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Abstract—The key exposure is a serious threat for the security
of data integrity auditing. Once the user’s private key for
auditing is exposed, most of the existing data integrity auditing
schemes would inevitably become unable to work. To deal with
this problem, we construct a novel and efficient identity-based
data integrity auditing scheme with key-exposure resilience for
cloud storage. This is achieved by designing a novel key update
technique, which is fully compatible with BLS signature used
in identity-based data integrity auditing. In our design, the
Third Party Auditor (TPA) is responsible for generating update
information. The user can update his private key based on the
private key in one previous time period and the update informa-
tion from the TPA. Furthermore, the proposed scheme supports
real lazy update, which greatly improves the efficiency and
the feasibility of key update. Meanwhile, the proposed scheme
relies on identity-based cryptography, which makes certificate
management easy. The security proof and the performance
analysis demonstrate that the proposed scheme achieves desirable
security and efficiency.

Index Terms—Cloud storage, data integrity auditing, identity-
based cryptography, key-exposure resistance, key update.

I. INTRODUCTION

CLOUD storage services are being gradually accepted
in recent years for its great advantages, such as low

cost, flexibility and on-demand service. As a result, more and
more enterprises and individuals are choosing cloud platform
to maintain and store their data. Although cloud storage
service is convenient for users, security risks should not be
neglected [1]. One of the biggest concerns is the integrity
of the outsourced data due to the inevitable operation errors
or software/hardware failures in the cloud [2]. To ensure the
integrity of the cloud data, a great deal of cloud data integrity
auditing schemes have been proposed [3–6]. Generally, to
release the burden of users, a trusted Third-Party Auditor
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(TPA) is delegated to undertake the data integrity auditing task
[7–9].

In most of existing data integrity auditing schemes [10–14],
a pair of public key and private key needs to be generated
for the user. The public key is used to verify the validity
of the proof generated by the cloud. The private key is only
utilized to calculate the authenticators for data blocks. The
authenticators are used to verify whether the cloud correctly
stores the user’s data in the phase of data auditing. These
schemes are based on traditional Public Key Infrastructure
(PKI) setting, which uses a digital certificate to ensure the
authenticity of the user’s public key. As a result, it incurs the
considerable overheads since certificate generation, certificate
revocation and certificate renewal are complicated and time-
consuming. A feasible solution for simplifying the certificate
management is identity-based cryptography. In the identity-
based cryptography, the user’s private key is generated by
a trusted Private Key Generator (PKG) based on the user’s
identity [15]. The public key is replaced with the user’s identity
information (e.g. user name, E-mail address, and employee
number), which removes the use of certificate [16, 17]. Based
on the identity-based cryptography, Wang et al. [18] con-
structed the first identity-based data integrity auditing scheme.
Following that, Wang et al. [19] designed an identity-based
proxy-oriented data integrity auditing scheme, in which the
authenticators are calculated with the help of the proxy. Zhang
et al. [20] constructed an identity-based shared data integrity
auditing scheme with efficient user revocation. The above
identity-based data integrity auditing schemes all use BLS
signature to construct the authenticators of data blocks for
supporting the data integrity auditing.

The key exposure is a serious security issue for data integrity
auditing. Once the user’s private key for data integrity auditing
is exposed to the cloud, the cloud is able to discard the data
rarely accessed to save the storage space, or hide the incidents
of data loss to maintain his reputation by forging the valid
authenticators with the user’s private key. Consequently, it will
make the data integrity auditing unable to work correctly any
more. To deal with this problem, Yu et al. [21–23] and Xu
et al. [24] designed the data integrity auditing schemes with
key-exposure resilient in the PKI settings. They make use of
different key update techniques to update the user’s private
key. However, all these key update techniques are incompatible
with BLS signature. It means that these key update techniques
cannot be directly applied to the existing identity-based data
integrity auditing schemes [18, 20, 25–27].

Contribution. The contributions are summarized as fol-
lows:
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We propose a novel identity-based data integrity auditing
scheme with key-exposure resilience for cloud storage. In the
proposed scheme, we design a novel key update technique,
which is fully compatible with BLS signature in identity-based
data integrity auditing. The time-consuming computational
operation for key updates is performed by the Third Party
Auditor (TPA). Specifically, the TPA calculates the update
information with its secret key in each time period, and
sends the update information to the user. The user can check
the validity of the update information and efficiently update
his private key based on the private key in one previous
time period and the update information from the TPA. Even
if the malicious cloud obtains the user’s private key in a
certain time period, the auditing tasks in other time periods
are still able to be well performed. When the user’s private
key is updated frequently, the user only needs to perform
lightweight computations to calculate the private key for the
current time period. In addition, our scheme supports real lazy
update, i.e., the user updates his private key only when he
uploads the file to the cloud rather than updating his private
key in each time period. It greatly improves the efficiency
and the feasibility of key update. Our scheme relies on the
identity-based cryptography, which eliminates the complicated
certificate management in traditional PKI systems. We prove
the security of the proposed scheme and give a comprehensive
performance analysis.

A. Related Work
In 2007, “Provable Data Possession” (PDP) was introduced

by Ateniese et al. [28], which allows the cloud to convince
the verifiers that it stores the data correctly. Juels and Kaliski
[29] presented “Proof of Retrievability” (PoR) and constructed
a publicly verifiable PoR scheme. In this scheme, data are
encoded by error correcting codes and several “sentinels” are
embedded in the file. The verifier is capable of verifying the
correctness of data by checking whether the sentinels at some
specific positions exist or not. In 2008, Shacham and Waters
[30] constructed two improved PoR schemes by utilizing BLS
signature and pseudorandom function respectively.

To support data dynamics, the first provable data possession
scheme with partial data dynamics was proposed by Ateniese
et al. [31]. After that, plenty of data integrity auditing schemes
focus on supporting full data dynamics [32–35]. To achieve
data privacy protection, Wang et al. [36] proposed a data in-
tegrity checking scheme, in which the cloud utilizes a random
value to produce auditing proof. Based on zero-knowledge
proof of discrete logarithm, Li et al. [37] designed a cloud
storage checking scheme supporting data privacy protection.
Ding [38] employs edge server to help users to calculate
authenticators, which alleviates the user’s computation burden.
Based on online/offline signature, Li et al. [3] presented
a lightweight data integrity checking scheme for the user
with low computation capability. Wang et al. [39] took the
problem of user identity privacy into account and proposed
a shared data integrity checking scheme with identity privacy
protection by employing ring signature. To improve the cloud’s
storage efficiency, Xu et al. [26] proposed a blockchain-
enabled deduplicatable data integrity auditing scheme. Shen et

al. [40] designed a public auditing scheme with efficient data
ownership transfer. Zhou et al. [41] proposed a multicopy data
integrity auditing scheme, in which the improved Merkle hash
tree is used to achieve multicopy dynamic operations.

The problem of complicated certificate management in the
data integrity auditing has been researched. In [18], Wang et
al. designed a cloud storage auditing scheme, which is built
on identity-based cryptography. Zhang et al. [20] considered
the problem of user revocation and presented a shared data
integrity auditing scheme with efficient user revocation by
updating non-revoked group users’ private keys. Wang et
al. [9] constructed an identity-based data integrity checking
scheme, which achieves both unconditional anonymity and
incentive. Zhang et al. [16] designed a data integrity auditing
scheme with conditional identity privacy protection. Wang et
al. [42] proposed an identity-based data outsourcing scheme
with comprehensive auditing, in which the proxy generates
data authenticators on behalf of the user. Based on the identity-
based cryptography, Shen et al. [27] designed a shared data
integrity checking scheme, in which the sensitive information
is sanitized by the sanitizer.

All aforementioned schemes are designed on the assump-
tion that the user’s private key for data integrity auditing
is absolutely secure and cannot be exposed. Yu et al. [21]
firstly discussed the problem of key exposure and presented
a data integrity auditing scheme with key-exposure resilience
by updating the user’s private key. Subsequently, Yu et al. [22]
proposed a data integrity checking scheme with verifiable out-
sourcing of key updates. In this scheme, the task of updating
private key is executed by the TPA. In [23], a strong key-
exposure resilient data integrity auditing scheme is proposed,
in which the cloud cannot obtain the user’s private key in
unexposed time periods. Xu et al. [24] designed an intrusion-
resilient data integrity checking scheme, which mitigates the
risk of key exposure. In this scheme, a full binary tree is
utilized to update private key. Other key-exposure resilient
data integrity auditing schemes [43], [44] have been proposed.
Nonetheless, these schemes either introduce an additional
key update server or are based on time-consuming lattice
cryptography.

