
 

  

Abstract—The limitations of the professional knowledge and 

cognitive capabilities of both attackers and defenders mean that 

moving target attack-defense conflicts are not completely rational, 

which makes it difficult to select optimal moving target defense 

strategies difficult for use in real-world attack-defense scenarios. 

Starting from the imperfect rationality of both attack-defense, we 

construct a Wright-Fisher process-based moving target defense 

strategy evolution model called WF-MTD. In our method, we 

introduce rationality parameters to describe the strategy learning 

capabilities of both the attacker and the defender. By solving for 

the evolutionarily stable equilibrium, we develop a method for 

selecting the optimal defense strategy for moving targets and 

describe the evolution trajectories of the attack-defense strategies. 

Our experimental results in our example of a typical network 

information system show that WF-MTD selects appropriate MTD 

strategies in different states along different attack paths, with good 

effectiveness and broad applicability. In addition, compared with 

no hopping strategy, fixed periodic route hopping strategy, and 

random periodic route hopping strategy, the route hopping 

strategy based on WF-MTD increase defense payoffs by 58.7%, 

27.6%, and 24.6%, respectively. 

 

Index Terms— Moving target defense; Wright-Fisher process; 

evolutionary strategy; attack-defense conflict 

 

I. INTRODUCTION  

The growing spread, complexity, and scale of network 

information systems have led to an increase in the diversity of 

attacks as well as the overall threat to network systems. 

Traditional static defense technologies are increasingly unable 

to adapt to attack-defense conflict scenarios [1, 2] in this 

environment. The moving target defense, a new active defense 

method, aims to increase the attack difficulty by changing the 

attack surface, i.e. the exposed interfaces to the network. The 

goal is not to build a perfect network security system but to 

make the network system dynamic, thereby increasing the 

uncertainty and unpredictability attackers face [3, 4]. 

Most of the existing MTD research focuses on the design and 

formulation of strategies while ignoring the selection of 

strategies. The research on the selection of MTD strategies 
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lacks quantitative analysis and a decision-making framework 

[5]. Game theory is a decision theory that studies the direct 

interaction between decision-makers and incorporates non-

cooperative relationships, strategic dependence, and conflicting 

objectives. These features are consistent with the needs of 

moving target attack-defense [6–8], which explains why game 

theory has attracted widespread research attention for moving 

target defense [9–13]. 

Most of the existing research on MTD strategy selection is 

based on the assumption of a completely rational game, which 

requires both attackers and defenders to act rationally with the 

optimal strategic decision as the goal. While considering the 

opponent's strategy, pursuing the maximization of payoffs and 

making the most favorable strategic decision during the game 

process can provide a basic theoretical framework for the 

selection of attack-defense strategies for moving targets, which 

has high theoretical research significance and value. However, 

the assumption of complete rationality is based on many 

difficult-to-achieve pre-conditions, such as perfect rational 

reasoning, recognition and judgment ability, memory and 

calculation ability, and analytical ability. It also assumes that 

everyone involved in the game knows how to maximize their 

own gains. If they do not meet any of these conditions, they are 

not considered completely rational. In the real world, neither 

attackers or defenders can meet the requirements of complete 

rationality; therefore, the application of the completely rational 

game model in the real world has limitations, which greatly 

reduces the effectiveness of the completely rational game 

model and method. For the moving target attack-defense 

conflict process in the real world, due to the differences in 

security knowledge, skill level, and experiences of the attackers 

and defenders, they have different cognitive abilities, and their 

rationality and evolutionary learning ability are also limited. 

Both attackers and defenders cannot fully grasp all the attack-

defense strategies and payoffs, which will lead to distortion in 

the analysis and modeling of the moving target attack-defense 

behaviors, thus affecting the correctness and practicability of 

the MTD strategy selection method. To summarize, the 

assumption of complete rationality is too strict, which is not 
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conducive to the application of traditional game theory in the 

actual strategy selection of MTD. 

Winterrose et al. [10] proposed a dynamic game model using 

incomplete information, modeling platform layer, moving 

target defense (MTD) migration, and zero-day vulnerability 

attack-defense conflict and compared the defensive 

effectiveness of random MTD and diverse MTD against 

adaptive attackers. The experimental results showed that the 

diversity-maximizing MTD strategy was more conducive to 

resisting short-term attacks. In 2019, Sengupta et al. [11] 

proposed a dynamic placement model for a network detection 

system using Markov game theory for the MTD strategy in 

cloud environments and deployed the model in a real-world 

cloud environment. In 2020 Sengupta et al. [12] proposed a 

moving target defense model using Bayesian Stackelberg 

Markov games and introduced a multiple agent reinforcement 

learning algorithm to solve the optimal MTD strategy. They 

proposed a Bayesian Strong Stenberg Q learning method with 

unknown transition probabilities and rewards. Finally, they 

proved that the BSS-Q learning strategy performed 

significantly better than existing benchmarks in web 

applications and cloud networks, the two different MTD 

scenarios. 

Li et al. [13] proposed a spatiotemporal decision-making 

model for moving target defense using Markov Stackelberg 

game theory for adaptive and complex attackers and introduced 

a relative value iteration algorithm to determine the optimal 

MTD strategy. Their experiments showed that their method 

performed significantly better than the Bayesian Stackelberg 

game decision-making strategy and uniform random strategy. 

Zhang et al. [14] introduced random games with incomplete 

information into the MTD decision-making process. Based on 

the historical collection of attack-defense strategies and the 

strategy selection distribution, both the attacker and defender 

dynamically adjust the attack-defense payoffs and then use the 

Nash-Q learning algorithm to select optimal MTD strategies. 

MTD game decision-making in different attack-defense 

scenarios has also garnered research attention. 

Lakshminarayana et al. [15] investigated coordinated cyber and 

physical attacks on power grids with an emphasis on 

minimizing the defensive cost. They determined the optimal 

link set of perturbance of the grid's transmission line reactance 

based on zero-sum game theory and proposed a robust hybrid 

strategy using a moving target defensive solution incorporating 

a reinforcement learning algorithm. He et al. [16] proposed a 

differential game-based IP address hopping model for the 

internet of vehicles, adaptively adjusting the IP hopping 

frequency of roadside units (RSUs) and maximizing its 

defensive rewards. Niu et al. [17] modeled the attack-defense 

interaction between the linear time-invariant (LTI) system 

controller and the attacker as a Stackelberg game for false data 

injection attacks on the LTI system, analyzed single- and 

multiple-stage optimal attacks, and obtained the optimal 

detection threshold for the controller by solving a convex 

optimization problem. Their experimental results showed that 

the method performed better than an attack detector designed 

with fixed parameters. 

