIB, there is a community actively using
CIRCOM for building their custom own templates. Remark-
able examples are an elliptic-curve pairing implementation
from 0xParc [58] and a CIRCOM-based library from Electron
Labs that allows to generate proofs for a batch of Ed25519
signatures [59]. In the following Section 5, we show how
to make use of CIRCOMLIB templates and present some
practical applications of CIRCOM.

5 APPLICATIONS

In this section, we present some examples that illustrate the
potential of the CIRCOM language. In Section 5.1, we give an
example of a circuit that allows us to prove that we know the
preimage of a hash value using templates from CIRCOMLIB.
In Section 5.2, we introduce templates that implement the
arithmetic operations on an elliptic curve called Baby Jubjub
[60]. In Section 5.3, we explain how to use the previous
curve operations to verify that a private key corresponds
to a public key without revealing the private key. Finally,
in Section 5.4, we explain how to verify a signature with
templates from CIRCOMLIB and give an example of a circuit
that verifies that a given message has been signed by a pub-
lic key from a pair of authorized public keys, but without
revealing which of the two was used.

5.1 Hashing
A cryptographic hash function is a deterministic one-way
function that maps data of an arbitrary size to a bit array of a
fixed size. Hash functions are widely used in authentication
systems to avoid storing plaintext passwords in databases,
but are also used to identify and validate the integrity of
files, documents, and other types of data. One of the main
uses of hash functions is in digital signatures, where the
hash is used to create a cryptographic digest of the data
being signed (see Section 5.4).

CIRCOMLIB provides circuits for several hash functions.
For example, the template Sha256(nBits) is an imple-
mentation of SHA-256, which is defined as a hash function

H : {0, 1}nBits → {0, 1}256.

The next example shows a circuit that you can use to
prove that you know the preimage of a given hash without
revealing it. The following piece of code creates a circuit that
takes a binary array in of 256 bits and returns out = H(in).

1 include "sha256.circom";
2
3 template Main() {
4 signal input in[300];
5 signal output out[256];
6
7 component sha256 = Sha256(300);
8
9 for (var i=0; i<300; i++){

10 sha256.in[i] <== in[i];
11 }
12
13 for (var i=0; i<256; i++){
14 out[i] <== sha256.out[i];
15 }
16 }
17
18 component main = Main();

In line 7, we instantiate the template Sha256(nBits) with
nBits = 300. In this case, we have to assign the values of
the signal array bit by bit (line 10). Finally, we set each bit
of out to each bit of the output of the sha256 component
(line 14).

Classical hash functions, such as the family of SHA
functions [61], are heavy on bit operations, which makes
them very inefficient to implement inside arithmetic cir-
cuits. For example, the previous template sha256 from
CIRCOMLIB for an input of 300 bits is described by 29,450
constraints. Recently, there have been efforts to develop
new hash functions that optimize their representation inside
arithmetic circuits. In this regard, CIRCOMLIB also contains
the implementation the Pedersen hash [62] (pedersen),
two hash functions from the MiMC family [63] (mimc,
mimc_sponge), and Poseidon [64] (poseidon).

5.2 Elliptic–Curve Arithmetic

A classical use of ZK protocols is to prove ownership of
a public key without revealing the secret key. For that,
we need to be able to write the logic of verifying that a
given secret key corresponds to a given public key inside
an Fp-arithmetic circuit. This logic is usually implemented
by means of arithmetic operations of an elliptic curve. In
this section, we show how to implement the arithmetic
operations of an elliptic curve called Baby Jubjub [60], used in
the Ethereum blockchain to implement elliptic-curve cryp-
tography inside circuits [22].

Definition of parameters of the curve
Baby Jubjub is an elliptic curve defined over the prime field
Fp with

p =218882428718392752222464057452572750885

48364400416034343698204186575808495617,

and described by equation

ax2 + y2 = 1 + dx2y2, (1)

with a = 168700 and d = 168696. More precisely, Baby
Jubjub is defined as the set of points (x, y) ∈ F2

p that satisfy
Eq. (1) together with a special point, called point at infinity,
which does not satisfy the equation but still belongs to the
curve, and which is typically represented by the point (1, 0).