B. Organization

In Section II, we first introduce notions and preliminaries
used in the paper. After illustrating the system model and
security model (Section III), we give the identity-based data
integrity auditing scheme with key-exposure resistance in
Section IV. The security analysis and the performance analysis
are discussed in Section V and Section VI respectively. Finally,
in Section VII, the conclusion is made.

II. NOTATIONS AND PRELIMINARIES

In this section, we briefly review bilinear maps, discrete
logarithm (DL) problem and computational Diffie-Hellman
(CDH) problem.

A. Notations

We present some notations used in this paper in Table I.
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TABLE I
NOTATIONS

Notation Meaning
p One large prime

G,GT Multiplicative cyclic groups with prime order p
e A bilinear pairing map e : G×G→ GT

g, u Two generators of group G
H1, H2 Two cryptographic hash function, H1 : {0, 1}∗ → G and H2 : G× {0, 1}∗ → Z∗p

l The security parameter
n The number of data blocks of the file F
ID The user’s identity

SKTPA,ID The TPA’s secret key corresponding to the user UID

skID,0 The initial private key of the user UID

N The maxinum lifetime of all cloud files
t The threshold value

x∗ID,j The update information of the user UID in the time period j
skID,j The private key of the user UID in the time period j

F = {m1,m2, ...,mn} The cloud file F composed by blocks mi(i ∈ [1, n])
fid The file identifier

Φ = {β1, β2, ..., βn} The authenticator set
τ The file tag
S The challenged block set
c The number of challenged blocks

Chal = {i, vi}i∈S The auditing challenge
Proof = {j, µ, η} The auditing proof

Fig. 1. System model

B. Preliminaries

1) Bilinear Maps
Let G and GT be two multiplicative cyclic groups of

prime order p. A bilinear map e is a map e : G×G→ GT
which satisfies [45]:

a) Bilinearity: for all g1, g2 ∈ G and a, b ∈ Z∗p ,
e
(
ga1 , g

b
2

)
= e (g1, g2)

ab.
b) Non-degeneracy: e (g, g) 6= 1, where g is a generator

of G.
c) Computability: there is an efficient algorithm to calcu-

late map e : G×G→ GT .
2) Discrete Logarithm (DL) Problem

Given g, gx ∈ G, where x ∈ Z∗p is unknown, generate
x. The DL assumption in G holds if it is computationally
infeasible to solve the DL problem in G [46].

3) Computational Diffie-Hellman (CDH) Problem

Given g, gx and gy ∈ G, where x, y ∈ Z∗p are
unknown, generate gxy ∈ G. The CDH assumption in
G holds if it is computationally infeasible to solve the
CDH problem in G [47].

III. SYSTEM MODEL AND SECURITY MODEL

In this section, we present the system model, the design
goal, the underlying algorithms and the security model.

A. System Model

As illustrated in Fig.1, the system model of an identity-
based data integrity auditing scheme with key-exposure re-
sistance comprises four types of entities: the user, the cloud,
the Third Party Auditor (TPA) and the Private Key Generator
(PKG).

1) User: The user has a large number of files to upload to
the cloud.

2) Cloud: The cloud has enormous storage space and com-
putation resources, and provides data storage services for
the user.

3) TPA: The TPA is an entity with abundant computation
resources. It takes charge of two important tasks. One
is to verify whether the cloud data is stored intactly. The
other is to generate the update information used to update
the private keys for the user in different time periods.

4) PKG: The PKG is responsible for generating system
public parameters, the user’s initial private key and the
TPA’s secret key.

At the beginning of each time period, the TPA computes
and sends the update information to the user, where the update
information is used to update the user’s private key for data
integrity auditing. The user calculates the private key for the
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current time period based on the update information and the
private key in one previous time period, and then generates
data authenticators with the private key in the current time
period. The user sends the data blocks and the corresponding
authenticators to the cloud.

The TPA is delegated by the user to complete the task of
data integrity auditing. Firstly, a challenge is outputted by the
TPA. Then the TPA sends the challenge to the cloud. Upon
receiving the challenge, the cloud returns a corresponding
proof to the TPA. The TPA verifies whether the cloud data
are kept unchanged or not by checking the validity of proof.

In this paper, we mainly focus on solving the problem of
key exposure in data integrity auditing, and do not consider
the problem of data privacy protection. In addition, we also
do not consider the threat that the TPA is curious about the
user’s private key used to generate the authenticators. Actually,
all existing data integrity auditing schemes with key-exposure
resistance do not consider this threat. The detail explanation
is described in Remark 1.

Remark 1: The basic assumption of most data integrity
auditing schemes is that the TPA honestly returns a correct
auditing result to the user. The user’s private key is only
used to generate the authenticators for realizing data integrity
verification from the TPA. If the TPA is able to obtain an
exposed private key and uncover the user’s private keys, it will
not forge the authenticators with these private keys to pass its
own verification, which is fully unnecessary and unreasonable.
In other words, the user’s private keys are useless for the TPA.
Therefore, the TPA has no incentive to obtain the user’s private
key. As a result, similar to the schemes [22], [23], we select the
TPA to execute the tasks of key update information generation
and data integrity auditing.

B. Design Goals

To achieve key-exposure resistance in identity-based data
integrity auditing, the following goals should be achieved:

1) The correctness:
a) The initial private key correctness: to guarantee that the

initial private key can pass the user’s checking only if
the PKG produces the initial private key honestly.

b) The update information correctness: to guarantee that
the update information can pass the user’s checking
only if the TPA produces the update information cor-
rectly.

c) Auditing correctness: to assure that the proof can pass
the TPA’s checking only if the cloud executes the
auditing task honestly.

2) Key-exposure resistance: to ensure that even if the private
keys in t time periods are exposed, it does not affect the
security of the private keys in other time periods.

3) Auditing soundness: to guarantee that if the cloud does
not actually keep the user’s entire data, it cannot pass the
the TPA’s checking.

4) Efficient key update: to ensure low overhead of private
key update.

C. Underlying Algorithms

Definition 1: An identity-based data integrity auditing
scheme with key-exposure resistance for cloud storage in-
cludes the following eight algorithms:

1) Setup(1l): The setup algorithm is executed by the PKG.
Input the security parameter l, it outputs the master secret
key x0, the system public parameters param. The PKG
keeps the master secret key in secret.

2) Extract(x0, ID, param): The extraction algorithm is
completed by the PKG. With the master secret key x0,
the user’s identity ID and the system public parameters
param as input, it generates the user’s initial private key
skID,0 and the TPA’s secret key SKTPA,ID correspond-
ing to the user UID. The user UID can check whether
skID,0 is valid or not and accepts it as his initial private
key only if it passes the checking.

3) UpIGen(param, j, j−1, SKTPA,ID): The update infor-
mation algorithm is handled by the TPA. With the public
parameters param, the current time period j, the previous
time period j − 1 and the TPA’s secret key SKTPA,ID

as input, it outputs the update information x∗ID,j used to
update the user UID’s private key in the time period j.
The user can check the validity of x∗ID,j .

4) KeyUpdate(param, j, ID, x∗ID,j , skID,j−1): The key
update algorithm is carried out by the user UID. With the
public parameters param, the current time period j, the
user identity ID, the corresponding update information
x∗ID,j and the private key skID,j−1 in the previous time
period j − 1 as input, it generates the private key skID,j
in the current time period j.

5) AuthGen(param,F, j, skID,j , fid, ssk): The authenti-
cator generation algorithm is completed by the user UID.
With the public parameters param, the current time
period j, the file F , the user UID’s private key skID,j ,
the file identifier fid and the user’s signing private key
ssk as input, it generates an authenticator set Φ and a
file tag τ .

6) Challenge(param, c, ID, fid, j): The challenge gener-
ation algorithm is run by the TPA. With the public
parameters param, the number of challenged blocks c,
the user identity ID, the file identifier fid and the current
time period j as input, it outputs the challenge chal for
the file fid of the user UID in the current time period j.