Most of the existing MTD game strategy selection methods 

based on complete rationality use the Markov game model to 

solve the Nash equilibrium strategy. In this paper, considering 

the repeatability and bounded rationality of attack-defense 

games, the bounded rational MTD game strategy selection 

method is used to solve the evolutionary stable equilibrium 

strategy based on the Wright-Fisher process. The attackers and 

defenders can adjust the update strategy according to the 

Wright-Fisher mechanism. While finding the optimal strategy 

to maximize payoffs, such adjustments can also ensure the 

robustness of the strategy, so that attack-defense game can 

gradually evolve to a stable state. Figure 1 shows the 

comparison between the completely rational MTD strategy 

selection method and bounded rational MTD game strategy 

selection method. 

Although investigations into optimal strategy selection for 

moving target defenses using game theory have achieved 

measurable results, the existing studies have the following 

shortcomings: 

(1) The completely rational game assumptions of the 

attackers and defenders are difficult to apply in realistic moving 

target defensive situations with actual attack-defense processes. 

The limitations of the assumptions reduce the value and 

practicality of the results. 

(2) Existing studies into the selection of optimal strategies for 

moving target defenses using multiple stage games do not 

introduce learning mechanisms and lack descriptions of the 

dynamic learning process and learning effects of strategies. 

To tackle these problems, we propose a moving target 

defense strategy evolution method using the Wright-Fisher 

process. First, we explain the moving target defense strategy 

from the dynamicity-redundancy-diversity perspective. Then, 

we use a stochastic process to describe the changes in the 

system state as the game stage progresses and an evolutionary 

game to describe the dynamic processes of the attacker and 

defender by observing opponents’ behaviors to adjust their own 

strategies. We combine the stochastic process with an 

evolutionary game model to construct a Wright-Fisher process-

based moving target defense strategy evolution model (WF-

MTD) that extends the attack-defense game to multiple states 

and agents. We design the algorithm for solving the WF-MTD 

equilibrium strategy to select the optimal WF-MTD defense 

strategy. 

The main contributions of our study are as follows: 

1) We abstract the moving target defense strategy into the 

dynamicity-diversity-redundancy transformation of network 

vulnerability, called the DDR-MTD strategy. We then construct 

an evolutionary game model that scientifically describes the 

attacker’s and defender’s behaviors of a moving target. By 

using the Wright-Fisher process to characterize the 

evolutionary learning mechanism of moving target attack-

defense strategies and by quantifying the degrees of rationality 

of the attacker and the defender of the moving target to 

distinguish different players, this model ensures good 

scalability and is applicable to diverse attacker behaviors. 

2) We present the objective function of WF-MTD to find an 

optimal MTD strategy. The optimal MTD strategy is given by 

solving the evolutionarily stable equilibrium. Compared with 

the static Nash equilibrium, the strategy reveals the attack-

defense strategies of the network system at different moments 

in time, depicts the evolutionary trajectories of different attack-

defense strategies, improves the efficiency of dynamic analysis 
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in defense decision-making, and enhances the ability to predict 

situations. 

3) When the proposed WF-MTD method is applied to the 

route hopping strategy selection in actual scenarios, it can 

effectively select the optimal hopping path, and the average 

delay is only 0.078 ms. Compared with different route hopping 

strategies, namely no hopping strategy, fixed periodic route 

hopping strategy, and random periodic route hopping strategy, 

the strategy based on the WF-MTD method increased the 

defense payoffs by 58.7%, 27.6%, and 24.6%, respectively. 
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Figure 1. Comparison of selection methods of full rationality and bounded rationality MTD game strategies 

 

II. MOVING TARGET DEFENSE AND STOCHASTIC 

EVOLUTIONARY GAME ANALYSIS 

A. MTD strategy analysis 

According to the core idea of moving target defense, the 

moving target defense strategy has three main characteristics: 

dynamicity, diversity, and redundancy: 

Dynamicity: Dynamicity refers to dynamic network system 

configurations, including but not limited to IP hopping [18], 

host randomization [19], network topology reconfiguration [20], 

and VM migration [21]. Its core idea is to randomize the 

configuration of a network system to increase the uncertainty 

for the network attacker, making the information collected in 

the attacker's reconnaissance and identification process useless. 

As an example, a client-server communication process might 

change the IP address of the communication link in real time, 

making it difficult for malicious adversaries to obtain the real 

IP addresses of the legal client and the protected server cluster, 

and thus more difficult to launch effective attacks. 

Diversity: Diversity refers to diversified network system 

configurations, including but not limited to multiple variants of 

servers, programming languages, operating systems, and 

hardware [22, 23], and thus providing alternative systems with 

the same function and structure. This greatly improves the 

resilience and fault tolerance of network systems in the face of 

attacks and forces the attackers to spend more time and effort 

to address new variants. For example, a clients might 

communicate with different computers in a protected server 

cluster composed of different operating systems such as 

Windows, Linux, and Unix. Doing so requires the attacker to 

scan all the variants to formulate the next attack plan effectively, 

greatly increasing the time and space cost for the attacker to 

detect targets. 

Redundancy: Redundancy refers to redundant network 

system configurations, including but not limited to increasing 

duplications of server components: hardware, operating 

systems, software, services, and components [24, 25] to 

increase reliability and availability of the network system. In 

the case of client-server communication, the server cluster 

might consist of n components. Once a cluster is damaged by 

an attack, existing services can be migrated to another server 

cluster, greatly increasing service availability while ensuring 

security. 

B. Moving target attack-defense game analysis 

The moving target attack-defense process has characteristics 

of competition, bounded rationality, and multiple stage 

evolution. 

1) Competition: In an environment where a moving target 

defense is deployed, the attacker’s goals are to scan and 

discover the vulnerabilities of the target network system in the 

network attack-defense conflict and to use the detected 

vulnerabilities to launch as many attacks as possible to achieve 

the goal. The goal of the defender is to transfer vulnerabilities 

to avoid or reduce the attacker's use of the attack surface, 

thereby improving the security of the system. 

2) Bounded rationality: It should be noted that bounded 

rationality is different from complete rationality. The traditional 

game theory-based model is based on the assumption of 

complete rationality of both attackers and defenders. However, 

complete rationality [26] requires meeting the following three 

conditions: a) each party must understand every factor that 

affects a decision made during the decision-making process; 

namely, the decision-makers have perfect identification and 

judgment ability and fully consider various factors in the 

decision-making process; b) each party must fully consider 

every possible outcome and compute its probability of 

occurrence when making a decision (i.e., the decision-makers 

have perfect memory and computation ability); c) each party 

has the ability to rank the preference for each result (decision-

makers have perfect analytical reasoning ability). In the process 

of network attack-defense conflict, limitations in the different 

attackers’ and defenders’ understanding of the network security 

situation and the differences in their responses leads to different 
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prediction and decision-making mechanisms, including the 

defenders’ attack experience, attack capabilities, and 

recognition of the attack target. The attacker's cognition of the 

target system's attack surface and attack surface transfer 

strategy also has limitations. This makes it difficult for the 

attacker and defender to make perfect determinations and to 

select strategies in the game. Therefore, both parties of the game 

constrained by resources and capabilities need to make rational 

decisions in the way of inductive reasoning according to the 

information they have gradually acquired through constant 

exploration and attempt, adjustment and optimization in the 

game process, i.e., to behave with bounded rationality. 