To avoid replicating the values of a and d from Eq. (1)
in every template to the curve, it is useful to define them
only once. As we explained in Section 4.11, CIRCOM does
not admit the definition of global constants and, instead,
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we have to to define two functions that always return these
values.

1 function baby_const_a(){
2 return 168700;
3 }
4
5 function baby_const_d(){
6 return 168696;
7 }

This way, every time we need the coefficients of the elliptic
curve, we can call these two functions.

Checking if a point belongs to the curve
We start by checking if a pair of coordinates (x, y) corre-
spond to a point on the curve that safisfies Eq. (1). For that,
we create a template called BabyCheck(), that verifies if a
pair of x and y are a solution to the equation.

1 template BabyCheck() {
2 signal input x;
3 signal input y;
4 var a = baby_const_a();
5 var d = baby_const_d();
6 signal x2;
7 signal y2;
8 x2 <== x * x;
9 y2 <== y * y;

10 a * x2 + y2 === 1 + d * x2 * y2;
11 }

In the previous template, first, we declare two input
signals x and y, one per each coordinate. Then, we get the
values of the coefficients a and d from the functions we
previously defined and assign them to two variables a and
d, respectively. Now, note that we cannot write directly the
constraint

a*x*x + y*y === 1 + d*x*x*y*y,

as in Eq. (1), since it is not a quadratic expression. Instead,
we use two new intermediate signals, x2 and y2, to repre-
sent x2 and y2 (lines 8- 9). Once these signals are defined,
we can check if the point (x,y) belongs to the curve using
the quadratic constraint

a*x2 + y2 === 1 + d*x2*y2.

Alternatively, we could have defined a signal u, enforced
u <== x*y, and then used u to rewrite the curve equation
using an equivalent constraint of the form

a*x2 + y2 === 1 + d*u*u.

Addition of points in the curve
Now, we define how to operate in the elliptic-curve group.
For that, we use that the addition of two points P1 = (x1, y1)
and P2 = (x2, y2) on Baby Jubjub is defined [60] as a third
point P3 = (x3, y3) with coordinates

x3 =
x1y2 + x2y1

1 + dx1x2y1y2
and y3 =

y1y2 − ax1x2

1− dx1x2y1y2
. (2)

The following piece of code consists of a template, called
BabyAdd, that takes two points and outputs their addition
using the formula from Eq. (2).

1 template BabyAdd() {
2 signal input p1[2];
3 signal input p2[2];
4 signal output pout[2];
5
6 signal beta;

7 signal gamma;
8 signal delta;
9 signal tau;

10 var a = baby_const_a();
11 var d = baby_const_d();
12
13 beta <== p1[0] * p2[1];
14 gamma <== p1[1] * p2[0];
15 delta <== (-a * p1[0]+p1[1]) * (p2[0] + p2[1]);
16 tau <== beta * gamma;
17
18 pout[0] <-- (beta + gamma) / (1+ d * tau);
19 (1+ d * tau) * pout[0] === (beta + gamma);
20
21 pout[1] <-- (delta + a * beta - gamma) / (1-d * tau);
22 (1-d * tau) * pout[1] === (delta + a * beta - gamma);
23 }

In this template, we define points using 2-dimensional
arrays of signals. In particular, we have two points as
input signals (p1 and p2), and a third point as output
signal (pout). We also have four intermediate signals (beta,
gamma, delta, and tau), and two variables (a and d)
with the coefficients from Eq. (1). Since both expressions
from Eq. (2) involve a division by signals, we cannot write
the formulas directly using the dual operator <==. Instead,
we first use the individual computational operator <-- to
compute the denominators, and then, use the individual
symbolic operator === to enforce a multiplicative relation
between the numerator and the denominator.

To illustrate the definition of public input signals, let us
suppose that we want to use circuit BabyAdd to prove that
given an initial point P1 and a final point Pout, we know
the point P2 such that P1 + P2 = Pout, where all the points
belong to the curve.

1 component main {public [p1]} = BabyAdd();

We indicate that the first point p1 is public thanks to the
tag public that precedes the list of public input signals in
the declaration of the main component. An array of signals
must have all elements public or all elements private. In this
case, both signals of p1 (p1[0] and p1[1]) are public. The
two coordinates of the output point pout are also public,
since they are output signals. Finally, the two coordinates
of the second point p2 remain private, since they do not
appear in the previous list.