7) ProofGen(param, j, τ, F,Φ, chal): The proof genera-
tion algorithm is handle by the cloud. With the public
parameters param, the current time period j, the file tag
τ , the file F , the authenticator set Φ and the auditing
challenge chal as input, it generates an auditing proof
proof .

8) ProofV erify(chal, param, proof, τ, j, ID, fid): The
proof verification algorithm is executed by the TPA.
With the challenge chal, the system public parameters
param, the proof proof , the file tag τ , the current time
period j, the user identity ID, and the file identifier fid
as input, and outputs “1” if proof is a valid proof; or
“0”, otherwise.
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D. Security Model

Our security model considers key-exposure resistance and
audtiting soundness. In this security model, the user plays the
role of the challenger and the malicious cloud is viewed as
the adversary. Assume the adversary is not able to query the
private keys of the same user in more than t time periods. We
define a game between the challenger and the adversary to
present how the adversary attacks the securtiy of an identity-
based data integrity auditing scheme with key-exposure resis-
tance. This game consists of the following phases:

1) Setup phase. The challenger executes the Setup algo-
rithm to obtain the master secret key x0 and the system
public parameters param, then forwards param to the
adversary and holds x0. Set time period j = 0.

2) Query phase. In this phase, the adversary makes the
following two queries to the challenger.

a) Private key Queries: The adversary can issue the query
of the private key for any identity ID in time period j.
Moreover, for the same user UID, the adversary cannot
query his private keys in more than t time periods.
The challenger executes the Extract, UpMGen and
KeyUpdate algorithms to calculate the private key
skID,j in time period j, and sends skID,j to the
adversary.

b) Authenticator Queries: The adversary can make queries
for the data authenticators of the file F under the
identity ID in time period j. The challenger calculates
the corresponding authenticators for the file F by
running the AuthGen algorithm, and returns these
authenticators to the adversary. The adversary stores
the file F and the corresponding authenticators. Set
time period j = j + 1.

At the end of each time period, the adversary is able
to choose to stay in query phase or move on to the next
phase.

3) Challenge phase. The challenger chooses a time period
j∗, a file identifier fid

∗ and a user identity ID∗. In
time period j∗, ID∗ must does not appear in Private
key queries. The challenger sends a challenge chal =
{i, vi}i∈S to the adversary, where S ∈ {γ1, γ2, ..., γc}
(γα ∈ [1, n], α ∈ [1, c] and c ∈ [1, n]).

4) Forgery phase. The adversary produces a data integrity
proof proof corresponding to the challenge chal in
time period j∗, and sends proof to the challenger. If
ProofV erify(chal, param, proof, τ, j∗, ID∗, fid

∗) =
“1”, then the adversary succeeds in the above game.

This security model describes that the adversary cannot
query the private keys of the same user in more than t
time periods and also cannot query the private key of the
challenged user in the challenged time period, but can query
the data authenticators for any file in each time period. If
the adversary does not correctly store the user UID∗ ’s all
challenged data blocks for a time period in which the private
key is not exposed, and cannot guess all bad blocks, he
is unable to forge a valid proof to pass the verification of
challenger. The adversary aims at passing the challenger’s
verification by outputting a valid proof for the challenged data

blocks in the time period j∗. In the time period j∗, the user
UID∗ ’s private key is not exposed. The following definition
shows that there exists a knowledge extractor that can extract
all challenged data blocks whenever the above adversary is
capable of generating a valid proof proof in the time period
j∗.

Definition 2: We say an identity-based data integrity au-
diting scheme with key-exposure resistance is secure if the
following condition holds: whenever an adversary in the
above described game can pass the challenger’s verification by
outputting a valid proof proof with non-negligible probability,
there is a knowledge extractor that can extract the challenged
data blocks with non-negligible probability.

Definition 3: An identity-based data integrity auditing
scheme with key-exposure resistance is (ρ, δ)(0 < ρ, δ < 1)
detectable if ρ fractions of the whole file are corrupted by
the cloud, the probability that these corrupted data blocks are
detected is no less than δ.

IV. THE PROPOSED SCHEME

A. Construction of Our Proposal

The cloud file F is divided into n data blocks, which
is denoted as F = (m1,m2, ...,mn)(mi ∈ Z∗p ). N is the
maximum lifetime of all cloud files. In previous identity-
based data integrity auditing schemes [20],[27], an identity-
based signature Sig is employed to ensure the validity of the
file identifier. Similarly, a similar identity-based signature Sig
is utilized in the proposed scheme to guarantee the validity
of the verification value, the file identifier fid and the time
period. Assume the user has held the signing private key
ssk corresponding to the signature Sig. Such an assumption
makes the description of the proposed scheme more clear and
simple. Fig. 2 shows the workflow of private key extraction.
The workflow of update information generation, key update,
authenticator generation, and data integrity auditing are shown
in Fig.3.

The detailed algorithms are presented below.
1) Setup(1l)

The PKG produces the master secret key, the TPA’s
secret key and the system public parameters.

a) The PKG picks two multiplicative cyclic groups G
and GT of prime order p, two random generators
g and u of G. The PKG also selects two different
cryptographic hash functions H1 : {0, 1}∗ → G
and H2 : G × {0, 1}∗ → Z∗p and a bilinear map
e : G×G→ GT .

b) The PKG picks a random value x0 ∈ Z∗p as the master
secret key and computes Y0 = gx0 as the master public
key.

c) The PKG publishes system parameters param =
(G,GT , p, u, g, e,H1, H2, Y0).

2) Extract(x0, ID, param)
The PKG calculates and sends the initial private key to

the user UID. The user UID is able to check whether the
initial private key he received is valid or not. Furthermore,
the PKG computes the TPA’s secret key corresponding to
the user UID.
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Fig. 2. The workflow of private key extraction

a) For the user UID, the PKG randomly selects a polyno-
mial fID(y) = x0 +

∑t
k=1 xID,ky

k (mod p)(xID,k ∈
Z∗p ), where t is the threshold on the number of a
user’s private keys that are allowed to be compromised.
Generally speaking, t is much smaller than N .

b) The PKG randomly picks rID ∈ Z∗p , and computes
RID = grID and σID,0 = rID +fID(0)H2(RID, ID)
(mod p) according to the user’s identity ID, where
fID(0) = x0. And then the PKG sets skID,0 =
(RID, σID,0) as the user UID’s initial private key, and
sends it to the user UID.

c) The user UID accepts the initial private key
skID,0 if skID,0 can pass the verification
of the following equation.

gσID,0 = RID · Y0
H2(RID,ID) (1)

d) The PKG sets SKTPA,ID = {xID,1, xID,2, ..., xID,t}
as the TPA’s secret key corresponding to the user UID.
The PKG sends SKTPA,ID to the TPA and computes
public values YID,k = gxID,k(k ∈ [1, t]).

3) UpIGen(param, j, j − 1, SKTPA,ID)
At the beginning of the time period j (1 ≤ j ≤ N ), the

TPA computes and sends the update information to the
user UID. The update information is used to update the
user UID’s private key. The user UID checks the validity
of the update information.

a) At the beginning of the time period j (1 ≤ j ≤ N ),
the TPA computes the update information x∗ID,j =∑t
k=1 xID,k(jk − (j − 1)k)(1 ≤ j ≤ N ) for the

time period j with the secret key SKTPA,ID =
{xID,1, xID,2, ..., xID,t} corresponding to the user
UID. The update information x∗ID,j is used to update
the user UID’s private key in the time period j. Note
that x∗ID,j = fID(j)− fID(j − 1). And then the TPA
sends the update information x∗ID,j to the user UID.

b) The user UID checks whether the update information

x∗ID,j is valid by the following equation

gx
∗
ID,j =

∏t

k=1
YID,k

jk−(j−1)k (2)

If the equation (2) holds, it means that the update
information generated by the TPA is valid. Then, the
user UID executes the following KeyUpdate algorithm.

4) KeyUpdate(param, j, ID, x∗ID,j , skID,j−1)
The user UID calculates the private key in the current

time period using the update information he received in
UpIGen algorithm and the private key in one previous
time period.

The user UID computes σID,j = σID,j−1 + x∗ID,j ·
H2(RID, ID) using the update information x∗ID,j and the
private key σID,j−1 in one previous time period j − 1,
and sets skID,j = (RID, σID,j) as the private key in the
current time period j. Note that σID,j = rID + fID(j) ·
H2(RID, ID).

