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Abstract—Recent findings confirm that biometric templates derived from electroencephalography (EEG) signals contain sensitive
information about registered users, such as age, gender, cognitive ability, mental status and health information. Existing
privacy-preserving methods such as hash function and fuzzy commitment are not cancelable, where raw biometric features are
vulnerable to hill-climbing attacks. To address this issue, we propose the PolyCosGraph, a system based on Polynomial transformation
embedding Cosine functions with Graph features of EEG signals, which is a privacy-preserving and cancelable template design that
protects EEG features and system security against multiple attacks. In addition, a template corrupting process is designed to further
enhance the security of the system, and a corresponding matching algorithm is developed. Even when the transformed template is
compromised, attackers cannot retrieve raw EEG features and the compromised template can be revoked. The proposed system
achieves the authentication performance of 1.49% EER with a resting state protocol, 0.68% EER with a motor imagery task, and 0.46%
EER under a watching movie condition, which is equivalent to that in the non-encrypted domain. Security analysis demonstrates that
our system is resistant to attacks via record multiplicity, preimage attacks, hill-climbing attacks, second attacks and brute force attacks.

Index Terms—EEG biometrics, authentication, cancelable template, privacy-preserving.

1 INTRODUCTION

Rain biometrics based on electroencephalography
B (EEG) has attracted increasing attention from both
academia and industry [1]. Compared with traditional bio-
metric techniques based on fingerprint, face or iris, EEG bio-
metrics offers additional advantages in terms of robustness
against circumvention and intrinsic liveness detection [2].
First, the biosignals used for EEG biometrics are results
of cerebral activities, which are internal traits not exposed
to the public as face and fingerprint. Meanwhile, since
many features of EEG signals are non-volitional (i.e., beyond
control or conscious apprehensions of the user), the user
cannot deliberately divulge their identifier, thus protecting
the biometric system [3]. Furthermore, as EEG biometrics
involves conscious engagement of the user, with current
sensing technologies, it is highly unlikely to capture EEG
signals covertly or remotely without the user’s awareness.
Being difficult to steal or forge makes EEG biometrics less
prone to sensor spoofing attacks than exposed biomet-
rics [4]. In addition, due to the nature of brain signals, EEG
biometrics inherently supports liveness detection, which is
an important aspect in enhancing the security of biometric
systems against sensor spoofing [2]. Finally, the lack of brain
activity is a clinical indicator of physical death. A person has
to be alive in order to present EEG signals to the sensor at
the time of capture, which protects users and reduces the
possibility of presentation attacks using spoofing artifacts
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or lifeless body parts [3].

The typical architecture of an EEG biometric system
consists of a signal acquisition module to collect data under
specified signal induction protocols, a feature extraction
module to compute discriminative features from raw data,
and a template matching or classification module for de-
cision making, as illustrated in Fig. 1. Template matching-
based systems store a template (e.g., feature vector) for each
user and make a decision to accept or reject a query by
comparing the query template with the stored template of
the claimed user [3], [5], [6], [7], [8]. In contrast, classifier-
based systems train and store a classification model for
each user during registration, and use this trained model
to predict whether a query sample comes from the claimed
user or not [2], [9], [10]. These two types of systems respec-
tively require user templates or models to be stored in the
authentication system. This question arises: is it secure to
directly store templates or models this way? Relevant research
indicates that the answer is no. Assuming that an attacker
manages to break into the database and successfully steals
user templates or models, this would pose a huge threat to
user privacy.

EEG signals contain sensitive information about the
user’s age, gender [11], cognitive abilities with regard to
learning and memory [12], mental states on cognitive work-
load [13] and emotion [14], as well as health condition,
especially brain disorder [15]. A recent study further exam-
ined EEG templates (features) used in biometric applications
and confirmed that personal characteristics regarding age
and gender, as well as information related to medication
intake and neurological disorders, can be inferred from the
templates [16]. These findings highlight the need to apply
privacy-preserving mechanisms to protect user templates
when deploying EEG biometric systems [16]. The same
conclusion applies to classifier-based EEG biometric sys-
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Fig. 1: Traditional EEG biometric systems, template
matching-based systems (top) and classifier-based systems
(bottom).
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tems. Although classifier-based systems do not store user
templates other than classification models, they can still
reveal user-sensitive information. This is because a classifier
is essentially a decision maker that takes a query (e.g., EEG
signals or features) as input and outputs the probability of
the query belonging to the genuine user (positive class).
An adversary can run an evolutionary algorithm and use
the probabilities produced by the classifier to generate a
synthetic input that enables false acceptance [17]. Since
the obtained synthetic input is an approximation of the
raw EEG signals or features, the system is factually com-
promised and user information leaked. Such attacks most
likely happen in a remote authentication environment, e.g.,
a wireless network, where the sensor has been bypassed.

So far, most studies on EEG biometrics have focused on
the optimization of registration and authentication, such as
signal acquisition protocols, feature extraction methods and
classification algorithms. Meager efforts have been made to
protect EEG biometric systems from privacy leakage and
security breaches. In this work, we propose the PolyCos
Transform, short for Polynomial transformation embedding
Cosine functions, a privacy-preserving and cancelable bio-
metric design that protects EEG templates and supports
secure biometric applications. The proposed PolyCos Trans-
form is used to generate cancelable EEG graph templates,
denoted as PolyCosGraph. This paper is a pioneering study
addressing the security concerns of EEG biometrics and
provides insights for future research in this direction. Specif-
ically, we contribute to the existing studies on EEG biomet-
rics in the following aspects:

e Existing privacy-preserving methods such as hash
function and fuzzy commitment are not cancelable,
where the raw biometric features are vulnerable to
hill-climbing attacks. In this paper, a new privacy-
preserving and cancelable EEG biometric system is
designed, which consists of a non-invertible trans-
formation, a template corrupting process, and a
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filter-embedded matching algorithm. Even when the
transformed template is compromised, attackers can-
not retrieve the raw EEG features and the compro-
mised template can be revoked.

e An innovative non-linear, non-invertible transforma-
tion is proposed based on a system of multivari-
ate polynomial equations embedding trigonometric
functions. To the best of our knowledge, there exists
no systematic method to solve such equations.

e A template corrupting mechanism is designed to
create ‘corrupted’ equations in the system, which can
mislead attackers in the solution finding process.

o Considering the template corrupting operation, we
propose a filter-embedded matching algorithm to
match queries with corrupted templates.

o A comprehensive evaluation and security analysis is
carried out that verifies the capacity of the proposed
system against attacks via record multiplicity (ARM),
preimage attacks, hill-climbing attacks, second at-
tacks, and brute force attacks. To date, few published
studies have investigated EEG biometric systems
against these attacks.