5.3 Public–Key Cryptography
To build public-key cryptography using elliptic curves, the
participants must agree on a publicly known point called
generator. In this setting, a private key is a randomly chosen
scalar and its corresponding public key is computed by mul-
tiplying the generator point by the private key. This scheme
achieves the properties of public-key cryptography because
point multiplication by a scalar can be efficiently computed
with algorithms like double-and-add [65, Algorithm 7.6],
while computing the private key from the generator and the
public key point is computationally unfeasible. This compu-
tational problem is widely known as the discrete logarithm
problem [65, Problem 7.1]. In the following code snippet,
we use the ScalarMulFix template from CIRCOMLIB to
compute a public key from a private key provided as input.

1 template BabyPbk() {
2 signal input in;
3 var GEN[2] = [
4 52996192406415512816348655835182970302
5 82874472190772894086521144482721001553,
6 16950150798460657717958625567821834550

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3232813

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

7 301663161624707787222815936182638968203
8 ];
9 signal output Ax;

10 signal output Ay;
11 component pvkBits = Num2Bits(253);
12 pvkBits.in <== in;
13 component mulFix = ScalarMulFix(253, BASE8);
14 var i;
15 for (i=0; i<253; i++) {
16 mulFix.e[i] <== pvkBits.out[i];
17 }
18 Ax <== mulFix.out[0];
19 Ay <== mulFix.out[1];
20 }
21 component main = BabyPbk();

Let us identify the main parts of this template. First, we
have an input signal in, which is the scalar (private key)
used to generate the new point (public key); the generator
point GEN[2]; and two output signals, Ax and Ay, which
are the coordinates of the public key point generated from
multiplying GEN[2] by in.

After these definitions, we declare a component
(Num2Bits) to transform the scalar in to its 253-bit rep-
resentation, and assign in as its input signal. Right after, we
declare a new component (ScalarMulFix) to perform the
multiplication of the generator by the scalar. Details about
how this multiplication is performed can be found in [17]. In
line 16, each of the bits from the representation of the scalar
are set to its corresponding input of the component. Finally,
we assign the output signals of this component to the final
output signals Ax and Ay.

If we compile the program without declaring any input
signal as public, then they all remain as private signals.
In particular, in is a private signal whose value should
not be known because it is a private key. Finally, note that
BabyPbk() only has two public output signals, Ax and Ay,
which are not explicitly declared as public, since the output
signals of the main component are always considered as
public signals.

5.4 Digital Signatures
A popular elliptic curve-based signature scheme is the
Edwards-curve digital signature algorithm (EdDSA) [66], which
is a digital signature scheme based on twisted Edwards
curves, such as Baby Jubjub. Given a public key as defined
in Section 5.3, and a message, the EdDSA protocol uses a
public cryptographic hash function to bind the signature to
a given message and public key.

CIRCOMLIB has different implementations of EdDSA
based on Baby Jubjub which differ in the hash func-
tions being used. The template eddsa uses the Peder-
sen hash, eddsamimc is implemented using MiMC, and
eddsaposeidon is a variation with Poseidon. All these
templates output 1 if the signature is valid, and 0 otherwise.

Users can use these templates to validate that a signature
of a message is valid, but they can also use them to prove
more elaborated statements. For example, that a message
has been signed with a public key that belongs to a list of
authorized public keys but without revealing which specific
one. In the following example, we define a template that
validates if a message has been correctly signed by one of
two public keys {pk1, pk2}.

1 include "eddsa-simplified.circom";
2
3 template VerifyAuthorizedSignature() {
4 signal input pk1[2]; // public key 1

5 signal input pk2[2]; // public key 2
6 signal input msg; // message
7 signal input sig; // signature
8
9 signal out1;

10 signal out2;
11
12 component verify1 = EdDSAVerifier();
13 component verify2 = EdDSAVerifier();
14
15 // verify signature with pk1
16 verify1.pk <== pk1;
17 verify1.msg <== msg;
18 verify1.sig <== sig;
19 out1 <== verify1.out;
20
21 // verify signature with pk2
22 verify2.pk <== pk2;
23 verify2.msg <== msg;
24 verify2.sig <== sig;
25 out2 <== verify2.out;
26
27 out1 + out2 === 1;
28 }
29
30 component main {public [pk1[0],pk1[1],pk2[0],pk2[1],msg]}
31 = VerifyAuthorizedSignature();

Notice that we used the EdDSAVerifier() template
as a black box that returns a signal that determines if a
signature is valid for a given message and public key. Since
we need to verify the signature twice, one per each key, the
template EdDSAVerifier is instantiated in two different
components (verify1, verify2). The constraint out1 +
out2 === 1 imposes that either verify1 or verify2 is
1. In other words, this constraint ensures that the message
has been signed with one of either pk1 or pk2 keys, which
are public input signals of the circuit (line 30).