3) Multiple stage evolution: In a network attack-defense 

conflict, the game between the attacker and defender in a 

hopping cycle or a change in network tasks causes the attack 

surface to shift and change, leading to a transformation of the 

target network system's state. The next interval in the 

offensive–defensive game behavior is to implement the 

evolution and optimal selections of attack-defense strategies 

using the current state of the network system. The attacker and 

defender obtain different payoffs after each action. Each player 

continuously improves its own security strategy by learning 

from the succeeding party and forming a new attack-defense 

situation. Driven by the players’ continuous improvement of 

attack-defense strategies, both the attacker and defender 

dynamically adjust their own strategies based on feedback from 

actions by attackers and defenders [27]. 

This analysis makes clear that, in the environment where the 

network moving target defense is deployed, the network system 

has multiple states, and the various states of the network system 

in different hopping cycles transfer to each other according to 

the different network attack and defense strategies. 

Randomness when selecting defense strategies leads to 

randomness in the network system state. Therefore, a network 

attack-defense conflict is a conflict between multiple system 

states with the strategy payoff matrix different for each state. At 

the same time, within a given network system state, both the 

attacker and the defender only have bounded rationality. Both 

players dynamically adjust their own strategies by learning 

from feedback obtained from the network system for each 

attacker or defender behavior. The rates of attack-defense 

strategy learning and dynamic adjustment are limited. 

C. Overview of Wright-Fisher process 

In 2006, Imhof et al. [28] proposed the Wright-Fisher process 

for the first time and used it to describe the evolution of a 

limited biological population. It is a typical stochastic evolution 

mechanism. The process updates synchronously during a 

biological evolution iteration, modeling the evolution process 

of a finite game group as a random process, and taking bounded 

rationality and incomplete information as hypothetical premises. 

It has been used in applications such as network software [29] 

and infinite sensor networks [30]. In offensive–defensive 

conflicts, both the attackers and defenders are finite groups. 

Therefore, compared to the deterministic evolutionary game 

represented by the replication dynamic equation, a stochastic 

evolutionary game using the Wright-Fisher process effectively 

describes the finiteness of the strategic groups in an offensive–

defensive conflict, analyzing the process of the game reaching 

equilibrium, which is typical of actual offensive–defensive 

conflict scenarios. 

A stochastic evolution game based on the Wright-Fisher 

process is a dynamic stochastic game. Its stochastic nature is 

mainly reflected in the rule update process during the strategy 

evolution step. A Wright-Fisher process uses a synchronous 

update strategy in its evolution mechanism. At a certain stage k, 

all attacker and defender strategies are updated at the same time 

to generate alternative attacker and defender strategies for the 

stage k+1, and then choose the actual strategy in stage k+1 from 

them. The stage’s algorithm ensures that the total number of 

attackers and defenders selecting strategies remains unchanged. 

The asynchronous update randomly selects a strategy from all 

attacker and defender strategies to update at a specific stage k. 

Typical asynchronous update processes include the Moran 

process, the Fermi process, and the vision update process [31]. 

Compared with an asynchronous update learning mechanism, 

the synchronous update method converges faster when learning 

and is more suitable for actual network defense decision-

making scenarios in high-frequency offensive–defensive 

conflicts. 

Therefore, our use of the Wright-Fisher process to describe 

the internal drive of both attackers and defenders to improve 

their behavioral strategies continuously is consistent with the 

dynamic evolution of actual network offensive–defensive 

conflicts, enhancing the accuracy and credibility of the game 

model when analyzing attacker and defender behaviors. In this 

paper, we construct an evolutionary game model using the 

Wright-Fisher process to describe and analyze the conflicts 

between attackers and defenders in a moving target defense. By 

combining the Wright-Fisher process and the evolutionary 

game model, we develop a multiple state and multiple agent 

evolutionary game model. 

III. CONSTRUCTION OF MTD STRATEGY EVOLUTION 

MODEL BASED ON WRIGHT-FISHER PROCESS 

The attacker and defender have bounded rationality, which is 

between complete rationality and irrationality. The main reason 

is that the professional knowledge, perception ability, and 

decision computation ability of the players are not perfect. The 

values and goals are not always consistent but rather conflict 

with each other very often. Moreover, the actual decision-

making environment is complex and uncertain. In this section, 

based on the evolutionary game [32], under the condition of 

bounded rationality, an evolutionary MTD model based on the 

Wright-Fisher process was constructed, and then the method for 

solving evolutionary equilibrium was presented.  

The incompleteness of game information is mainly reflected 

in the payoff information, that is, the participants know their 

own payoff, but do not fully understand the opponent's payoff. 

Because both sides of MTD attack and defense have dynamic 

and diverse uncertainties, the attack-defense game has 

incomplete information characteristics. The stochastic 

evolutionary game model constructed in this section contains 

incomplete information characteristics, which are reflected in 

the perception of the other party's incomplete payoff 

information by both offensive and defensive sides and the 

calculation of expected payoff, as well as the posterior 

correction of the probability of selecting different strategies in 
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the populations through game feedback, and then the correction 

of payoff calculation. See Section III-A for detailed analysis. 

Considering that in actual adversarial situations, there are 

typically multiple attackers and defenders, this study has 

classified players into different groups. In the classic attack-

defense game theory-based model based on the assumption of 

complete rationality, the game equilibrium has been interpreted 

as an optimal response of the attacker and defender, but it 

cannot provide the formation process of the game equilibrium. 

This study has focused on the evolution process of the attack 

and defense strategies by simulating the learning process and 

strategy adjustment of the attacker and defender. The proposed 

model can dynamically characterize the evolutionary trajectory 

of decision-making and can improve the fineness and accuracy 

of the results, and enhance the effectiveness of the defense 

decision. 

Definition 1 The Wright-Fisher process-based moving target 

defense strategy evolution model WF-MTD can be represented 

as a quintuple ( , , , )N S P,T R  as follows: 

1) { , }A DN N N=  represents the set of players in the attack-

defense game. We consider the presence only of attackers and 

defenders, | | 2N = . AN denotes attackers, and DN denotes 

defenders. 

2) 1 2{ , ,..., }kS S S S=  represents the set of states in the attack-

defense game, where each state is the network attack surface at 

a specific moment. A transition between network system states 

is a transfer or reduction of the attack surface. 

3) { , }P AS DS=  represents the set of the strategies in the 

attack-defense game. We express the attacker 's optional 

strategy set as 
1 2{ , }, and 2mAS AS AS AS m N m+=    

and the defender's optional strategy set as 

1 2{ , } and 2nDS DS DS DS n N n+=  ， . 