The rest of this paper is organized as follows. Section 2
presents a brief review of state-of-the-art research on EEG
biometrics and template protection mechanisms. Section 3
elaborates on the proposed method, PolyCosGraph, fol-
lowed by experimental and analytical results in Section 5
and security analysis in Section 6. Section 7 summarizes the
study and indicates future directions.

2 RELATED WORK
2.1 EEG Biometrics

Existing studies on EEG biometrics mainly focuses on sig-
nal acquisition protocols, feature extraction methods, and
decision-making algorithms, with the aim of improving
recognition accuracy and inter-session stability. For sig-
nal acquisition, different protocols are proposed, including
the resting state protocol [18], protocols based on internal
and volitional tasks such as pass-thoughts and motor im-
agery [5], and event-related potential protocols using exter-
nal stimulation [3]. Among these, the resting state protocol
provides convenient data collection and has been shown
effective and robust for EEG biometric applications [7], [18].

Feature extraction is another critical element in EEG
biometrics in that the discriminative power of the extracted
features directly affects the recognition accuracy. Important
features for EEG biometric applications include those based
on autoregressive (AR) models [6], entropy estimation [19],
Fourier transform [6], [7], and wavelet packet decomposi-
tion [9]. These features capture the temporal dependency
and complexity of the EEG time series in the time domain,
and the spectral characteristics in the frequency domain,
respectively. Moreover, recent studies investigating the per-
formance of bivariate features based on EEG functional
connectivity in user identification and authentication have
shown that these features are more robust to changes in
user state and provide higher inter-session stability than
univariate features [8], [20].

The decision-making methods for EEG biometrics can be
divided into template matching-based and classifier-based.
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For user authentication, the template matching method
compares the similarity between the query and the stored
template using a predefined threshold to decide whether the
query is accepted or not. Existing works defined the similar-
ity according to different distance measures, such as the Eu-
clidean [21], Mahalanobis [7], and Manhattan distances [6],
as well as cosine similarity [6] and cross-correlation [3]. An-
other group of works applied machine learning algorithms,
such as deep learning models, to classification for EEG bio-
metrics. Widely used classification algorithms in EEG bio-
metrics include the linear discriminant analysis [9], support
vector machines and neural networks [2], [10]. However, as
discussed in the section of Introduction, for either template
matching-based or classifier-based EEG biometric systems,
corresponding privacy protection mechanisms are in de-
mand in order to address user privacy and data security
concerns.

2.2 Template Protection and cancelable Mechanisms

To protect the templates in EEG biometric systems, exist-
ing studies applied hash functions [22] and cryptographic
schemes [23]. Specifically, He et al. [22] hashed EEG au-
toregressive features using the fast Johnson-Lindenstrauss
algorithm, and applied a naive Bayes probabilistic model to
classify the hash vectors. Bidgoly et al. [24] used a neural net-
work model to generate EEG templates and analogized this
feature extraction process as a hashing process that can hide
users’ private information. Damasevicius et al. [23] proposed
a cryptographic scheme based on fuzzy commitment and
error-correcting codes for EEG-based authentication, where
the statistical features derived from the covariance matrix of
EEG data were hidden through a fuzzy commitment con-
struct. The turbo codes and modulation constellations were
also used for protecting EEG biometric templates [25]. The
system derives a codeword by turbo coding and modulating
a randomly generated binary key, and then binds the EEG
features with the codeword to obtain a helper data template
through an operator whose outputs reveal no information
about its arguments. Hence, the helper data template can
be made publicly available, together with a hashed version
of the binary key. While these methods protect user-specific
sensitive information contained in the EEG template, they
do not support cancelability to revoke compromised tem-
plates, which makes the system vulnerable to hill-climbing
attacks and second attacks.

EEG biometrics are sometimes referred to as cancelable
biometrics, since they can be elicited by numerous distinct
brain systems through different acquisition protocols [3].
For example, different brain responses can be elicited with
sophisticated visual stimuli. Therefore, it is possible to reset
and change brain biometrics when the current biometric cre-
dential is divulged [11]. The Neurokey [26], a key generation
method, was proposed based on this concept of cancelable
EEG biometrics. Specifically, to replace a user’s Neurokey,
the system changes the signal acquisition protocol and uses
the data collected under the new protocol to generate a
new key. However, such ‘cancelable’ schemes protect neither
EEG features/templates nor user privacy. Moreover, alter-
native options for signal elicitation are limited, and using
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different protocols can impact on the authentication perfor-
mance [27]. It is worth noting that cancelability defined on
signal acquisition protocols is different from the one defined
on non-invertible transformations.

Cancelable template design based on non-invertible
transformations offers data privacy protection and template
revocability. It performs a one-way transformation on the
raw biometric template to derive a transformed template
such that an adversary is unable to obtain the raw template
even if both the stored (transformed) template and the
transformation method are compromised [28]. However,
little research has been done on EEG biometrics in this area.
While many non-invertible transformations were proposed
for other biometric modalities (e.g., fingerprint), most of
them have drawbacks. For example, transformations relying
on underdertermined systems of linear equations are subject
to ARM attacks [29]. A recent study developed a non-
invertible transformation based on multivariate polynomial
equations, improving the resistance to the ARM attack [30].
However, it is still possible to find analytical solutions to the
system [31].

3 METHODOLOGY

This section describes the proposed privacy-preserving and
cancelable EEG biometric system that protects data privacy
and renders revocability at the same time. This is mainly
achieved by the designed non-invertible transformation that
converts EEG features into encrypted templates, the tem-
plate corrupting process, and the corresponding matching
algorithm, as illustrated in Fig. 2.