Remark 2: Our scheme supports real lazy update. The
user updates his private key only when he uploads the file
to the cloud. It means that the user sends a key update
request to the TPA for obtaining the update information
only when there is a file that needs to be stored to the
cloud. Assume that the user UID uploads the file in the
time period l, and does not upload the file in the time
periods from j to l−1. The user UID only needs to update
his private key in the time period l with one single step
rather than do multiple updates from the time period j to
the time period l.

Specifically, at the beginning of the time period l, the
user UID sends a key update request to the TPA for
obtaining the update information to update his private
key. Upon receiving the update request, the TPA executes
the UpIGen algorithm to generate the update information
x∗ID,j,l =

∑t
k=1 xID,k(lk − jk), then delivers it to the

user UID. The user UID can verify the correctness of
x∗ID,j,l by the equation (2) in UpIGen algorithm. If
x∗ID,j,l passes the verification, the user computes σID,l =
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Fig. 3. The workflow of update information generation, key update, authenticator generation, and data integrity auditing

σID,j+x∗ID,j,l ·H2(RID, ID) based on the update infor-
mation x∗ID,j,l and the private key σID,j in the previous
time period j. Note that σID,l = σID,j + (fID(l) −
fID(j)) ·H2(RID, ID) = rID + fID(l) ·H2(RID, ID).
The private key skID,l in the time period l is set as
skID,l = (σID,l, RID).

Remark 3: In our scheme, rID can be the same for
the same user in different time periods, for the following
reasons. The user UID’s private key in the time period
j is skID,j = (σID,j , RID), where σID,j = σID,j−1 +
x∗ID,j · H2(RID, ID) = rID + fID(j) · H2(RID, ID).
fID(j) = x0 +

∑t
k=1 xID,kj

k (mod p)(xID,k ∈ Z∗p )
is the value computed by the PKG based on the PKG’s
master secret key x0, the TPA’s secret key SKTPA,ID =
{xID,1, xID,2, ..., xID,t} corresponding to the user UID
and the time period j. fID(j) changes in every time
period. The adversary cannot compute fID(j) because
he cannot obtain the PKG’s master secret key x0 and
the TPA’s secret key SKTPA,ID. Similarly, the adversary
cannot compute fID(j)(j ∈ [1, N ]) in the whole time
periods. In other words, the adversary cannot obtain rID
even if he is able to obtain the user UID’s private keys in
t time periods. In the phase of key update, the adversary
cannot deduce the unexposed private keys without rID
and fID(j)(j ∈ [1, N ]) even with up to t exposed private
keys. As a result, the key update is secure even if rID is
the same for the same user in different time periods.

Remark 4: In our scheme, the user’s private key in the
current time period is generated based on the private key
in one previous time period and the update information
from the TPA. If the TPA obtains the user’s private key

in a certain time period by compromising the hardware
token that stores the user’s private key, then it can
inevitably uncover the user’s private key in other time
periods since it also knows the update information. It
seems that there is no feasible technique to solve the
problem that the TPA can uncover the user’s private
keys after obtaining an exposed private key. Actually,
this is not a real threat in data integrity auditing with
key-exposure resistance.

5) AuthGen(param,F, j, skID,j , fid, ssk)
The user UID computes the authenticators for the file

F with the private key in the current time period, and
calculates the file tag used to guarantee the validity of the
file identifier, the time period and the verification value.
Then, the user UID uploads the file F along with the
authenticator set and the file tag to the cloud.

a) For each block mi ∈ Z∗p (i ∈ [1, n]) of the file F ,
the user UID computes the authenticator βi using
the private key skID,j in the current time period j
as follows: βi = (H1(fid||i||j) · umi)σID,j , where
fid ∈ Z∗p is the file identifier. Let Φ = {βi}1≤i≤n
be the set of authenticators in the time period j.

b) The user UID generates the file tag τ =
fid||j||RID||Sigssk(fid||j||RID) with the signing pri-
vate key ssk.

c) The user UID uploads {F,Φ} along with the file tag
τ to the cloud.

6) Challenge(param, c, ID, fid, j):
The TPA selects a user identity ID, a file identifier fid

and a time period j. Then the TPA outputs an auditing
challenge chal = {i, vi}i∈S , where S ∈ [1, n] is a subset
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including c elements and vi is a random value in Z∗p . The
TPA sends {chal, ID, fid, j} to the cloud.

7) ProofGen(param, j, τ, F,Φ, chal)
Upon receiving chal, the cloud outputs an auditing

proof proof = {j, µ, η} to the TPA, where µ =∑
i∈Smivi and η =

∏
i∈S β

vi
i . The cloud sends the proof

proof along with the file tag τ to the TPA.
8) ProofVerify(chal, param, proof, τ, j, ID, fid)

After receiving proof , the TPA checks the validity of
file tag τ by verifying whether Sigssk(fid||j||RID) is a
valid signature or not. If the file tag τ is valid, the TPA
retrieves the file identifier fid, the time period j and the
verification value RID. Then, the TPA checks the validity
of the proof proof via the following equation:

e(η, g) = e(
∏

i∈S
H1(fid||i||j)vi · uµ,

RID · (Y0

∏t

k=1
YID,k

jk)H2(RID,ID))
(3)

The TPA outputs “1” if the equation (3) holds; other-
wise, outputs “0”.

B. Discussion

In most of identity-based key-exposure resilient schemes
[48], [49], [50], [51], a physically-secure helper is introduced
to generate key update information. The user can update
his private key with the key update information. In identity-
based cryptography [15],[19], [25], the PKG is responsible for
generating the user’s initial private key.

To achieve the high-security level, both the helper and
the PKG can replace the TPA to perform the key update
information generation task in the proposed scheme. However,
introducing the helper will increase the complexity of our
system. If the PKG is in charge of generating key update
information, he must always be online. In general, the PKG
goes offline after generating the initial private key for the
user. Thus, we still select the TPA to generate key update
information for the user.

V. SECURITY ANALYSIS

The following analysis indicates that the proposed scheme
is secure from the perspective of correctness, key-exposure
resistance, detectability and key update security.

Theorem 1: (Correctness). A valid identity-based data
integrity auditing scheme with key-exposure resistance meets
the following properties:

1) (Initial private key correctness) The initial private key can
pass the checking if the PKG produces the initial private
key honestly.

2) (Update information correctness) The update information
can pass the checking if the TPA produces the update
information correctly.

3) (Auditing correctness) The proof can pass the checking
if the cloud executes the auditing task honestly.

Proof.
1) Given the initial private key skID,0 = (RID, σID,0)

generated by the PKG, the validity of skID,0 can be

checked by the user under the equation (1). The validity
of the initial private key in equation (1) is presented as
follows:

gσID,0 =grID+fID(0)H2(RID,ID)

=grIDgx0H2(RID,ID)

=RID · Y0
H2(RID,ID)

2) Given the update information x∗ID,j from the TPA, the
user can check the correctness of x∗ID,j based on the
verification equation (2). The validity of the update
information in equation (2) is presented as follows:

gx
∗
ID,j = g

∑t
k=1 xID,k(jk−(j−1)k)

=
∏t

k=1
gxID,k(jk−(j−1)k)

=
∏t

k=1
YID,k

jk−(j−1)k

3) Given the proof proof = {j, µ, η} produced by the cloud,
the validity of proof can be checked by the TPA using
the equation (3). The validity of the proof in equation (3)
is elaborated as follows:

e(η, g) =e(
∏

i∈S
βi
vi , g)

=e(
∏

i∈S
(H1(fid||i||j) · umi)σID,j ·vi , g)

=e(
∏

i∈S
H1(fid||i||j)vi · u

∑
i∈Smi·vi , gσID,j )

=e(
∏

i∈S
H1(fid||i||j)vi · uµ,

grID+fID(j)·H2(RID,ID))

=e(
∏

i∈S
H1(fid||i||j)vi · uµ,

grID · g(x0+
∑t
k=1 xID,k·j

k)·H2(RID,ID)

=e(
∏

i∈S
H1(fid||i||j)vi · uµ,

RID · (gx0 ·
∏t

k=1
gxID,k·j

k

)H2(RID,ID))

=e(
∏

i∈S
H1(fid||i||j)vi · uµ,

RID · (Y0

∏t

k=1
YID,k

jk)H2(RID,ID))

Theorem 2: (Security) Assume the signature scheme em-
ployed for file tag is secure and the CDH problem in G is
hard. Whenever an adversary in our security model can pass
the challenger’s verification by outputting a valid proof proof
with non-negligible probability, there is a knowledge extractor
that can extract the challenged data blocks with non-negligible
probability.