4) 
'

1= { | , , }t j t j i jT Pr S S S S AS AS DS DS+ = = = =  

represents the state transition probability in the attack-defense 

game. The next state St+1 in the attack-defense game depends 

only on the current state St and the attack-defense strategies ASi 

and DSj, with no dependency on earlier states and strategies. 

The value of the state transition probability generally depends 

on the network environment and attack-defense process, such 

as the network configuration, node operating system 

environment  and attack-defense strategies[33]. During the 

attack and defense process of MTD, the state transition 

probability is equal to the transition probability of the attack and 

defense strategy. See Section III-A and Formula (6) for details. 

5) { , }A DR R R= represents the set of payoff functions in the 

attack-defense game and are jointly determined by the 

strategies of all participants. ( , , )A i jR S AS DS  represents the 

attack payoff of the attacker adopting strategy iAS  and the 

defender adopting strategy jDS  under state S. 

( , , )D i jR S AS DS  represents the defense payoff of the attacker 

adopting strategy iAS  and the defender adopting strategy jDS  

under state S. The specific calculation method is shown in 

Formula (1) and (2). 

Since the reward functions of both the attacker and the 

defender consider the cost and reward of launching an attack or 

implementing a defense. According to the work of Lei et al. 

[39][42], the rewards of the attacker and defender can be 

characterized by the performance consumption and outcomes 

of changing the MES and the MAS. 

( , , ) [ ( , ) ( , )]

(1 ) ( )

A i j MAS MES

MES

R S AS DS ASR f DDR DIR f DDR DIR

ASR f DIR

 



= +

+ −
     

 (1) 

( , , ) [ ( , ) ( , )]

(1 )[ ( ) ( )]

D i j MES MAS

MES MAS

R S AS DS ASR f DDR PC f DDR PC

ASR f PC f PC

 

 

= +

+ − +
     

 (2) 

where ASR represents the attack success rate of the attacker 

when the attacker and defender implement the corresponding 

strategies; MES  is the change in the MES of a target system; 

MAS  is the change in the MAS of the target system; DDR is 

short for direct defense reward, which indicates changes in the 

loss of the target system resources caused by the attack after the 

successful defense; DIR represents the indirect defense reward, 

which denotes the change in the attack cost after the successful 

defense, and it is determined by the attacker's capability and 

prior knowledge; PC denotes the performance cost caused by 

network hopping. 

A. MTD strategy evolution model based on the Wright-Fisher 

process 

In a moving target attack-defense conflict, the decision-

makers of the attacker A  and the defender D  have multiple 

strategies to choose from. At different stages of the game, the 

probability that the strategy is adopted by the decision makers 

differs and changes constantly under the action of the learning 

mechanism over time. Thus, the attack-defense strategy 

selections form a dynamic process. The use of different 

strategies for an offensive–defensive conflict generates the 

corresponding attack-defense payoffs. The payoff values are 

expressed by the following specific payoff matrix, where ija  

and 
ijb  represent the payoffs when the attacker and the 

defender take iAS  and 
jDS , respectively 

11 11 12 12 13 13 1 1

21 21 22 22 23 23 2 2

31 31 32 32 33 33 3 3

1 1 2 2 3 3

, , , ,

, , , ,

, , , ,

, , , ,

n n

n n

n n

m m m m m m mn mn

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a b

 
 
  
 
 
 
  

 

In this case, the expected payoff of the attacker’s strategy 

iAS  is 

1 2

1 2

1

1
i

n
n

AS i i in j ij

j

MM M
f a a a M a

M M M M =

= + + + =    (3) 

The expected payoff of the defender’s strategy 
jDS  is 

1 2

1 2

1

1
j

m
m

DS j j mj i ij

i

NN N
f b b b N b

N N N N =

= + + + =     (4) 

In these equations, {1,2,..., }, {1,2,..., }i m j n  , iN  

represents the number of attackers who choose the strategy 
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iAS , and 
jM  represents the number of defenders who choose 

the strategy 
jDS . Also, 

1 1

,
m n

i j

i j

N N M M
= =

= =  . At the initial 

stage of the game, the attack and defense sides evaluate the 

probability of choosing different strategies in their own 

populations according to prior experience, set the number of 

attackers jM  and the number of defenders 
iN , and then make 

a posteriori correction according to the feedback information. 

To reflect the bounded rationality of attackers and defenders, 

rationality factors A D ，  are introduced to describe the 

rationality of attackers and defenders, respectively, in the 

network attack-defense process. As the attack-defense game 

progresses, both the attackers and defenders gain better 

understanding of the unknown game payoff information, and 

their calculation of the game payoffs is more accurate. In this 

process, both the attackers and the defenders always choose the 

strategy that maximizes the game payoffs as the optimal 

strategy. 

Therefore, the actual expected payoffs of different attack-

defense strategies are 

1

1

i i

j j

AS A A AS

DS D D DS

F f

F f

 

 

= − +


= − +

                     (5) 

where 
iASF  and  

jDSF  are linear functions of payoffs  
iASf  

and 
jDSf , respectively. [0,1]A D  ，  control the strength of 

the strategy selection of the attackers and defenders, 

respectively. When 1A D = = , the attackers and defenders 

completely grasp the gain information of the strategy, and the 

game is a completely rational game. An actual attack-defense 

game is a process of continuous trial-and-error learning, and it 

is impossible to fully grasp the payoff information. As A  and 

D  gradually approach 0, the degree of rationality diminishes. 

The specific parameter updating process could be divided into 

three grades: (1) when (0,0.5]A D =  , the rationality of 

players is low; (2) when 0.5A D = = , players are moderately 

rational; (3) when (0.5,1)A D =  , the players have a high 

level of rationality. 

Under different states tS  of the attack and defense process, 

the probability of attackers and defenders choosing strategies 

will be updated and changed. We use the Wright Fisher process 

to describe it. The Wright-Fisher process is a dynamic evolution 

process that updates the strategy using synchronous update. 

This process performs the N-fold Bernoulli experiment in the 

offspring set, individuals with different strategies obey the 

binomial distribution [34]. The attack and defense sides use the 

follow-up game feedback to update and adjust the probability 

iAS , 
jDS  and change rate ( )iE p , ( )jE q  of different 

strategies. 