3.1 Feature Extraction

A resting state signal acquisition protocol is adopted for
data collection, which asks the user to stay relaxed with
eyes open during data collection. After data pre-processing,
we extract the § band (13-30 Hz) signals with a bandpass
filter since EEG in the 8 band shows higher correlation
with human distinctiveness [2], [8]. Then, we estimate
the functional connectivity between every two channels
of the N.j-channel signals using the p index, a general
synchronization index based on the Shannon entropy [32].
After functional connectivity estimation, a fully-collected
network of dimension N.j, x N, is constructed, where each
node represents an EEG channel and each edge reflects
the phase synchronization degree of signals of the two
corresponding channels. Then the following graph features,
as summarized in Table 1, are extracted from the established
p-index functional connectivity networks. These features
have been shown effective in capturing individuals’ unique
EEG patterns and are therefore suitable for authentication
applications [8]. The resultant feature vector is of length
N¢p, + 6, with Ny, = 64 in a standard setup.

3.2 Feature Transformation

Motivated by the idea of multivariate polynomial transfor-
mation [30], we propose a non-linear system of multivariate
polynomial equations embedding trigonometric functions.
Let v denote the feature vector extracted from EEG data,
v = {v1,v9,...,ux} € RN where N is the number of
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Fig. 2: Framework of the proposed method.

TABLE 1: Graph features extracted from the functional
connectivity networks.

Nodal features Descriptions

Pagerank centrality Time spent at each node during a random walk
Global features
Transitivity

Modularity

Descriptions

Interconnection degree of adjacent nodes
Strength of division of a network into modules
Average path length Information transport efficiency

Global efficiency Information exchanges efficiency

Radius and diameter Eccentricity of the network

features in the vector and each feature is a real number. A
multivariate polynomial function of input v can be written
in the following form:

P Q
SIIVP =t 1)

11
where p is the number of monomials in the function, Q
denotes the number of variables in the monomials, and D
denotes the power of variables in the monomials. We have
Q= {q1,9,...qp} and D = {di,ds, ...,ds ¢ }. Evaluating
the function at input v results in a transformed value ¢ at
the right side of the equation.

Repeating the above process N times, we can establish

a well-defined multivariate polynomial system of equations
as follows:

Zpl HQl vDi = ¢,

2 TTQ2 o
YT VP2 =ty @)

PN HQN vDN — ¢y

where t = {t1,ts,...,t5} denotes the encrypted feature
vector after transformation.

Assume that an attacker is able to obtain t and the
corresponding parameters p, Q, and D, recovering the
user’s EEG biometric template v requires to solve the poly-
nomial system (2). It is known that solving large systems
of quadratic multivariate polynomial equations is an NP-
hard problem [31]. For a well-defined system, where the
number of equations is the same as the number of unknown

variables as in our case, the most efficient methods known
to date are exhaustive search for a small field and the
Grobner basic algorithm for a large field. However, with a
large exponential complexity, these algorithms are unable
to handle systems with > 15 unknown variables. In the
proposed method, we establish a higher-order multivariate
polynomial system of N (N = 70) unknown variables,
which is an NP-hard problem infeasible to be solved in
practice.

To further increase the complexity of solving the system,
we generate trigonometric terms cos(v,,) and insert them
into (2), as follows:

SPUIR VP - Efcos(v,)] = £

P2 192 vP2 . E[cos(v,)] = ta @)

SOPN IR VP~ - Elcos(vn)] =ty

where E[-] denotes the rule that determines the existence
of the trigonometric term in the monomial based on certain
conditions of the monomial. Transforming v into t protects
the raw EEG features and data privacy since there is no
systematic way to solve the equations in (3).

In addition, we offer certain flexibility in customizing the
transformation and adjusting the complexity of the system.
Specifically, we allow the system operator to have a dif-
ferent setup for the number of monomials in a polynomial
equation (/V,;,), the maximum number of variables in each
monomial (M,), and the maximum power of variables (M),).
If unspecified, the default values are 3, 10, and 3, respec-
tively. The details of the PolyCos transform are described in
Algorithm 1, and the functions used therein are explained in
Table 2. During the registration phase, the system generates
and stores a key k for each user. This key is used as the seed
to initialize the pseudorandom number generators: rng(k).
Next, two matrices, Q and D, are initialized. The Q is a
two-dimensional matrix with each entry ()., indicating the
number of variables in monomial z of equation z. The D is
a three-dimensional matrix with each entry D, . indicating
the power of variable y in monomial x of equation z. Lines
5-11 in Algorithm 1 set up the matrix D: for each monomial
in each equation, it computes a variable index vector idx
and the corresponding powers of these indexed variables
pw. Looping over all the monomials in all equations yields
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the final matrix D, which contains all parameters of the
multivariate polynomial transformation. Then Lines 12-25
transform v to t: for each monomial in each equation, it
retrieves the variable powers pw and the corresponding
variable indices ¢dx, and applies the multivariate polyno-
mial transformation. In particular, if idz satisfies the con-
dition mod(numel(idz),2) = 1, a consine function term is
inserted into the monomial. The resultant t is the output of
the PolyCos transform. Revoking a template simply requires
to replace the user key k.