Proof. If the proof produced by the cloud can pass the ver-
ification, a knowledge extractor can be constructed to extract
the whole challenged data blocks. We define the following
games to complete our proof.

Game 0. Game 0 is the game defined in Section III-D.
Game 1. Game 1 is equivalent to Game 0, except that the

challenger keeps a list which consists of all the signed tags.
If the adversary submits one tag, the challenger claims failure
when this tag is a valid Sig signature but not signed by the
challenger.
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Analysis. If the challenger declares failure and aborts in
Game 1 with non-negligible probability, a valid Sig signature
can be easily forged by the adversary. This is in contradiction
with the assumption that Sig is an unforgeable identity-based
signature. Thus, the time period j∗, the verification value RID∗
and the file identifier fid∗ in the interactions with the adversary
are all valid and produced by the challenger.

Game 2. Game 2 is equivalent to Game 1, except that the
challenger maintains some records used to respond to the
adversary’s queries in local list. If the adversary can output
a valid proof to pass the checking, while the adversary’s
aggregate authenticator is not equal to the expected

∏
i∈S βi

vi ,
the adversary succeeds, then the challenger will abort.

Analysis. Suppose the adversary produces a forged proof
{j∗, µ′, η′}. This proof is able to satisfy the following equa-
tion,

e(η′, g) = e(
∏

i∈S
H1(fid

∗||i||j∗)vi · uµ
′
,

RID∗ · (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗))

(4)

Suppose proof = {j∗, µ, η} is a valid proof produced by
the honest prover. proof satisfies the following verification
equation,

e(η, g) = e(
∏

i∈S
H1(fid

∗|||i||j∗)vi · uµ,

RID∗ · (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗))

(5)

Obviously, µ 6= µ′, otherwise η = η′, which contradicts the
above assumption. Define ∆µ = µ′−µ. We design a simulator
to solve the CDH problem if the adversary succeeds with a
non-negligible probability.

Given g, gα, h ∈ G1, the aim of simulator is to cal-
culate hα. The simulator randomly picks a, b ∈ Z∗p ,
and sets u = gahb. Meanwhile, set Y0 = gα and se-
lect αID∗,1, αID∗,2, . . . , αID∗,t, rID∗ ∈ Z∗p at random. Set
YID∗,k = gαID∗,k(k ∈ [1, t]) and RID∗ = grID∗ . Publish
YID∗,1, YID∗,2, . . . , YID∗,t and RID∗ . For each i ∈ [1, n] in
the challenge, a random value ri ∈ Z∗p is chosen by the
simulator, then the simulator programs the random oracle at
i as H1(fid

∗||i||j∗) = gri/(gami · hbmi).
The simulator is able to calculate the data authenticator βi,

because we get

H1(fid
∗||i||j∗) · umi = gri/(gami · hbmi) · umi

= (gri/(gami · hbmi)) · (gami · hbmi)
= gri

Thus, the simulator computes βi as follows:

βi = (H1(fid
∗||i||j∗) · umi)σID∗,j

= (gri)
σID∗,j = (gσID∗,j )ri

= (grID∗+fID∗ (j)H2(RID∗ ,ID
∗))ri

= (grID∗ · g(α+
∑t
k=1 αID∗,kj

k)·H2(RID∗ ,ID
∗))ri

= (RID∗ · (Y0 ·
∏t

k=1
gαID∗,kj

k

)H2(RID∗ ,ID
∗))ri

= (RID∗ · (Y0 ·
∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗))ri

Dividing equation (4) by equation (5), we obtain

e(η′/η, g)

= e(u∆µ, RID∗(Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗))

= e((gahb)∆µ, RID∗(Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗))

= e(ga∆µ, grID∗ (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗))

· e(hb∆µ, grID∗ (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗))

= e(ga∆µrID∗ (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗)a∆µ, g)

· e(hb∆µ, grID∗ (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗))

= e(ga∆µrID∗ (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗)·a∆µ, g)

· e(hb∆µ, Y H2(RID∗ ,ID
∗)

0 )

· e(hb∆µ, grID∗ g(
∑t
k=1 αID,kj

k)·H2(RID∗ ,ID
∗))

= e(ga∆µrID∗ (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗)a∆µ, g)

· e(h, Y0)b∆µ·H2(RID∗ ,ID
∗)

· e(hb∆µ·(rID∗+(
∑t
k=1 αID∗,kj

k)·H2(RID∗ ,ID
∗)), g)

= e(ga∆µrID∗ · (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗)a∆µ·

hb∆µ·(rID∗+(
∑t
k=1 αID∗,kj

k)H2(RID∗ ,ID
∗)), g)

· e(h, Y0)b∆µ·H2(RID∗ ,ID
∗)

= e(ga∆µrID∗ · (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗)a∆µ·

hb∆µ·(rID∗+(
∑t
k=1 αID∗,kj

k)H2(RID∗ ,ID
∗)), g)

· e(h, gα)b∆µ·H2(RID∗ ,ID
∗)

It further implies

e(η′ · η−1 · g−a∆µrID∗ · (Y0

∏t

k=1
YID∗,k

jk)−H2(RID∗ ,ID
∗)a∆µ·

h−b∆µ·(rID∗+(
∑t
k=1 αID∗,kj

k)·H2(RID∗ ,ID
∗)), g)

= e(hα, g)b∆µ·H2(RID∗ ,ID
∗)

Therefore, we get a solution of solving the CDH problem
as follows

hα =(η′ · η−1 · g−a∆µrID∗ · (Y0

∏t

k=1
YID∗,k

jk)−H2(RID∗ ,ID
∗)a∆µ·

h−b∆µ·(rID∗+(
∑t
k=1 αID∗,kj

k)H2(RID∗ ,ID
∗)))1/(b∆µ·H2(RID∗ ,ID

∗))

as long as the denominator b∆µ · H2(RID∗ , ID
∗) 6= 0 mod

p. The probability that b∆µ · H2(RID∗ , ID
∗) 6= 0 mod p is

1−1/p, which is non-negligible. Therefore, it is contradiction
with the assumption that the CDH problem in G is hard.

It means that if the difference between the adversary’s prob-
abilities of success in Game 1 and Game 2 is non-negligible,
a simulator can be constructed to solve the CDH problem.

Game 3. Game 3 is equivalent to Game 2, except that the
challenger maintains each interaction result with the adversary.
If the adversary can output a valid proof to pass the checking,
while the adversary’s aggregated data block is different from
the expected µ, then the challenger will abort.
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Analysis. Suppose proof = {j∗, µ, η} is a valid proof
outputted by the honest prover. Proof can pass the checking
of the following verification equation

e(η, g) = e(
∏

i∈S
H1(fid∗ ||i||j∗)vi · uµ,

RID∗ · (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗)).

Suppose the adversary outputs a forged proof {j∗, µ′, η′}.
The following verification equation holds since the forgery
is successful,

e(η′, g) = e(
∏

i∈S
H1(fid∗ ||i||j∗)vi · uµ

′
,

RID∗ · (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗)).

We know η′ = η from the Game 2. Define ∆µ = µ′ − µ.
A simulator can be constructed to solve the DL problem.

Input g, h ∈ G1 to the simulator. The aim of simulator is
to calculate a value α which satisfies h = gα. The simulator
randomly picks a, b ∈ Z∗p , and sets u = gahb. From the above
two verification equations, we get

e(
∏

i∈S
H1(fid∗ ||i||j∗)vi · uµ, RID∗

· (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗))

=e(η, g) = e(η′, g)

=e(
∏

i∈S
H1(fid∗ ||i||j∗)vi · uµ

′
, RID∗

· (Y0

∏t

k=1
YID∗,k

jk)H2(RID∗ ,ID
∗))

Therefore, we obtain that uµ = uµ
′
, and further implies

1 = u∆µ = (gahb)∆µ = ga∆µ · hb∆µ. Furthermore, we get
∆µ 6= 0 mod p, otherwise, we obtain µ′ = µ mod p. This is
contradiction with the aforementioned assumption. Thus, we
find a solution to solve the DL problem as follows

h = g−
b∆µ
a∆µ = g−

b
a ,

as long as the denominator a 6= 0 mod p. The probability that
a 6= 0 mod p is 1 − 1/p, which is non-negligible. Therefore,
it is contradiction with the assumption that the DL problem in
G is hard.