The selection of attack-defense strategies is that the two sides 

repeatedly select different strategies from the attack-defense 

strategy space many times, then continuously adjust the strategy 

based on the payoffs generated, and finally obtain the optimal 

strategy that obtains the greatest payoffs. The strategy selection 

principle of the Wright-Fisher process is to optimize according 

to the proportion of the payoffs of a specific strategy in the 

payoffs of the overall strategy space. Then the probability of the 

attack decision maker to select the strategy iAS  after each 

game is 
iAS , and the probability of the defense decision maker 

creating the strategy 
jDS  after each game is 

jDS :  

1

1

i

i

i

j

j

j

i AS

AS m

i AS

i

j DS

DS n

j DS

j

N F

N F

M F

M F





=

=


=




 =








                             (6) 

According to the features of the Wright-Fisher process, the 

individuals in the Wright-Fisher process perform a synchronous 

update and obey the binomial distribution. Let ( )AY t  be the 

number of attackers who use the attacking strategy iAS   after 

the t-th attack-defense game, where  ( )A iY t N= ; let ( )DY t  be 

the number of defenders who use the defending strategy 
jDS   

after the t-th attack-defense game, where ( )D jY t M= .  
'

iN  and   

'

jM are the number of attackers and defenders who use the 

strategies iAS   and  
jDS  after the t+1-th game, respectively. 

Thus, the probabilities of using strategies  iAS  and  
jDS  for 

the t+1-th game are 

'

'

' ' '

1 2 1 2

' ' '
11 2

1

' ' '

1 2 1 1

' ' '
11 2

1

{ ( 1) ( , , , ) | ( ) ( , , )}

!

! ! !

{ ( 1) ( , , , ) | ( ) ( , , , )}

!

! ! !

i

i

i

j

j

j

A m A m

N

m
i AS

m
im

i AS

i

D n D n

M

n
j DS

n
jn

j DS

j

P Y t N N N Y t N N N

N FN

N N N
N F

P Y t M M M Y t M M M

M FM

M M M
M F

=

=

=

=

 + = =


 
 
 =
 
 
 


+ = =

 
 
 =
 
  
 























 

(7) 

Let 1 2{ , , , }mp p p p=  represent the proportion of the 

individuals who select specific attack strategies in the attack 

group, where , 1,2, ,i
i

N
p i m

N
= = . Let 1 2{ , , , }nq q q q=  

denote the proportion of the individuals who select specific 

defensive strategies in the defense group, where 

, 1,2, ,
j

j

M
q j n

M
= = . Let ( )iE p  and ( )jE q  denote the 

change in frequency for the attacker and the defender when 

selecting a strategy. t  is the step size of the update time. The 

rates of change with respect to time 
idp

dt
  and 

jdq

dt
  of ip   and 
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jq , respectively,  of the Wright-Fisher process can be 

approximated by the Langevin equation [35], to study the 

dynamic evolution process of attacking and defending 

strategies, and when  andN M→  →  , 
( )i idp E p

dt t


=


  

and  
( )j jdq E q

dt t


=


. Therefore, we can calculate ( )iE p   and 

( )jE q  as follows:  

'

' '

0

1

( )
( )

( ) ( ( 1) | ( ) )
i

i

i

i
i

N

i i A i A iN

i AS

im

i ASi

E N
E p

N

N N P Y t N Y t N

N

N F
p

N F

=

=


 =

− + = =
=

= −





   (8) 

and

'

' '

0

1

( )
( )

( ) ( ( 1) | ( ) )
j

j

j

j

j

M

j j D j D jM

j DS

jn

i DSj

E M
E q

M

M M P Y t M Y t M

M

M F
q

M F

=

=


 =

− + = =
=

= −





(9) 

To summarize, we can obtain the replication dynamic 

evolution equations in the Wright-Fisher process for the attack-

defense strategies. By solving the equations, we determine the 

equilibrium state of the network offensive–defensive evolution, 

enabling the analysis and prediction for the selection of security 

defense strategies. 

1

1

1
( ), 1, 2, ,

1
( ), 1, 2, ,

i

i

j

j

i ASi
im

i AS

i

j DSj

jn

j DS

j

p Fdp
p i m

dt t
p F

q Fdq
q j n

dt t
q F

=

=


= − =




 = − =








         (10) 

B. Algorithm for selecting the optimal MTD strategy 

In our model, we use the following algorithm to select the 

optimal MTD strategy. 

Algorithm 1 Optimal MTD strategy selection algorithm 

in WF-MTD 

Input Network environment information NetInf, safety 

protection equipment configuration information SafetyInf, 

and intrusion alarm information AlertInf 

Output Optimal MTD strategy q 

BEGIN 

1) Initialize WF-MTD = ( , , )N S ,T,RP  

/*Initialize the Wright-Fisher process-based MTD 

strategy evolution model*/ 

{ 

1-1) Construct 

1 2{ , }  and 2nDS DS DS DS n N n+=  ，  

/*Analyze the configuration information of safety 

protection equipment SafetyInf, collect the defensive 

strategy, and initialize the defensive strategy space DS */ 

1-2) Construct 

1 2{ , }, and 2mAS AS AS AS m N m+=     

/*Collect real-time alert data AlertInf, analyze the 

characteristics of the attack behavior, and initialize the 

attacker's strategy space AS */ 

1-3) Construct { }ip p= , 0 1ip  , 
1

1
m

i

i

p
=

=  

/*Initialize the attack belief set p . The attacker chooses 

the attack strategy iAS  with the probability ip p */ 

1-4) Construct { }jq q= , 0 1jq  , 
1

1
n

j

j

q
=

=  

/*Initialize the defense belief set q . The defender chooses 

the defense strategy jDS  with the probability jq q */ 

} 

2) For ( 1;  ;  )i i m i=  + +  

For ( 1;  ;  )j j n j=  + +  

{ 

Calculate max min( , )
ji

A D
DSAS

R R R=  by formula (1) (2) 

/*Calculate the attack-defense payoffs of the different 

strategy combinations iAS  and jDS  under the state of 

network*/ 

} 

3) Assign ,A D  , 0 , 1A D    

/*Select data based on past strategies of the game, and set 

the rationality parameters A  and D  of the attacker and the 

defender, respectively*/ 

4) For ( 1;  ;  )i i m i=  + +  

For ( 1;  ;  )j j n j=  + +  

{ 

Calculate 
1

i

n

AS j ij

j

f q a
=

=   

Calculate 1
i iAS A A ASF f = − +  

Construct 

1

1
( ), 1, 2, ,i

i

i ASi
im

i AS

i

p Fdp
p i m

dt t
p F

=

= − =


 

} 

/*Construct the Wright-Fisher evolution equation of the 

attacker’s strategy*/ 

5) For ( 1;  ;  )j j n j=  + +  

For ( 1;  ;  )i i m i=  + +  

{ 

Calculate 
1

j

m

DS i ij

i

f p b
=

=   
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Calculate 1
j jDS D D DSF f = − +  

Construct 

1

1
( ), 1, 2, ,

j

j

j DSj

jn

j DS

j

q Fdq
q j n

dt t
q F

=

= − =


 

} 

/*Construct the Wright-Fisher process-based evolution 

equation of the moving target defense strategy*/ 

6) Calculate 
/

0
/

i

j

dp dt
Y

dq dt

 
= = 

 
 

/*Calculate the evolutionarily stable equilibrium 

solution*/ 

7) Output 
* * *

1 2{ , , , }nq q q q=  

/*Output the optimal MTD strategy set*/ 

END 

In Algorithm 1, step 1 initializes the WF-MTD parameters. 