Algorithm 1: PolyCos Transform
Setup : N, =3; M, =10; M, =3
Input : feature vector v; user key k
Output: template t
1 N = numel(v)
2 set seed for random number generators: rng(k)
3 Q = randi([1, M,], N, N,,)
4 D = zeros(Ny,, N,N)
5 forn =1to N do
6 form =1to N,, do
7
8
9

idz = randperm(N, Q(n,m))
bw = randi([l, MP]; L, Q(Tl, m))
D(m,idz,n) = pw

10 end

11 end

12 t = zeros(1, N)

13 forn =1to N do

14 z=0

15 form=1to N,, do

16 pw =D(m,:,n)

17 ide = find(pw)

18 if mod(numel(idz),2) = 1 then

19 | 2= 2414, v(idz)P* ) . cos(v(idz(1)))

20 else

21 | 2=z + 14, v(ida)Pwlido)

22 end

23 end

u | tn)=2z

25 end

3.3 Template Corrupting Process

At the end of registration, after deriving t through the pro-
posed transformation, we randomly replace a few elements
in t with dummy values to get t’, a corrupted version of
t to be stored in the system. We refer to this operation
as template corrupting, and NN, denotes the number of
elements being replaced. Details of the template corrupt-
ing process are summarized in Algorithm 2. Specifically,
it generates an index vector idr to randomly select N,
elements from N elements in t: idz = randi([1, N], 1, N,).
Then, the selected elements are replaced with dummy val-
ues: t'(idz) = min(t) + (max(t) — min(t)) - ¢, where
¢ = rand(1l, N,) represents the coefficients of the dummy
values. The above process ensures that the resulting dummy
values are in the same range of the original values, so
it is impossible for an attacker to distinguish them. The
default value of NV, is 4, but different settings are allowed.

5

The corresponding analysis is in Section 5.1.2. Note that
our proposed template corrupting process is not restricted
to a specific transformation algorithm. It can be applied
to other methods as an additional security layer since it
adds extra complexity to finding a solution. An attacker
would have to filter out the dummy equations, which is
a combination problem, before solving the transformation
system. In addition, this process helps the system resist hill-
climbing attacks as the dummy values can misguide the
optimization algorithm to an invalid solution.

TABLE 2: Descriptions of functions used in the algorithms.

Func.
rng(k)

randi([a, b], m, n)|returns m X n pseudorandom integers in [a, b] (uniform)

Descriptions

sets random number generators with seed k
rand(m,n) returns m x n pseudorandom values in (0, 1) (uniform)
randperm(N, k)
find(X)
numel(X)

returns k unique integers selected randomly from [1, N]
returns indices of nonzero elements in X

returns the number of elements in X

Algorithm 2: Template Corrupting

Setup : N, =4 (default)

Input :template t; user key k

Output: corrupted template t’/

N = numel(t)

set seed for random number generators: rng(k)
randomly select: idx = randi([1, N],1, N,)
dummy value coefficients: ¢ = rand(1, N;)
initialize: t' =t

replace: t'(idx) = min(t) + (maz(t) — min(t)) - c
output t/

NS Ul R W N -

3.4 Filter-embedded Matching in the Encrypted Do-
main

During authentication, the system generates a query q fol-
lowing the same signal acquisition, feature extraction and
transformation procedures as in the registration phase, and
then computes a matching score between q and t’, the
stored template of the claimed user. Since t’ is a corrupted
version of the transformed template t with NV, elements
replaced, a genuine query will have a high probability
of generating N, transformed elements that are different
from the stored template. To eliminate the effects of cor-
rupted elements on matching scores, we embed the match-
ing algorithm with a filtering mechanism. Specifically, it
first calculates the element-wise absolute distances between
q and t': d = abs(q — t’), then sorts the distances in
descending order and removes the N, largest elements:
d « sort(d,’descend’) and d + d(:;,1 : N,.) = 0.
Finally, the inverse of the sum of the element-wise distances,
s = 1/sum(d), is employed as the matching score, which
is then compared with the operating threshold 6 to output
the final decision 6. Algorithm 3 illustrates the matching
process. In our experiments, we increment the threshold
until reaching the equal error rate (EER) point, that is, when
the false acceptance rate (FAR) equals the false rejection
rate (FRR). The FAR gives the percentage of queries in
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which impostors are incorrectly accepted, whereas the FRR
expresses the percentage of queries in which genuine users
are incorrectly rejected.

Algorithm 3: Filter-embedded Matching

Setup : N, =4 (default); operating threshold 6
Input : query q; template t’
Output: decision 0
d =abs(q—t’)
d « sort(d, ‘descend’)
d«d(:;1:N,)=0
s =1/sum(d)
if s > 0 then
| 0= accept
else
| 0= reject
end

© 0 N o U R W N =

4 EVALUATION PROCEDURE
4.1 Databases and Pre-processing

The proposed method is evaluated over two pub-
licly available databases, which are the EEG Motor
Movement/Imagery Database (MMIDB) [33] and SEEDiv
database [34]. The MMIDB provides EEG signals of 109
healthy subjects under resting states and motor imagery
tasks, including opening/closing and imagining open-
ing/closing fists or feet. We refer to these tasks as rest-
ing with eyes open (EO), resting with eyes closed (EC),
motor movement (MM), and motor imagery (MI). More
detailed descriptions are available on the webpage of the
database [35]. MMIDB has been widely used in EEG bio-
metric studies due to its relatively large number of subjects
and multiple recording conditions [2], [7], [8], [9], [20].
A 64-electrode BCI2000 system [36] was used for signal
acquisition. The sampling rate was 160 Hz, and the recorded
EEG was referenced to the earlobes. The SEEDiv database
contains EEG recordings of 15 subjects watching movie
clips. This database was originally collected for EEG-based
emotion recognition, where the movie clips were used as
visual stimuli to induce happiness, sadness, fear and neutral
emotions from the subjects. We selected recordings under
the neutral emotion setting for this study. Details of the
two databases are summarized in Table 3. In terms of
data pre-processing, we first removed the DC offset and
extracted signal within the frequency range [0.5 42] Hz,
which is the canonical EEG frequency range. Then EEG
artifacts induced by eye and muscle movement and loose
contact of electrodes were removed using independent com-
ponent analysis and the Multiple Artifact Rejection Algo-
rithm (MARA) [37]. A non-overlapping sliding window was
applied to signal segmentation, and each frame has 2-second
EEG data, i.e., 64 x 320 for MMIDB and 62 x 400 for SEEDiv.