It means that if the difference between the adversary’s prob-
abilities of success in Game 2 and Game 3 is non-negligible,
a simulator can be constructed to solve the DL problem.

There is only negligible difference probability between these
games. Note that the hardness of the CDH problem implies
the hardness of the discrete logarithm problem. If the signature
scheme employed for file tag is secure and the CDH problem
in G is hard, the challenger will reject except when the
adversary generates a valid proof.

In the end, a knowledge extractor is constructed to extract
all challenged data blocks mi(i ∈ S, |i| = c) by employing
independent coefficients vi(i ∈ S, |I| = c) to generate proof
on the same blocks mi(i ∈ S, |i| = c) for c times. The
extractor can obtain c independently linear equations in the
variables mi(i ∈ S, |i| = c). By solving these equations, the
extractor can extract mi(i ∈ S, |i| = c) easily.

Theorem 3: (The detectability): Assume n data blocks
are stored in the cloud and θ data blocks are corrupted in the

proposed scheme. If c data blocks are challenged by the TPA,
the cloud’s misbehavior can be detected with the probability
at least 1−

(
n−θ
n

)c
.

Proof. The cloud’s misbehaviour can be detected if and
only if at least one of the data blocks challenged by the TPA
matches the corrupted data blocks. Let a discrete random
variable Y be the number of challenged data blocks that
matches the corrupted data blocks. We employ PY to denote
the probability of detecting the cloud’s misbehaviour. Thus,
we have

PY =P{Y ≥ 1}
=1− P{Y = 0}

=1− n− θ
n
× n− 1− θ

n− 1
× ...× n− c+ 1− θ

n− c+ 1

We have PY ≤ 1−(n−θn )c. Therefore, the conclusion is that
the proposed scheme is able to find the cloud’s misbehavior
with probability at least 1−

(
n−θ
n

)c
.

VI. PERFORMANCE EVALUATION

A. Functionalities Comparison

In Table II, we illustrate the functionalities comparison of
our scheme with several related schemes [13, 18, 23, 30]. All
of schemes in [13, 18, 30] can not resist key exposure. The
scheme [23] can resist key exposure by updating the user’s
private key. However, it relies on public key infrastructure
(PKI) which needs to execute the complicated certificate
management. Besides, it cannot support private key lazy
update. Compared with schemes [13, 18, 23, 30], our scheme
satisfies the following four properties: certificate management
simplification, public verifiability, key-exposure resistance and
lazy update.

B. Performance Analysis

The following notations are defined to denote the com-
putation costs of different operations in our scheme. The
computation cost of one exponentiation operation in G is
denoted as ExpG. The computation cost of one pairing
operation is denoted as Pair. Compared with ExpG and
Pair, the computation cost of other operations like addition,
multiplication and hashing on G and the operations on Z∗p are
negligible.

(1) Computation cost. The comparison of computation cost
for different entities is illustrated in table III. The PKG costs
(t+ 1)ExpG to generate public values in the phase of setup,
where t is the threshold value, and costs ExpG to generate the
user’s initial private key in the phase of extraction. On the user
side, the computation cost mainly comes from the process of
authenticator generation. The overhead used to update private
key can be ignored. In the process of authenticator generation,
the computation cost is 2nExpG on the user side, where n is
the number of data blocks in the file. In our scheme, we do not
consider the computation cost of the verification process on
the user side because this process is optional. On the TPA side,
the TPA needs to compute the update information and check
the validity of the proof. However, the update information
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TABLE II
FUNCTIONALITIES COMPARISON WITH EXISTING RELATED SCHEMES

Schemes Certificate management Public Key-Exposure Lazy update
simplification verifiability resistance

Shacham et al. [30] No Yes No No
Fu et al.[13] No Yes No No
Wang et al.[18] Yes Yes No No
Yu et al.[23] No Yes Yes No
Ours Yes Yes Yes Yes

TABLE III
THE COMPARISON OF COMPUTATION COST FOR DIFFERENT ENTITIES OF OUR SCHEME AND WANG ET AL. SCHEME [18]

Scheme PKG User TPA Cloud

Wang et al. scheme [18] ExpG 2nExpG 2Pair + (c+ 2)ExpG cExpG

Our scheme (t+ 2)ExpG 2nExpG 2Pair + (c+ 4)ExpG cExpG

generation contributes negligible computation cost. In the
process of auditing proof verification, the computation cost
is 2Pair+ (c+ 4)ExpG. On the cloud side, the computation
cost for generating the proof is cExpG.

To present the computation advantages of our scheme, we
also give the computation cost of the classic scheme [18] in
table III. We select the scheme [18] as a benchmark, because
it is the representative state-of-the-art in identity-based data
integrity auditing. As shown in table III, the PKG costs ExpG
to generate the private key for the user in scheme [18]. The
computation cost of the user is 2nExpG, which is used to
produce the authenticators. On the TPA side, the computation
cost used to verify the correctness of auditing proof is 2Pair+
(c + 2)ExpG. The computation cost of outputting the proof
on the cloud side is cExpG.

As a result, the computation costs of the user and the cloud
in our scheme are the same as that in the scheme [18]. To
achieve the extra key-exposure resilience, the computation
cost of the PKG and the TPA in our scheme add acceptable
overhead than that in the scheme [18].

TABLE IV
THE COMPARISON OF COMMUNICATION COST OF OUR SCHEME AND

WANG ET AL. SCHEME [18]

Scheme Challenge Proof

Wang et al. scheme [18] c · (|n|+ |p|) |p|+ |q|
Our scheme c · (|n|+ |p|) 2|p|+ |q|

(2) Communication cost. The challenge and the proof in
the auditing phase are the dominant factors for the communi-
cation costs of our scheme and the scheme [18]. As shown in
table IV, the communication cost of the scheme [18] is almost
the same as that of our scheme. In our scheme and the scheme
[18], the size of the challenge is c · (|n|+ |p|) bits, where |n|
and |p| are the size of elements in [1, n] and Z∗p respectively.
The size of the proof is |p|+ |q| bits in the scheme [18], where
|q| is the size of element in G. In our scheme, the size of the
proof is 2|p| + |q| bits, which requires more communication

Fig. 4. Computation cost in the phase of authenticator generation

costs than the scheme [18].

C. Experimental Results

We utilize C programming language with Pairing-Based
Cryptography (PBC) Library [52] and the GNU Multiple Pre-
cision Arithmetic (GMP) [53] to code all algorithms. All sim-
ulation experiments are implemented on 64-bit Linux system
with an Intel Core i5-6200 with 2.3GHz processor and 8GB
memory. In our setting, the size of an element in Z∗p is set as
160 bits, and the base field size is set as 512 bits.

To evaluate the experimental performance of our scheme,
we choose the schemes [23], [43] as the benchmarks since they
are well known as two most efficient data integrity auditing
schemes with key-exposure resistance which are based on PKI
cryptosystem and identity-based cryptosystem, respectively.

1) Authenticator generation phase. We evaluate the per-
formance of authenticator generation and the results are
shown in Fig. 4. We choose different numbers of data
blocks with incremental numbers from 100 to 1,000 with
100 interval. Fig. 4 indicates that the computation costs of
authenticator generation in our scheme and the schemes
[23], [43] are linearly increase with the number of data
blocks. Our scheme requires less computation cost in the
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Fig. 5. Computation cost of update information generation

Fig. 6. Computation cost of private key update

Fig. 7. The time of different private key update strategies

Fig. 8. Computation cost of challenge generation

Fig. 9. Computation cost of proof generation

Fig. 10. Computation cost of proof verification

authenticator generation phase compared to the schemes
[23], [43].

2) Private key update phase. In the phase of private key
update, firstly the TPA generates the update informa-
tion for the user, then the user updates his private key
according to the update information. Fig. 5 and Fig. 6
show that, in our scheme and the schemes [23], [43], the
computation costs of update information generation and
private key generation in each time period are almost the
same. However, the computation cost of our scheme is
much smaller than that of the schemes [23], [43].