Step 2 calculates the payoff matrix of the attack-defense game. 

Step 3 combines historical data to set rationality parameters for 

both the attacker and the defender Steps 4 and Step 5 construct 

the evolution equation of the moving target attack-defense 

strategies using the Wright-Fisher process. Step 6 calculates the 

evolution equilibrium solution through the simultaneous 

equations, and step 7 outputs the optimal MTD strategy set. 

IV. APPLICATION EXAMPLES AND ANALYSIS 

In this section, we present an attack intrusion and moving 

target defense in a network information network system as an 

example, verify the model and algorithm proposed above, and 

compare and analyze the evolution processes and results of the 

attack–defense strategies along different attack paths. Based on 

this, we then summarize the general trends of the evolution of 

the strategies. Finally, the proposed method is applied to the 

SDN route hopping strategy selection scenario to test the 

effectiveness of the proposed WF-MTD method in practical 

applications. 

A. Experimental apparatus 

We chose a medical information network system [36] as our 

test case, as such systems provide great convenience for patient 

visits and diagnosis but store sensitive data such as doctor–

patient information and often interface with various types of 

medical equipment. As such, they are common attack targets. 

Cyber attacks such as ransomware [37] pose a serious threat to 

the medical information network system, from data breaches 

and network paralysis. In severe cases, the loss of network 

functionality endangers the lives of patients. A typical medical 

information network system architecture is shown in Figure 1. 

There are two attack paths that the attacker can take 

according to Figure 2. 

Internet

 

Inpatient ZoneOutpatient Zone

Operation Zone

Firewall

IDS

Web server FTP serverLDAP server
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Intranet Server Zone
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Picture Archiving and 
Communication Systems Server

New Rural 
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Figure 2. Architecture of typical medical information network system. 
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Intranet attack path 1: Inpatient Department/Administrative 

Department User Host → Key System Server; 

External network attack path 2: LDAP Server → Web server. 

The medical information network system security 

administration team is the network defender responsible for 

ensuring secure operation of the medical information network 

system. Table 1 presents the configuration and vulnerability 

information of a typical medical information network system, 

with the security protection measures composed of passive 

defense strategies such as a firewall, an intrusion detection 

system (IDS), and moving target defense strategies. Among 

them, the passive defense strategy mainly provides border 

security, and the moving target defense strategy provides global 

protection. For the external network of a hospital, according to 

the network access policy preset by the firewall, external hosts 

only have user-level access to the file server. The attacker’s 

purpose is to steal outpatient medical data stored on the file 

server accessible from the external network. 
TABLE 1. NETWORK CONFIGURATION AND VULNERABILITY INFORMATION 

Configuration CVE # 
Vulnerability 

description 
Vulnerability 

level 

Vulnerability 

type 

LDAP 

server 

CVE-

2015-
5330 

Mishandles 

string length 
Medium 

Information 

leakage 

Web 

server 

CVE-
2014-

0098 

Allows remote 

attackers to 

cause a denial 
of service 

Medium 
Input 

verification 

FTP 
server 

CVE-

2019-

12815 

Allows for 

remote code 
execution and 

information 

disclosure 
without 

authentication 

Critical 
Access 

control error 

HIS 

server 

CVE-

2020-
1938 

Reads or 

includes 
arbitrary files 

in all webapp 

directories on 
Tomcat. 

Critical 

Input 

verification 
error 

PACS 
server 

CVE-

2012-

6694 

Allows remote 

attackers to 
control 

workstation 

Critical 
Trust 

management 

 

From the hospital intranet, the worm WannaCry is a suitable 

example [38]. The attacker first employs common user-facing 

applications to trick medical staff into downloading them. It 

then uses a virtualization sandbox to evade defense and run 

DLL32 and finally invades the intranet server area. Once inside, 

it can destroy key system servers such as the inpatient medical 

information system, hospital information system (HIS) server, 

image archives, and picture archiving and communication 

system (PACS) servers. 

B. Numerical experiments and analysis 

Using the hospital external network attack as an example, we 

carried out the following numerical experiments using the two 

attack paths to explore the evolution trends of the MTD attack 

and defense strategies in different network states. Based on the 

definition of the attack-defense strategies and methods of 

quantifying payoffs described previously [39], according to 

Algorithm 1, we first use the Nmap tool to scan the medical 

information network system. We constructed a set of attack-

defense strategies in different states of the two attack paths in 

the medical information network system using MITRE 

ATT&CK™ and moving target defense strategies, and 

calculated the payoffs of different attack-defense strategies in 

the conflict. The attack-defense strategy sets and payoffs in 

different states in attack path 1 are shown in Tables 2 and 3. The 

attack-defense strategy sets and payoffs in different states in 

attack path 2 are shown in Tables 4 and 5. We then conducted 

numerical experiments from three dimensions (i.e., network 

states), initial strategy selection probabilities, and rationality 

parameters. 

For the internal network attack path 1, the set of the states of 

the experimental network system were 1 2{ , }S S S= , where 1S  

denotes the normal state, and 2S  denotes the server user 

permission obtained by using the vulnerability of the user host. 
TABLE 2. DEFENSE STRATEGY SET IN DIFFERENT STATES WITHIN ATTACK 

PATH 1 

1S  

{  ,  , }AS Overflow attack Data destroy Non=  

1{  , , }DS Patch upgrade ASD time Non= +  

2S  

{  ,  ,  }AS Overflow attack Data destroy Privilege gaining=  

1 3 1{  , + , }DS Patch upgrade ASD ASD ASD=  

 

The payoffs obtained from the strategies used by both the 

attacker and the defender in each state are shown in the 

following table: 
TABLE 3. ATTACK-DEFENSE PAYOFFS IN THE DIFFERENT STATES WITHIN 

ATTACK PATH 1 

1S  
Offensive payoff Defensive payoff 

15 10 10

15 20 20

0 0 0

 
 
 
  

 
-15 -10 -10

-15 -20 -20

0 0 0

 
 
 
  

 

2S  
Offensive payoff Defensive payoff 

20 72 37

10 50 30

20 40 20

 
 
 
  

 
-20 -72 -37

-10 -50 -30

-20 -40 -20

 
 
 
  

 

 

For the external network attack path 2, the set of the states of 

the experimental network system were 1 2{ , }S S S= , where 1S  

denotes the server user permission obtained by exploiting a 

vulnerability of the LDAP server, and 2S  denotes the server 

root permission obtained by exploiting a vulnerability of the 

web server. 
TABLE 4. DEFENSE STRATEGY SET IN DIFFERENT STATES WITHIN ATTACK 

PATH 2 
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1S  

{ - , ,  }AS Semi blind scan Follow scan Overflow attack=  

1 1{ , + ,  }DS ASD ASD time Patch upgrade=  

2S  

{ - , , }AS Semi blind scan Injection attack Non=  

3 3{ , + ,  }DS ASD ASD time Patch upgrade=  

 