TABLE 3: Databases

Databases|#Subj. #Ch. Samp. rate Devices Protocols
MMIDB 109 64 160 Hz  BCI2000 EO EC MM MI
SEEDiv 15 62 200Hz ESI NeuroScan Movie clips

4.2 Comparison Methods

The proposed method is first compared with the baseline
approaches, where the raw templates are directly used for
comparison in the non-encrypted domain without transfor-
mation. Three popular feature types are considered, which
are the reflection coefficients of autoregressive models [6],
[18], band power features [6], [7], and fuzzy entropy fea-
tures [19], denoted as ARr, PSD, and FuzzEn, respectively.
To be specific, the ARr features are obtained through a 5th-
order AR model using the Burg method [18]. The PSD fea-
tures are derived from the EEG power spectrum estimated
by the fast Fourier Transform [7]. The ARr, PSD, and FuzzEn
features have been shown effective for EEG biometrics. In
addition, we evaluate the combination of these three types
of features as well as graph features defined on the EEG
functional connectivity networks [8].

Furthermore, we compare the proposed method with
four state-of-the-art privacy-preserving methods for EEG
biometrics [22], [23], [24], [25]. These four methods are
reviewed in Section 2.2. Note that research on privacy and
security issues of EEG biometrics is still in the early stage.
Currently, there is no published paper about cancelable EEG
templates and therefore this study is a pioneering work on
this topic. The four comparison methods, which are privacy-
preserving but not cancelable, are the most closely related
works in the literature.

5 RESULT

This section reports the experimental results of the authenti-
cation performance of the proposed method in the lost-key
scenario and the analytical results in terms of decidability,
revocability, diversity and unlinkability.

5.1 Performance in the Lost-key Scenario

In the lost-key scenario, we assume the user key used in the
transformation is exposed to the attacker so that the attacker
can take advantage of this to penetrate the authentication
system, which is the worst case for a cancelable biometric
system. In our experiment, we use a fixed parameter key k
for feature transformation during registration and authenti-
cation for all users to obtain performance under the lost-key
scenario.

5.1.1 Performance Comparison

Table 4 reports the EER results of the proposed method and
the baseline approaches under different signal acquisition
protocols in the lost-key scenario. Authentication systems
based on transformed templates typically sacrifice some
performance compared to their original versions using raw
biometric templates without transformation. This is because
the irreversible transformation often requires reordering or
repositioning the feature set, which impairs the discrimi-
native power of the feature set and introduces additional
variations within the user [38]. From the EER results of
PolyCosGraph and Graph in Table 4, we can see that our
design exhibits equivalent authentication performance to
the raw biometric feature templates, achieving 1.49%, 5.85%,
0.68%, 1.15%, and 0.46% EER with Fe = 10 and F't = 5
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under the EO, EC, MM, MI, and watching movie condi-
tions, respectively. Furthermore, comparing PolyGraph and
PolyCosGraph, we observe that integrating the trigonomet-
ric components into the multivariate polynomial transfor-
mation further improves authentication performance while
increasing the complexity of solution finding.

Fig. 3 shows the detection error trade-off (DET) curves of
PolyCosGraph under different signal acquisition protocols.
Table 5 compares the EER results of the proposed PolyCos-
Graph and four state-of-the-art privacy-preserving methods
for EEG biometrics (i.e., [22], [23], [24], [25]). Clearly, Poly-
CosGraph outperforms these comparison methods in terms
of both authentication accuracy and security.

TABLE 4: Authentication performance (EER) of the pro-
posed and comparison methods under different signal ac-
quisition protocols.

MMIDB database - EO

Methods Fe=10, Ft=1|Fe=10, Ft=5|Domain

ARr 19.41% 8.97%  |Non-encrypted
FuzzEn 24.45% 14.66% |Non-encrypted
PSD 28.64% 21.69% |Non-encrypted
ARr+PSD+FuzzEn 17.14% 8.09%  |Non-encrypted
Graph 5.18% 1.1% Non-encrypted
PolyGraph (this study) 7.9% 1.67%  |Encrypted
PolyCosGraph (this study)| 7.34% 1.49%  |Encrypted

MMIDB database - EC

Methods Fe=10, Ft=1|Fe=10, Ft=5|Domain

ARr 16.72% 9.56%  |Non-encrypted
FuzzEn 24.43% 18.17% |Non-encrypted
PSD 30.28% 23.21% |Non-encrypted
ARr+PSD+FuzzEn 15.17% 8.59%  |Non-encrypted
Graph 11.13% 5.03%  |Non-encrypted
PolyGraph (this study) 14.35% 6.15%  |Encrypted
PolyCosGraph (this study)| 13.81% 5.85%  |Encrypted

MMIDB database - MM

Methods Fe=10, Ft=1|Fe=10, Ft=5|Domain

ARr 19.17% 9.4% Non-encrypted
FuzzEn 22.64% 13.75%  |Non-encrypted
PSD 27.66% 22.02% |Non-encrypted
ARr+PSD+FuzzEn 14.96% 7.12%  |Non-encrypted
Graph 4.02% 0.4% Non-encrypted
PolyGraph (this study) 6.88% 0.82%  |Encrypted
PolyCosGraph (this study) 6.1% 0.68% |Encrypted

MMIDB database - MI

Methods Fe=10, Ft=1|Fe=10, Ft=5|Domain

ARr 18.43% 10.78%  |Non-encrypted
FuzzEn 23.09% 15.42% |Non-encrypted
PSD 26.25% 20.63% |Non-encrypted
ARr+PSD+FuzzEn 14.12% 7.89%  |Non-encrypted
Graph 4.82% 0.98%  |Non-encrypted
PolyGraph (this study) 7.61% 1.26%  |Encrypted
PolyCosGraph (this study)| 7.02% 1.15%  |Encrypted

SEEDiv database - Watching movie clips

Methods Fe=10, Ft=1|Fe=10, Ft=5|Domain

ARr 15.63% 9.79%  |Non-encrypted
FuzzEn 16.48% 11.14% |Non-encrypted
PSD 17.72% 6.09%  |Non-encrypted
ARr+PSD+FuzzEn 9.78% 3.07%  |Non-encrypted
Graph 2.39% 0.15%  |Non-encrypted
PolyGraph (this study) 4.66% 0.76%  |Encrypted
PolyCosGraph (this study) 4.2% 0.46%  |Encrypted

7
0.15
MMIDB-EC
MMIDB-EC
MMIDB-MM
0.1 MMIDB-MI
o SEEDiv-Movie
o
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Fig. 3: DET curves of the proposed PolyCosGraph (F, = 10,
Fy =5, N, = 4) under different signal acquisition protocols.