To compare the computation costs of different private
key update strategies in our scheme, we do the following
two experiments. One is to update the private key directly
from the time period 1 to the time period 7, which is
called lazy update. The other one is to update the private
key one by one from the time period 1 to the time period
7. As shown in Fig. 7, in lazy update, the user can directly
generate the private key in the time period 7, which costs
0.002ms. However, in one by one update, the user has
to calculate the private keys in all time periods from the
time period 1 to the time period 7, which costs 0.007ms.
Thus, lazy update achieves high efficiency compared with
the one by one update.

3) Auditing phase. We evaluate the computation costs of
three different processes in auditing phase with different
numbers of challenged data blocks. In our experiment, we
challenge different data blocks with incremental numbers
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from 100 to 1000 with 100 interval. The Fig. 8, Fig. 9
and Fig. 10 illustrate that the computation costs of three
processes are proportional to the number of challenged
data blocks. The computation costs of challenge genera-
tion and proof generation in our scheme and the schemes
[23], [43] are approximately equivalent. In the phase
of the proof verification, our scheme and the scheme
[23] require more computation costs on the cloud side
compared with the scheme [43].

In data integrity auditing, both the TPA and the cloud have
abundant computation resources. Therefore, the computational
efficiency on the user side is our main concern in our scheme.
The experiment results show that our scheme has better
efficiency on the user side and performs well in the phase
of private key update. It means that the user only needs to
perform lightweight computations to update his private key.

VII. CONCLUSION

In this paper, we explore how to address the key exposure
problem in identity-based data integrity auditing. We propose
a novel and efficient identity-based data integrity auditing
scheme with key-exposure resilience for cloud storage. In
this scheme, even if the malicious cloud obtains the user’s
private key in a certain time period, the auditing task of other
time periods are still able to work. The security proof and the
performance analysis show that the proposed scheme is secure
and efficient.

REFERENCES

[1] K. Ren, C. Wang, and Q. Wang, “Security challenges
for the public cloud,” IEEE Internet Computing, vol. 16,
no. 1, pp. 69–73, Jan 2012.

[2] D. Song, E. Shi, I. Fischer, and U. Shankar, “Cloud data
protection for the masses,” Computer, vol. 45, no. 1, pp.
39–45, 2012.

[3] J. Li, L. Zhang, J. K. Liu, H. Qian, and Z. Dong,
“Privacy-preserving public auditing protocol for low-
performance end devices in cloud,” IEEE Transactions
on Information Forensics and Security, vol. 11, no. 11,
pp. 2572–2583, Nov 2016.

[4] F. Chen, F. Meng, T. Xiang, H. Dai, J. Li, and J. Qin,
“Towards usable cloud storage auditing,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 31, no. 11,
pp. 2605–2617, 2020.

[5] Y. Su, Y. Li, K. Zhang, and B. Yang, “A privacy-
preserving public integrity check scheme for outsourced
ehrs,” Information Sciences, vol. 542, pp. 112 – 130,
2021.

[6] L. Zhou, A. Fu, G. Yang, H. Wang, and Y. Zhang, “Effi-
cient certificateless multi-copy integrity auditing scheme
supporting data dynamics,” IEEE Transactions on De-
pendable and Secure Computing, pp. 1–1, 2020.

[7] X. Zhang, J. Zhao, C. Xu, H. Li, H. Wang, and Y. Zhang,
“CIPPPA: Conditional identity privacy-preserving public
auditing for cloud-based WBANs against malicious audi-
tors,” IEEE Transactions on Cloud Computing, pp. 1–14,
2019.

[8] Y. Zhang, C. Xu, X. Lin, and X. S. Shen, “Blockchain-
based public integrity verification for cloud storage
against procrastinating auditors,” IEEE Transactions on
Cloud Computing, pp. 1–15, 2019.

[9] H. Wang, D. He, J. Yu, and Z. Wang, “Incentive and
unconditionally anonymous identity-based public prov-
able data possession,” IEEE Transactions on Services
Computing, vol. 12, no. 5, pp. 824–835, Sep. 2019.

[10] H. Wang, H. Qin, M. Zhao, X. Wei, H. Shen, and
W. Susilo, “Blockchain-based fair payment smart con-
tract for public cloud storage auditing,” Information
Sciences, vol. 519, pp. 348 – 362, 2020.

[11] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for data storage security in
cloud computing,” in 2010 Proceedings IEEE INFO-
COM, March 2010, pp. 1–9.

[12] C. Liu, J. Chen, L. T. Yang, X. Zhang, C. Yang,
R. Ranjan, and R. Kotagiri, “Authorized public auditing
of dynamic big data storage on cloud with efficient
verifiable fine-grained updates,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 9, pp.
2234–2244, Sept 2014.

[13] A. Fu, S. Yu, Y. Zhang, H. Wang, and C. Huang, “NPP:
A new privacy-aware public auditing scheme for cloud
data sharing with group users,” IEEE Transactions on
Big Data, pp. 1–1, 2017.

[14] W. Shen, J. Qin, J. Yu, R. Hao, J. Hu, and J. Ma, “Data
integrity auditing without private key storage for secure
cloud storage,” IEEE Transactions on Cloud Computing,
pp. 1–15, 2019.

[15] B. Dan and M. Franklin, “Identity-based encryption from
the weil pairing,” SIAM journal on computing, vol. 32,
no. 3, pp. 586–615, 2003.

[16] Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo,
Y. Dai, and G. Min, “Identity-based remote data integrity
checking with perfect data privacy preserving for cloud
storage,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 4, pp. 767–778, April 2017.

[17] X. Zhang, J. Zhao, C. Xu, H. Wang, and Y. Zhang,
“DOPIV: Post-quantum secure identity-based data out-
sourcing with public integrity verification in cloud stor-
age,” IEEE Transactions on Services Computing, pp. 1–
13, 2019.

[18] H. Wang, Q. Wu, B. Qin, and J. Domingo-Ferrer,
“Identity-based remote data possession checking in pub-
lic clouds,” IET Information Security, vol. 8, no. 2, pp.
114–121, March 2014.

[19] H. Wang, D. He, and S. Tang, “Identity-based proxy-
oriented data uploading and remote data integrity check-
ing in public cloud,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 6, pp. 1165–1176,
June 2016.

[20] Y. Zhang, J. Yu, R. Hao, C. Wang, and K. Ren, “Enabling
efficient user revocation in identity-based cloud storage
auditing for shared big data,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 3, pp.
608–619, 2020.

[21] J. Yu, K. Ren, C. Wang, and V. Varadharajan, “Enabling

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3228699

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2021 14

cloud storage auditing with key-exposure resistance,”
IEEE Transactions on Information Forensics and Secu-
rity, vol. 10, no. 6, pp. 1167–1179, 2015.

[22] J. Yu, K. Ren, and C. Wang, “Enabling cloud storage
auditing with verifiable outsourcing of key updates,”
IEEE Transactions on Information Forensics and Secu-
rity, vol. 11, no. 6, pp. 1362–1375, June 2016.

[23] J. Yu and H. Wang, “Strong key-exposure resilient au-
diting for secure cloud storage,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 8, pp.
1931–1940, Aug 2017.

[24] Y. Xu, R. Ding, J. Cui, and H. Zhong, “Intrusion-
resilient public auditing protocol for data storage in cloud
computing,” in Information Security and Privacy. ACISP
2018, Australasian Conference on Information Security
and Privacy, 2018, pp. 399–416.

[25] J. Zhang and Q. Dong, “Efficient id-based public auditing
for the outsourced data in cloud storage,” Information
Sciences, vol. 343-344, pp. 1 – 14, 2016.

[26] Z. Xu, D. He, P. Vijayakumar, B. Gupta, and J. Shen,
“Certificateless public auditing scheme with data privacy
and dynamics in group user model of cloud-assisted
medical wsns,” IEEE Journal of Biomedical and Health
Informatics, pp. 1–1, 2021.

[27] W. Shen, J. Qin, J. Yu, R. Hao, and J. Hu, “Enabling
identity-based integrity auditing and data sharing with
sensitive information hiding for secure cloud storage,”
IEEE Transactions on Information Forensics and Secu-
rity, vol. 14, no. 2, pp. 331–346, Feb 2019.