The payoffs obtained by the strategies used by both the 

attacker and the defender in each state are shown in the 

following tables. 
TABLE 5. ATTACK-DEFENSE PAYOFFS IN DIFFERENT STATES WITHIN ATTACK 

PATH 2 

1S  
Offensive payoff Defensive payoff 

20 40 20

30 50 10

37 72 20

 
 
 
  

 
-20 -72 -20

-30 -50 -10

-37 -40 -20

 
 
 
  

 

2S  
Offensive payoff Defensive payoff 

20 33 15

15 30 10

0 0 0

 
 
 
  

 
-20 -33 -15

-15 -30 -10

4 11 0

 
 
 
  

 

 

(1) Evolution of attack-defense strategies under different 

network conditions 

Assuming the rationality parameters wA=wD=0.5 and setting 

the probability of the initial strategy selection of both attacker 

and defender to be 1/3, we first calculated the expected payoffs 

of both the attacker’s and defender’s strategies and then 

determined the expected payoffs of both the attacker and the 

defender. We then obtained the evolution trend of attack-

defense strategies for different network states by calculating the 

evolution equation of the Wright-Fisher process, as shown in 

Figure 3, where the horizontal axis represents the number of 

plays of the offensive–defensive game, and the vertical axis 

represents the probability for selecting an offensive or 

defensive strategy. 

 
Figure 3. Evolution trajectories of attack-defense strategies in state 1 within 

attack path 1 

 

First, the attack path in state 1, the attacker of the moving 

target chose the optimal attack strategy 
12|SAS , destroying data, 

after about 49 games, while the defender of the moving target 

chose to implement the best defense strategy 

12| 1SDS ASD time= +  after about 73 games. The optimal 

strategy selections of both sides maintained a continuous and 

stable evolutionary state. This stable state was only broken 

when the network environment changed. In the offensive–

defensive conflict, the attacker prioritized the overflow attack 

for greatest effectiveness, while the defender adopted attack 

surface hopping to resist the overflow attack. 

Similarly, as shown in Figure 4, in state 2 of the attack path 

1, the attacker of the moving target selected the optimal attack 

strategy 
21|SAS Overflow attack=  after about 64 games, while 

the defender of the moving target selected the optimal defense 

strategy 
22| 1 3SDS ASD ASD= +  after about 38 games. Although 

the defensive strategies ASD1+ASD3 and ASD1 both involved 

MTD hopping, the defender selected the ASD1+ASD3 strategy 

to implement its defense. This occurred because the strategies 

ASD1+ASD3 simultaneously selected the IP address and the 

protocol for coordinated hopping. The defense payoff of the 

mixed attack strategies in state 2 was much higher than that of 

single IP address hopping as implemented in strategy ASD1. 

Therefore, to remove the effect of the network state on the 

defensive payoff, the payoff of the multiple element 

coordinated hopping strategy had better defense than single-

element hopping. However, it required the coordinated 

implementation of different transition elements, rather than a 

simple superposition of multiple transition elements. 

 
Figure 4. Evolution trajectories of attack-defense strategies in state 2 within 

attack path 1 

 

The experimental results associated with attack path 2 are 

presented in Appendix. 

(2) Evolution of the optimal MTD strategy with different 

initial MTD strategy probabilities 

Assuming the rationality parameters wA=wD=0.5, we tested 

the evolution of attack-defense strategies with different initial 

MTD strategy probabilities using the following scenarios. At 

the beginning, the attacker of the moving target randomly 

selected an attack strategy with an equal probability of one-third, 
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and the defensive strategy selection changed. We then observed 

the evolution trajectory of the optimal defense strategy of the 

moving target. 

For different moving target defense strategies on path 1, the 

initial probabilities of the moving target defense strategies 

correspond to the following three situations: 1) DS1=0.8, 

DS2=0.1, DS3=0.1; 2) DS1=0.1, DS2=0.8, DS3=0.1; and 3) 

DS1=0.1, DS2=0.1, DS3=0.8, with the attacker adopting a 

random attack strategy, AS1=AS2=AS3=1/3. Through 

experiments, we determined the evolution trajectories of the 

defense strategy for state 1 on attack path 1 in these three cases, 

as shown in Figure 5. 

 
Figure 5. (a) For a specific attack strategy, evolution trajectories of defense 
strategy in state 1 within attack path 1 

 
Figure 5. (b) For a specific attack strategy, evolution trajectories of defense 

strategy in state 2 within attack path 1. 

 

At the beginning, the attacker randomly selected an attack 

strategy with an equal probability of 1/3, and the defender 

implemented the defense strategy in the three strategies above. 

Although at the initial moment the defender choses the 

strategies with different probabilities, after multiple games with 

the attacker, it continued to learn, adjust, and optimize the 

strategy. It ultimately selected the corresponding optimal MTD 

strategy, and maintained a continuous and stable evolution state. 

The different strategy selection probabilities of the defender at 

the initial moment only affected the time for the optimal defense 

strategy to reach a stable state and did not affect the selection 

of the optimal defense strategy. 

The experimental results associated with attack path 2 are 

presented in Appendix. 

(3) Evolution of optimal MTD strategy under different 

rationality parameters 

Using state 1 of attack path 1 as an example, the initial 

strategy selection probability of both the attacker and the 

defender was set at one-third. Assuming that the attacker and 

the defender adopted the same degree of rationality, we 

explored the effect of changes in the degree of rationality on the 

evolution of the optimal moving target defense strategy, as 

shown in Figure 6. 

 
Figure 6. Evolution trajectories of optimal MTD strategies under different 
degrees of rationality. 

 

Figure 6 shows that as the degree of rationality decreased, the 

convergence rate of the strategy learning mechanism of our 

method increased. When the degree of rationality increased to 

near complete rationality, our method was basically consistent 

with the convergence rate of a fully rational game. When the 

rationality was low and close to incomplete rationality, our 

method achieved better convergence. It can be seen that our 

method was still able to converge faster when the rationality 

was limited. The synchronous update learning mechanism of 

the Wright-Fisher process-base strategy not only guided the 

defender to make optimal decisions, but also had a faster 

learning rate, overcoming the disadvantages of the slow 

convergence rate of traditional bounded rational games [34]. 

At the same time, to reflect the actual offensive–defensive 

scenarios, we assumed that the attacker had bounded rationality, 

and we explored the convergence speeds of the optimal strategy 

selections in our method and in the fully rational game method. 