Signal acquisition protocol. An important aspect of
EEG biometrics is the signal elicitation protocol as it is the
prerequisite for obtaining distinctive neural responses from
individuals. From the results, we can observe that the signal
acquisition protocol has an impact on the biometric perfor-
mance. Specifically, the use of cognitive tasks (e.g., motor
imagery) and external sensory stimulation (e.g., visual stim-
uli) provides better authentication performance than the
resting states [39]. This is because the internal and external
stimulation can elicit corresponding brain responses associ-
ated with cognitive processing or evoke activity in particular
brain functional areas, which is considered distinctive for
humans [3]. On the other hand, the resting state with EO
offers a simple and convenient signal acquisition protocol
for EEG biometrics as it does not involve sensory stimu-
lation or complex instructions [7]. The proposed method
does not rely on specific signal acquisition protocols, and
the results validate its effectiveness under different types
of protocols, including resting states (spontaneous brain
activity), volitional tasks, and external visual stimulation.
Both the resting state and motor imagery protocols represent
volitional tasks, meaning that subjects are aware and in
control of the responses. This should protect users of brain
biometric systems against social assessment threats: users
are able to intentionally or unintentionally invalidate brain
biometrics when coerced [40].

Feature analysis. We evaluate the importance of each
graph feature using recursive feature elimination. Specif-
ically, we implement a support vector machine-based re-
cursive feature elimination algorithm with correlation bias
reduction [41]. This algorithm has been demonstrated to
be effective for feature selection in bioinformatics. There
are a total of 70 and 68 features for MMIDB and SEEDiv
databases, respectively. We first generate a ranking list for
these features using recursive feature elimination, then com-
pute the EER performance as the number of top-ranked
features increases. Fig. 4 presents the EER results of the
top-ranked graph features. It can be observed that the EER
decreases as the number of features increases, and this trend
is consistent in all states for both databases, especially in
the resting state EO. The results indicate that all the graph
features employed in the proposed system are important for
user authentication. Although the contribution of different
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TABLE 5: Authentication performance (EER) comparison between the proposed PolyCosGraph and state-of-the-art privacy-

preserving methods for EEG biometrics.

Method Authentication performance (EER) Security
MMIDB-EO MMIDB-EC MMIDB-MM MMIDB-MI SEEDiv-Movie | Encrypted Cancelable

ref [25] 10.01% 9.38% 6.52% 8.21% 37.82% Yes No

ref [23] 44.05% 41.33% 33.59% 32.37% 38.66% Yes No

ref [22] 30.38% 27.5% 42.5% 26.42% 35.07% Yes No

ref [24]* 10.2% 12.5% 5.64% 8.2% 3.14% Yes No

PolyCosGraph 1.49% 5.85% 0.68% 1.15% 0.46% Yes Yes

*This method needs to train a neural network model with approximately 80% of the data from the databases.

features varies, there are no redundant ones as all of them
help improve performance. We further visualize the impor-
tance (ranks) of the nodal graph features (Pagerank central-
ity of each node/channel) on authentication performance in
scalp topological maps in Fig. 5, and report the importance
(ranks) of global graph features in Table 6. The observation
is that top features vary in different states, suggesting that
the same features would contribute differently in different
states and conditions. The reason for these variations is
that different signal acquisition protocols and states elicit
different neural responses and functional brain activities, re-
sulting in various EEG characteristics from the scalp. Hence,
the unique identity-bearing features may vary accordingly.
It is necessary to retain some redundancy in the feature set
for a reliable system in different states.

MMIDB database
0.3 0.3

S0 |

SEEDiv database

Watching movie |

=

=
o
N

EER

0 0
0 20 40 60 0 20 40 60
#Top features (total 70) #Top features (total 68)

Fig. 4: EER results of top-ranked graph features.

MMIDB-EO MMIDB-EC MMIDB-MM MMIDB-MI SEEDiv-Movie

H High

H Low

Ranks

Fig. 5: Ranks of nodal features. The color indicates the ranks
of the Pagerank centrality features of nodes over the scalp,
with importance decreasing from red to blue.

TABLE 6: Ranks of global graph features.

Global graph features MMIDB SEEDiv
EO EC MM MI | Watching movie
Transitivity 1 6 2 2 40
Modularity 59 58 20 32 29
Average path length 3 4 3 3 44
Efficiency 2 1 1 1 30
Radius 4 4 4 4 47
Diameter 5 5 5 5 45

The proposed transformation is not confined to specific
system configurations. In the following analysis, we evalu-
ate the impact of system configurations on the authentica-
tion performance of the proposed method. This includes the
effects of the number of EEG frames used to generate tem-
plates and queries (i.e., F, and F}), the random replacement
parameter NV,, and electrode configurations. The EO resting
state is used for the following analysis.

5.1.2

Number of EEG frames. EEG is a continuous data source,
so it is natural and practical to use multiple frames of data
rather than a single signal segment to generate templates.
In this analysis, we examine how the authentication per-
formance is impacted by Fe, the number of frames used in
templates during registration, and F;, the number of frames
for generating queries during authentication. The database
provides 30 frames EEG for each of the 109 subjects (60
seconds of EO recording per subject and 2 seconds per
frame), leading to 3161 genuine tests at F, = 1 and F} =1,
and 436 genuine tests at /i = 10 and F; = 5. For impostor
testing, we use the first I} frame(s) of all subjects other
than the user to generate query samples, leading to 11772
impostor tests.