[28] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kiss-
ner, Z. Peterson, and D. Song, “Provable data possession
at untrusted stores,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security,
ser. CCS ’07, 2007, pp. 598–609.

[29] A. Juels and B. S. Kaliski, “PORs: Proofs of retriev-
ability for large files,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security,
ser. CCS ’07, 2007, pp. 584–597.

[30] H. Shacham and B. Waters, “Compact proofs of re-
trievability,” in International conference on the theory
and application of cryptology and information security.
Springer, 2008, pp. 90–107.

[31] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik,
“Scalable and efficient provable data possession,” in Pro-
ceedings of the 4th international conference on Security
and privacy in communication netowrks, 2008, pp. 1–10.

[32] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo,
“An efficient public auditing protocol with novel dynamic
structure for cloud data,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 12, no. 10, pp. 2402–
2415, 2017.

[33] H. Tian, Y. Chen, C. C. Chang, H. Jiang, Y. Huang,
Y. Chen, and J. Liu, “Dynamic-hash-table based public
auditing for secure cloud storage,” IEEE Transactions on
Services Computing, vol. 10, no. 5, pp. 701–714, Sept
2017.

[34] A. Yang, J. Xu, J. Weng, J. Zhou, and D. S. Wong,
“Lightweight and privacy-preserving delegatable proofs

of storage with data dynamics in cloud storage,”
IEEE Transactions on Cloud Computing, pp. 1–14,
DOI:10.1109/TCC.2018.2851256, 2018.

[35] W. Guo, H. Zhang, S. Qin, F. Gao, Z. Jin, W. Li, and
Q. Wen, “Outsourced dynamic provable data possession
with batch update for secure cloud storage,” Future
Generation Computer Systems, vol. 95, pp. 309–322,
2019.

[36] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou,
“Privacy-preserving public auditing for secure cloud stor-
age,” IEEE Transactions on Computers, vol. 62, no. 2,
pp. 362–375, 2013.

[37] Y. Li, Y. Yu, B. Yang, G. Min, and H. Wu, “Privacy
preserving cloud data auditing with efficient key update,”
Future Generation Computer Systems, vol. 78, pp. 789–
798, 2018.

[38] R. Ding, H. Zhong, J. Ma, X. Liu, and J. Ning,
“Lightweight privacy-preserving identity-based verifiable
iot-based health storage system,” IEEE Internet of Things
Journal, vol. 6, no. 5, pp. 8393–8405, 2019.

[39] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving
public auditing for shared data in the cloud,” in 2012
IEEE Fifth International Conference on Cloud Comput-
ing, June 2012, pp. 295–302.

[40] J. Shen, F. Guo, X. Chen, and W. Susilo, “Secure cloud
auditing with efficient ownership transfer,” in European
Symposium on Research in Computer Security. Springer,
2020, pp. 611–631.

[41] L. Zhou, A. Fu, Y. Mu, H. Wang, and Y. Sun, “Multicopy
provable data possession scheme supporting data dynam-
ics for cloud-based electronic medical record system,”
Information ences, vol. 545, pp. 254–9276, 2021.

[42] Y. Wang, Q. Wu, B. Qin, W. Shi, R. H. Deng, and J. Hu,
“Identity-based data outsourcing with comprehensive au-
diting in clouds,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 4, pp. 940–952, 2017.

[43] S. M. V. Nithya and V. R. Uthariaraj, “Identity-based
public auditing scheme for cloud storage with strong
key-exposure resilience,” Security and Communication
Networks, pp. 1–13, 2020.

[44] X. Zhang, H. Wang, and C. Xu, “Identity-based key-
exposure resilient cloud storage public auditing scheme
from lattices,” Information Sciences, vol. 472, pp. 223 –
234, 2019.

[45] D. Boneh, B. Lynn, and H. Shacham, “Short signatures
from the weil pairing,” Journal of cryptology, vol. 17,
no. 4, pp. 297–319, 2004.

[46] K. S. McCurley, “The discrete logarithm problem,” in
Proc. of Symp. in Applied Math, vol. 42. USA, 1990,
pp. 49–74.

[47] F. Bao, R. H. Deng, and H. Zhu, “Variations of diffie-
hellman problem,” in International conference on infor-
mation and communications security. Springer, 2003,
pp. 301–312.

[48] C.-L. Hsu and H.-Y. Lin, “New identity-based key-
insulated convertible multi-authenticated encryption
scheme,” Journal of Network and Computer Applica-
tions, vol. 34, no. 5, pp. 1724–1731, 2011.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3228699

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2021 15

[49] Y. S. Rao and R. Dutta, “Bandwidth-efficient attribute-
based key-insulated signatures with message recovery,”
Information Sciences, vol. 369, pp. 648–673, 2016.

[50] Y. Watanabe and J. Shikata, “Identity-based hierarchical
key-insulated encryption without random oracles,” in
Public-Key Cryptography–PKC 2016. Springer, 2016,
pp. 255–279.

[51] S. Alornyo, Y. Zhao, G. Zhu, and H. Xiong, “Identity
based key-insulated encryption with outsourced equality
test.” Int. J. Netw. Secur., vol. 22, no. 2, pp. 257–264,
2020.

[52] B. Lynn, “The pairing-based cryptographic library,”
https://crypto.stanford.edu/pbc/, 2015.

[53] “The gnu multiple precision arithmetic library (gmp),”
http://gmplib.org/.

Wenting Shen is an associate professor of the
College of Computer Science and Technology at
Qingdao University. She received the M.S. and B.S.
degrees in college of Computer Science and Tech-
nology from Qingdao University, China, in 2017 and
2014, respectively. She received Ph. D. degree in
School of Mathematics from Shandong University,
in 2020. Her research interests include cloud security
and big data security.

Jia Yu is a professor of the College of Computer
Science and Technology at Qingdao University. He
received the M.S. and B.S. degrees in School of
Computer Science and Technology from Shandong
University in 2003 and 2000, respectively. He re-
ceived Ph. D. degree in Institute of Network Secu-
rity from Shandong University, in 2006. He was a
visiting professor with the Department of Computer
Science and Engineering, the State University of
New York at Buffalo, from Nov. 2013 to Nov.
2014. His research interests include cloud computing

security, key evolving cryptography, digital signature, and network security.

Ming Yang received the B.S. and M.S. degrees from
the School of Information Science and Engineering,
Shandong University, in 2004 and 2007, and the
Ph.D. degree from the School of Electronic Engi-
neering, Beijing University of Posts and Telecom-
munications, in 2010. He is currently an Assistant
Professor with Qilu University of Technology (Shan-
dong Academy of Sciences), Shandong Computer
Science Center, Shandong Provincial Key Labora-
tory of Computer Networks. His research interests
include cloud computing security, big data security

and network security.

Jiankun Hu receive the Ph.D. degree in Control
Engineering from Harbin Institute of Technology,
China in 1993 and the master’s degree in Computer
Science and Software Engineering from Monash
University, Australia in 2000. He was a Research
Fellow in Delft University of the Netherlands, from
1997 to 1998, and Melbourne University, Australia,
from 1998 to 1999. His main research interest is
in the field of cyber security, including biomet-
rics security, where he has published many papers
in high-quality conferences and journals including

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI).
He has served at the editorial board of up to 7 international journals and
served as Security Symposium Chair of IEEE flagship conferences of IEEE
ICC and IEEE Globecom. He has obtained 7 ARC (Australian Research
Council) Grants and is now serving on the prestigious Panel of Mathematics,
Information and Computing Sciences (MIC), ARC ERA (The Excellence in
Research for Australia) Evaluation Committee.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3228699

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://crypto.stanford.edu/pbc/
http://gmplib.org/.

	Introduction
	Related Work
	Organization

	Notations and Preliminaries
	Notations
	Preliminaries

	System Model and Security Model
	System Model
	Design Goals
	Underlying Algorithms
	Security Model

	The Proposed Scheme
	Construction of Our Proposal
	Discussion

	Security Analysis
	Performance Evaluation
	Functionalities Comparison
	Performance Analysis
	Experimental Results

	Conclusion
	Biographies
	Wenting Shen
	Jia Yu
	Ming Yang
	Jiankun Hu