As shown in Figure 7, the convergence speed of the optimal 

MTD strategy in our method was significantly better than in the 

fully rational game method. Thus, our method was more 

effective and practical. 
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Figure 7. Evolution trajectories of optimal MTD strategies of our method and 

fully rational game method when facing attacker with bounded rationality. 

 

C. Example application of route hopping strategy selection 

based on WF-MTD 

To verify the practical application performance of the 

proposed method, we used Mininet to build an SDN network 

for typical communication services. The topology is shown in 

Figure 8. There are three communication paths, and the 

bandwidth of each path was configured as 10.0 Mbps, and route 

hopping strategy implemented through the Ryu controller. 

Attackers paralyze the target network based on link flooding 

attacks. We used the remaining bandwidth of the network 

communication data link to construct an attack-defense payoff 

matrix. The collection of the remaining bandwidth of the 

network communication data link can be automatically 

triggered based on attack events or pre-sets, or it can be 

manually triggered by the network administrator. The 

collection of forwarded data volume can be automatically 

triggered by pre-sets, or manually triggered by the network 

administrator. Finally, we applied the proposed method WF-

MTD to route hopping strategy selection, and solved the 

optimal route hopping strategy in link flooding attack scenarios 

based on the WF-MTD model, thereby verifying the 

effectiveness of the practical application of the method 

proposed in this paper. 

Internet

Link flooding Attack

Ryu Controller

Mininet

Server Cluster
Client Cluster

Link 1

Link 2

Link 3

File Server

Web Server

Database Server

 
Figure 8. SDN network topology diagram 
 

We set the normal communication bandwidth of path 1 to 1.0 

M/s, the normal communication bandwidth of path 2 to 1.5 M/s, 

the normal communication bandwidth of path 3 to 2.0 M/s, and 

the link flooding attack traffic to 5.0 M/s. The attack-defense 

zero-sum payoff matrix is constructed based on the remaining 

bandwidth of the link at the time of the attack. When the 

attacker attacks path 1, the remaining bandwidth of the path 1 

link is 10.0 − 1.0 − 5.0 = 4.0, so the theoretical payoff of the 

attack is 4.0. At this time, other paths communicate normally, 

the remaining bandwidth of the path 2 link is 10.0 − 1.5 = 8.5, 

the theoretical payoff of the attack is 8.5, the remaining 

bandwidth of the path 3 link is 10.0 − 2.0 = 8.0, and the 

theoretical payoff of the attack is 8.0. Similarly, the theoretical 

payoff when other paths are attacked can be obtained, as shown 

in Table 6. 
TABLE 6 ATTACK-DEFENSE THEORETICAL PAYOFFS 

Link flooding attacker 
Route hopping defender 

Path 1 Path 2 Path 3 

Path 1 (4.0, -4.0) (8.5, -8.5) (8.0, -8.0) 

Path 2 (9.0, -9.0) (3.5, -3.5) (8.0, -8.0) 

Path 3 (9.0, -9.0) (8.5, -8.5) (3.0, -3.0) 

Based on the above attack-defense theoretical payoffs, we 

applied WF-MTD to select the optimal route hopping strategy. 

We set the rational parameter wA=wD=0.5 to obtain the attack-

defense evolution strategies of different communication paths 

as shown in Figure 9. As can be seen from the figure, the 

attacker will launch a link flooding attack on path 3 with a 

probability of 0.7. Therefore, we should focus on traffic 

detection on path 3. When there is no clear attack path, the 

defender prefers path 1 for communication. 

Figure 9. Attack-defense evolution strategy  of different communication paths 

 

Furthermore, the method in this paper is compared with the 

no hopping route strategy and fixed periodic route hopping 

strategy [40]. Based on the availability of the proposed method 

for delay quantification, the client and server communicate 

continuously for 10 min, the delay is collected every second, 

and the average delay is calculated every 60 s. The delays of the 

no route hopping strategy, the 5-s fixed periodic route hopping 

strategy, and the method in this paper are compared, as shown 

in Figure 10, where the abscissa is the time slot in minutes, and 

the ordinate is the average delay in milliseconds. Thus, the 

experimental results show that in the 10-min communication 

process the average delay of the WF-MTD route hopping 

strategy is 0.078 ms, and there is no packet loss. Compared with 

the 5-s fixed cycle route hopping strategy the delay increases 

by only 20%. For low-latency communication scenarios such as 

real-time two-way communication, the normal communication 
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service quality can be guaranteed if the delay is within the range 

of 100–600 ms. 

 
Figure 10. Comparison of communication delay performance between 
proposed method and other methods 

 

To summarize, the use of route hopping strategy to resist link 

flooding attacks will affect the system network communication 

delay, but it can effectively ensure system security. We can 

trigger the WF-MTD route hopping strategy on demand or 

based on the attack event response, thereby reducing the system 

network communication delay and further improving the 

availability of the network system. 

To verify the defense effectiveness of the method proposed 

in this paper, the proposed method is compared with the fixed 

periodic route hopping strategy [40], random periodic route 

hopping strategy [41], and no hopping strategy. Assuming that 

the link flooding attacker adopts the optimal attack strategy to 

attack link 3, we repeated 20 groups of experiments, collected 

the actual defense gain, and calculated the average value, as 

shown in Figure 11. The average actual benefit of the method 

in this paper is 9.10, that of the fixed periodic route hopping 

strategy is 6.59, that of the random periodic route hopping 

strategy is 6.86, and that of the no hopping strategy is 3.76. 

Compared with the no hopping strategy, the method proposed 

in this paper increased the defense payoff by 58.7%. Compared 

with the fixed periodic route hopping strategy, the increase was 

27.6%, and compared with the random periodic route hopping 

strategy, the increase was 24.6%. 

  
Figure 11. Comparison of actual gains of method proposed in this paper and other methods 

 

V. CONCLUSION 

The increasing complexity and scale of network information 

systems has led to an increase in the diversity of security attacks, 

making dynamic changes in network attack-defense conflicts. 

Comprehensively analyzing defense costs and gains, 

maximizing defense payoff, predicting possible attack 

strategies, selecting an optimal defense strategy from candidate 

strategies, and measuring the gains from a strategy remain huge 

challenges. Game theory is an effective method for studying the 

decision-making problems of moving target defense. At present, 

game research into the bounded rationality of attackers and 

defenders is still in early development. Many limitations in the 

rationality quantification, game structure, strategy types, and 

equilibrium solutions for attackers and defenders all affect the 

science and effectiveness of moving target defense game 

decision analysis models and methods. 

From the perspective of bounded rationality of both attack-

defense, we construct a moving target defense evolution 

strategy model based on the Wright-Fisher process. By 

quantifying the rationality of both attack-defense, we depict the 

evolution trajectories of attack-defense strategies and show the 

dynamic convergence process of these strategies. Our 

numerical experiments and application examples show that our 

model and method are versatile, effective, and practical, and 

greatly improve the performance of attack prediction and 

defensive decision-making. 
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