The EER results are shown in Fig. 6. With F; = 1, ie,,
a single EEG frame for a query, a decreasing trend in the
EER is observed as F, increases, achieving EER = 14.69%
at F. = 1, EER = 7.34% at F. = 10, and EER = 6.88%
at F. = 20. The performance improvement is significant,
especially when F, increases from 1 to 10. The interpreta-
tion of this result is related to the nature of brain signals.
EEG signals contain transient components, presenting a
momentary variation in the recorded data. In addition, EEG
signals contain nonstationary ingredients, so their statistical
characteristics change with time. The basic source of the
observed nonstationarity in the EEG is not due to the casual
influences of the external stimuli on the brain, but rather
a reflection of switching the inherent metastable states of
neural assemblies during brain functioning [42]. The quasi-
stationary state has a short duration, and therefore, a longer
segment or multiple short segments are usually used in
practical applications. Likewise, when fixing F. = 10 and
increasing F}, we can observe that the EER further decreases
from 7.34% at F; = 1 to 1.49% at F; = 5 and 0.67% at
F; = 10. Our result shows that the use of multiple EEG
frames enhances the stability of the template and query,
which substantially improves authentication performance.
This is consistent with the evidence from neuroscience re-
search.

Impact of System Configuration

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218782

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. XX, XX 2022

In the practical deployment of the proposed system,
parameters F, and F} can be adjusted according to appli-
cation scenarios and requirements. Proper settings require
a balance between authentication performance and system
usability (in terms of data acquisition time and conve-
nience), as larger values of F. and F}; enhance accuracy but
increase data acquisition time required for registration and
authentication. Therefore, we set F,, = 10 and F; = 5 in all
other analyses.

= PolyCosGraph

EER

= PolyCosGraph
=== Graph

EER

Ft (Fe=10)

Fig. 6: Authentication performance (EER) of the proposed
PolyCosGraph and the baseline Graph approach versus
numbers of EEG frames during enrollment and authenti-
cation, i.e., F, and F;.

Number of corrupted elements. The template corrupt-
ing process in registration replaces N, elements in t with
dummy values randomly produced considering the distri-
bution of values in t. A corresponding matching protocol
is established to account for the bias introduced by these
dummy elements. In this analysis, we evaluate the effect
of different values of IV,. on the authentication performance.
Fig. 7 presents the EER of the system at N, = {0,1,--- ,10}.
Although there are small fluctuations in the range of 1.49%
to 1.84%, the results indicate a relatively small impact of
N, on the EER. Note that when N, = 0, the matching
protocol degrades to the traditional case, where no random
replacement takes place. Based on the results, N, = 4 is
selected as it provides the lowest EER among all the tested
settings.

Electrode configuration. We evaluate the proposed
method using four electrode configurations, the standard
64-electrode setup of the 10-20 international system and
the setup of three widely used commercial EEG devices,
namely Quick30 and Quick20 from Cognionics and Emotiv
Epoc+. Fig. 8 illustrates the placement of electrodes in
the aforementioned four configurations, with corresponding
authentication performance (EER) summarized in Fig. 9. We
can see that as the electrode density decreases, the EER
increases from 1.49% with All64 to 4.7% with Quick30,
5.28% with Quick20, and 6.18% with Emotiv. The same
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Fig. 7: Authentication performance (EER) of the proposed
method versus the number of elements randomly replaced
in t during enrollment, i.e., INV,.. Other system settings: F, =
10 and F; = 5.

trend is observed from the results of the Graph method (i.e.,
without transformation). The reason for this phenomenon
is simple. As the number of electrodes decreases, fewer
resources are available for extracting unique features from
subjects, resulting in less discriminative feature sets and
thus adversely affecting authentication performance.

The proposed method is based on the functional con-
nectivity of EEG signals, which usually requires a suf-
ficient number of channels for a reliable estimation and
feature extraction. To address performance degradation due
to insufficient electrodes, we can use the channel density
augmentation method proposed in a previous study [43],
which has been demonstrated effective in addressing this
issue. Another way to enhance channel density is to use a
pre-trained machine learning model, where the relationship
between channels was encoded during the training stage, to
generate data for missing channels [44].
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Fig. 8: Electrode configurations of four commercial EEG
acquisition devices, denoted as All64, Quick30, Quick20,
and Emotiv, equipped with 64, 29, 19 and 14 electrodes,
respectively.

The designed system can be employed for access control
in application scenarios that require high security levels, or
continuous authentication for human-machine interaction
systems and brain-computer interaction systems. The pro-
posed method itself is not confined to specific EEG scanning
systems or channel configurations. It is flexible to select a
proper EEG scanning system (e.g., BCI 2000 system with
64 channels or Emotiv Epoc+ with 14 channels) for signal
acquisition in accordance with application requirements.
The signal acquisition time depends on the setting of F,
and F}; parameters. For example, with F,, = 10 and F} = 5,
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Fig. 9: Authentication performance (EER) of the proposed
method with four different electrode configurations. Other
system settings: . = 10, F; = 5,and N, = 4.

it takes 20 seconds and 10 seconds to acquire data during
enrollment and authentication, respectively. Changing to
F, =5 and F; = 1 will reduce the time to 10 seconds and 2
seconds, respectively.

5.2 Decidability Analysis

Biometric authentication can be considered a classification
task that distinguishes the user from impostors. To achieve
good matching performance, a feature or template set with
strong discriminative power is required. The decidability
index d' [45] is used to measure the discriminative ability
of the templates generated by our method. The index d’
is widely used in the decidability analysis of biometric
systems, defined as:

d = (:uintra - Minter)/\/(éizntra + 6l2nter)/27 4

where pinirq and ;4 denote the mean and standard de-
viation of genuine scores, respectively, and finter and dinter
denote the mean and standard deviation of impostor scores,
respectively. The genuine score is computed by matching
two samples from the same user, and the impostor score is
computed by matching the user sample against the sample
of other subjects, yielding 435 genuine scores and 97200
impostor scores for each user. The score distributions of
the proposed method, PolyCosGraph, under the two signal
elicitation protocols, EO and MM, are shown in Fig. 10. We
can see that the PolyCos transform enhances the decidability
of the template: from 1.34 to 3.88 under the resting state
and from 1.53 to 4.86 under motor movement tasks. The
same conclusion can be drawn from the reduction in overlap
between the two score distributions.