6 CIRCOM PERFORMANCE ON LARGE CIRCUITS

One of the main advantages of CIRCOM is its modularity.
With CIRCOM, users can define parameterized indepen-
dent templates that can later be instantiated and combined
to produce large circuits describing complex operations.
However, combining components significantly increases the
number of constraints describing the circuit. Specially, when
connecting the output of a component as an input of an-
other component, the developer needs to introduce linear
constraints that capture this binding. This situation is ag-
gravated when working with large circuits, which can entail
hundreds of millions extra constraints.

To reduce the amount of constraints describing a circuit,
the CIRCOM compiler simplifies the linear constraints. More
specifically, the compiler divides the set of constraints into
clusters of related linear constraints and then applies the
classical Gauss-Jordan elimination to each of them. These
optimizations are iterated until it is no longer possible to op-
timize more linear constraints. The compiler treats clusters
independently which allows to parallelize the optimization
subprocesses. The compiler runs these optimizations by
default but the user can choose to turn them off with a
command-line option. Currently, there is also an ongoing
work on non-trivial optimization techniques applied to
R1CS [67].

6.1 ZK-Rollup Circuits
To evaluate the performance of CIRCOM with large cir-
cuits, the language and the compiler have been tested with
the ZK-rollup circuits of the Hermez [55] project. A ZK-
rollup [10] is a construction intended to increase the scalabil-
ity of Ethereum by performing calculations off-chain, rolling
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Circuit
Number of constraints Size of .r1cs file Compilation time

no-simpl. simpl. gain no-simpl. simpl. gain no-simpl. simpl. overhead
ZK-Rollup-256 134,267,317 24,301,347 81.9% 15.7GB 8.5GB 45.9% 12.1min 38.9min ×3.22
ZK-Rollup-512 197,926,325 37,792,099 80.9% 23.4GB 13.7GB 41.5% 17.5min 58.3min ×3.33
ZK-Rollup-1024 325,244,341 64,773,603 80.1% 38.8GB 24.1GB 37.9% 28.4min 111.2min ×3.92
ZK-Rollup-2048 579,880,373 118,736,611 79.5% 69.5GB 44.6GB 35.8% 50.6min 512.5min ×10.14
ZK-Rollup-2341 652,925,030 134,203,765 79.4% 78.4GB 51.1GB 34.8% 56.5min 618.9min ×10.95

Table 2: Comparison of different Hermez ZK rollup circuits before and after the CIRCOM compiler
applies optimization techniques to reduce the number of constraints describing the circuits.

many transactions up into a single batch, and sending it to
the main Ethereum chain for processing in one action. In
more detail, a ZK proof is generated off-chain for every
batch of transactions and it proves the validity of every
transaction in the batch. This means that it is not necessary
to rely on the Ethereum main chain to verify each signed
transaction.

The key of ZK-rollups is that they allow verification to
be carried out in constant time regardless of the number
of transactions in the batch. This ability to verify proofs
both efficiently and in constant time is at the heart of all
ZK-rollups. In addition to this, all transactions’ data can be
published cheaply on-chain, so that anyone can reconstruct
the current state and history retrieving the on-chain data. In
the following section, we present some results for Hermez
ZK-rollup circuits of different sizes (transactions per batch).

6.2 Performance Results

In Table 2, we show the number of generated constraints,
the size of the R1CS file, and the compilation time for
different instances of ZK-rollup circuits. We also show their
corresponding gains and losses before and after applying
the simplification of linear constraints. The results have
been obtained from an AMD Ryzen Threadripper 3990X 64-
Core Processor with 270GB of RAM (Linux Kernel 5.4.0-80-
generic).

As the experimental evaluation shows, in circuits this
large, the compiler’s optimizations are crucial to handle the
huge amount of constraints. For instance, for ZK-Rollup-
256, CIRCOM without simplification generates 134,267,317
constraints whose file size is 15.7GB and the time needed
for the compilation is 12.05min. On the other hand, the
simplification allows us to reduce the number of constraints
up to 24,301,347, whose file size is 8.5GB and the compi-
lation time is increased up to 38.92min. Note that in this
case, the reduction on the number of constraints is close to
82%, whereas the size of the .r1cs file is not reduced in
the same proportion. This is due to the fact that constraint
simplification often implies the addition of new variables in
the remaining constraints.

The cost of simplification is that compilation time in-
creases slightly more than three times. In the other circuits,
the gain is similar, a reduction of around 80% in the number
of constraints and 40% in the file size, but compilation
time increases considerably more when dealing with more
than 500 millions of constraints. The reason for this, is that
the amount of RAM memory needed in the simplification
process reaches a peak of around 750GB, which is far larger

than the memory of the machine we used, which has 270GB
of RAM, and hence, it needs to use a lot of swap memory.
As observed in the table, this fact notably affects the per-
formance in the last two circuits. In this sense, the job of
the compiler is to keep a right balance between constraints
reduction and the time needed for it.

Note that with circuits from Table 2, CIRCOM produces
around 100 million constraints (500 million without simplifi-
cation). With these numbers, ZK-rollups can handle around
2,000 transactions. Take into account that the software used
afterwards to generate and validate ZK-SNARK proofs may
also have bounds. In fact, thanks to simplification, we can
handle up to 2,341 transactions without exceeding the limit
of 227 constraints that SNARKJS can handle. Processing a
batch of this size needs less than 2.1 million gas, so with this
amount of transactions per batch and the current Ethereum
gas limit per block of 30 millions, we have that we can
process 32,774 transfer transactions per block, which is
around 23 times more transfers than if they were executed
directly in the Ethereum blockchain.

7 ANALYSIS

Let Cn×t×m be the set of all circuits that can be programmed
in CIRCOM with n input signals, t intermediate signals, and
m output signals. Given a circuit C ∈ Cn×t×m, we denote
by C(C) the set of constraints generated by CIRCOM after
compiling C . Let W : Cn×t×m × Fn

p → Ft
p × Fm

p be a partial
function that takes a circuit C ∈ Cn×t×m and n values for
the input signals, such that it returns the t values of the
intermediate signals and the m values of the output signals.
The function W describes the computation made by the
executable code obtained from compiling C after the input
values are given. Note that W is a partial function, since not
every input of a circuit produces a valid output.

Definition 17 (Correct CIRCOM program). A CIRCOM pro-
gram C ∈ Cn×t×m is said to be correct if for every given
values ~i ∈ Fn

p for the n input signals of C , we have that:
if C(C) replacing the inputs signals by ~i is satisfiable, then
W (C,~i) = (~t, ~o) ∈ Ft

p × Fm
p and (~i,~t, ~o) is a solution to the

system C(C). Otherwise, we say that C is incorrect.

A CIRCOM program is called strongly safe when the
values computed by the executable code are the unique
solution to the R1CS constraint system. However, some-
times this notion of safety involving all signals including the
intermediate ones could be too strong for some components,
as it happens with the IsZero circuit from Section 4.10. In
that case, when the value of signal in is 0, the computation
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sets the intermediate signal inv to be also 0, but inv could
have taking any other value and still satisfy the constraints
from the template. For these reasons, there is an alternative
weaker notion of safety, which only requires the constraints
and the code to meet on inputs and outputs, but not neces-
sarily on the intermediate signals.

Definition 18 (Safe CIRCOM program). A CIRCOM program
C ∈ Cn×t×m is said to be strongly safe if for every given
values ~i ∈ Fn

p for the n input signals of c, we have that: if
W (C,~i) = (~t, ~o) ∈ Ft

p×Fm
p , then (~i,~t, ~o) is the only solution

of C(C), and it is said to be safe if all solutions of C(C) are of
the form (~i, ~t′, ~o). Otherwise, the program is called unsafe.

Note that, by definition, every strongly safe CIRCOM pro-
gram is also a safe program. Conversely, every safe program
can always be converted into a strongly safe program by
adding new constraints which enforce that, given the input
values, the intermediate and output signals are a unique
solution for the program. For instance, template IsZero
can be converted into a strongly safe template by adding
the constraint inv * out === 0 to the R1CS.

Lemma 19. A strongly safe CIRCOM program is deterministic.

Proof. From definition 18, we deduce that, given a safe
CIRCOM program C and an input~i for this program, if there
exists an output ~o and an intermediate ~t for C , then it must
be unique.

The following results show that many times both kinds
of safety are guaranteed by construction.

Lemma 20. A CIRCOM program is strongly safe if it is written
without using <-- and --> and all its intermediate and output
signals are the target of an assignment operation.

Proof. Without loss of generality, let us assume the program
only uses right-to-left operators. If a program does not use
operator <--, the value of a signal can only be assigned
using operator <==. At the computational level, this instruc-
tion is translated as an assignment where the signal on the
left obtains the same value as the value of the expression on
the right. At the constraint level, this instruction introduces
a new constraint where both sides must have the same
value. Consequently, this constraint is guaranteed once the
assignment is executed and, since signals are immutable,
and they can only have one single value assigned, this
constraint remains true. Apart from <==, the operator ===
also adds new constraints to the constraint system, and an
assert in the computational level. As a result, either the
program has no result for the input or the constraints are
guaranteed to be satisfied by the result.

In a more intuitive way, the previous lemmas are just the
consequence that CIRCOM has only three operators: <==,
<--, and ===. With these operators, CIRCOM circuits can
only do two things: calculations and constraints’ definitions.
If circuits are only built with the double operator <==, then
both, calculations and constraints are equivalent because
they derive from the same expression. As a result, in this
type of circuits, the witness-calculator program will always
produce values that will satisfy the set of R1CS constraints.
Problems may arise when calculations and constraints are

not aligned. This can only happen when <-- and ===
are used in the circuits, because their equivalence is not
guaranteed by the compiler. In more detail, the use of the
=== operator imposes an isolated constraint over a set of
signals. Here, we have two cases:

1) If the expression involves signals whose computa-
tion has been already defined, then it is the back-
end’s job to ensure that the set of constraints is sat-
isfied by the set of computed inputs. That is, given
a set of inputs, if the witness-generator program
produces a set of signals which do not satisfy the
set of constraints, the backend will not be able to
produce a valid proof. In other words, the security
is guaranteed by the backend.

2) If the === involves a new signal that should be
computed (using the <-- operator) but this com-
putation is not defined in the CIRCOM description,
the compiler will detect this fact and throw an error.

On the other hand, <-- allows users to compute values
beyond quadratic expressions. Here, we also have two cases:

1) If the <-- operator is backed up by an associ-
ated constraint or constraints (using ===), then the
CIRCOM description is as safe as using the double
operator <==.

2) If the <-- operator is not backed up by its associated
constraints, then this means that the CIRCOM de-
scription lacks constraints. In this case, the backend
cannot help the user to detect missing constraints,
it just generates proofs that can be verified but that
have fewer constraints than might be necessary.

Regarding the field size and potential overflows, recall
that CIRCOM informs the backend about the field size that
must be used. It does so by including the prime number at
the header of the R1CS file. On the other hand, the witness-
calculator program is linked by the CIRCOM compiler to the
proper modular arithmetic library, so that the computations
are performed in the correct field.

8 CONCLUSIONS

In this article we presented CIRCOM, a constraint-based
DSL for describing ZK circuits. CIRCOM is in a level of
abstraction between a program DSL and a library and, to
the best of our knowledge and according to the available
literature [14], it is the only implemented DSL of this type.
The CIRCOM compiler is responsible for generating all the
necessary material to, later, generate and verify ZK-SNARK
proofs. The philosophy of CIRCOM is that programmers
have full control over the exact construction of arithmetic
circuits and the resulting set of constraints which, at the end,
are the ones used to build ZK proofs. CIRCOM is modular at
many levels, and to deal with extra constraints introduced
by the interconnection of templates, we implement several
rounds of optimizations of linear constraints in the compiler,
which are crucial for the use of CIRCOM in industrial circuits
describing real-world problems.
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