5.3 Unlinkability

Unlinkability is defined as ‘a property of two or more
biometric references that cannot be linked to each other or
to the subject(s) from which they were derived’ [46]. We
follow the framework proposed by Gomez-Barrero et al. [47]
to evaluate the unlinkability of the proposed PolyCosGraph
design. This framework defines two types of scores: the
mated score is computed between two templates from the
same user, and the non-mated score is computed between
two templates from two different users. On top of the mated
and non-mated score distributions, the score-wise linkability
D, (s) and the system overall linkability DY are defined,
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Fig. 10: Genuine and impostor score distributions and the
corresponding decidability index d’ in the decidability anal-
ysis, demonstrated for Users 5 and 69 under the EO and
MM signal acquisition protocols.

which are local and global measures, respectively [47]. The
value range of both measures is 0 to 1, where 0 indicates
fully unlinkable. For the unlinkability test, we generate six
different transformed templates from every sample of each
user using six different keys [30] and calculate mated and
non-mated scores according to their definitions. Fig. 11 re-
ports the results of the unlinkability analysis of the proposed
method under two signal acquisition protocols, EO and
MM. It shows that the mated score distribution with dif-
ferent keys (cross-matching) is largely overlapped with the
non-mated score distribution, which means that templates
derived from the same user using different keys are as dis-
parate as templates of different users. In addition, the global
linkability indices are D?Y° = 0.02 and D{¥® = 0.01 under
EO and MM, respectively, indicating the high unlinkability
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of the proposed method.
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Fig. 11: Distributions of mated and non-mated scores and
the corresponding local measure D, (s) and global measure
DJ¥? in the unlinkability analysis under the EO and MM
signal acquisition protocols.

5.4 Diversity

Diversity means that different templates can be generated
using the same biometric data, and these templates should
be unrelated so that it is impossible to match them. We com-
pute the pseudo-impostor score [30] to evaluate whether
the proposed PolyCosGraph design meets the require-
ment of diversity. Specifically, we apply 50 different keys
(k1,k2,- -+ ,ksp) and generate the corresponding pseudo-
impostor templates from the first sample of each user.
The pseudo-impostor score is then computed by matching
the original user templates (generated with k) against the
pseudo-impostor templates (generated with k1, ko, - - , ks50)
of the same user. Fig.12 shows the distributions of gen-
uine and pseudo-impostor scores for the proposed Poly-
CosGraph method. No overlap is observed between the
two distributions, indicating that adversaries are unlikely
to match across applications or break into the system using
compromised templates. The same finding can be reached
by the decidability indices, 5.65 and 5.76 under the EO and
MM signal acquisition protocols, respectively, suggesting
that templates generated from the same user with different
keys are not related.

6 SECURITY ANALYSIS
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Fig. 12: Distributions of genuine scores (same user with
the same key) and pseudo-impostor scores (same user with
different keys) in the revocability and diversity analysis
under the EO and MM signal acquisition protocols.

6.1 Attacks via Record Multiplicity (ARM)

With the principle of diversity, a cancelable biometric tem-
plate design supports the generation of different trans-
formed templates t from the same raw biometrics x by
changing the transformation key k. Assume that the at-
tacker is able to obtain multiple transformed templates
{t1,t2, -+ ,t,} from one or multiple applications and
knows the transformation and user keys {ki, ko, -+, kp}.
The system is then exposed to the ARM attack, which ex-
ploits these transformed templates to recover the biometric
features v [29]. For example, cancelable design based on
classical linear random projections is vulnerable to ARM
attacks, since combining multiple transformed templates
will result in a well-defined system of linear equations, from
which a unique solution (i.e., raw biometric features) can
be determined. In other words, this type of algorithm only
provides one-time-pad security.

The proposed PolyCosGraph algorithm is resistant to
ARM attacks, due to three main components of the algo-
rithm, namely the multivariate polynomial system, the em-
bedding of trigonometric components in the system, and the
template corrupting process. As analyzed by Courtois et al.
in their study [31], solving large systems of quadratic multi-
variate polynomial equations is an NP-hard problem in any
field. For well-defined systems, the most efficient methods
known to date are exhaustive search and the Grobner basic
algorithm, for small and large fields, respectively. However,
the Grobner basic algorithm has a prohibitively high ex-
ponential complexity, and it is computationally infeasible
to apply such algorithms to systems with > 15 unknown
variables in practice. To successfully launch an ARM attack
to the proposed method, a polynomial system with 70
unknown variables needs to be solved. This is considered
NP-hard and infeasible to solve in practice. We further in-
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crease the complexity of solving such a system of equations
by applying higher-degree multivariate polynomials and
embedding trigonometric functions in it. Even with over-
defined systems, there is no systematic way to solve it. In
addition, the random replacement procedure at the end of
the registration renders extra complexity to find a solution.
Attackers have to filter out dummy equations, which is a
combination problem, before solving a system of higher-
order multivariate polynomial equations embedded with
trigonometric functions.

6.2 Preimage Attacks

Taking into account the properties of cancelable biometrics,
a recent study [48] extended the preimage attack, which was
defined for cryptographic hash functions, in the context of
cancelable biometric templates: given a transformed tem-
plate y, it should be difficult to find the true solution x = xg
such that y = f(xg,k), where f(-) is the transformation
function with key k and x the raw biometric template. That
is to say, collision resistance is a property of cryptographic
hash functions, but it is not necessarily required by the non-
invertible transformation in a cancelable template design.
This is because the cancelable template design allows a
compromised template to be revoked and a new one to
be generated using a different key k’. Solution x # Xo
would then become invalid when the key is changed and the
compromised template is revoked, i.e., f(x, k") # f(x0, k).

In the ARM attack analysis, we have discussed that
it is not computationally feasible to solve the system of
equations in a systematic way to obtain the raw biomet-
ric template. Assuming that an attacker is able to submit
queries to the system and get the corresponding matching
scores, hill-climbing algorithms can be used to launch a
preimage attack. This type of attack is specifically referred
to as a hill-climbing attack.

6.3 Hill-Climbing Attacks and Second Attacks

In hill-climbing attacks, adversaries iteratively submit syn-
thetic representations of a user’s biometric and exploit the
corresponding matching scores to guide the iteration pro-
cess until a false acceptance is attained [17]. As illustrated in
Fig. 13, an attacker runs an algorithm to iteratively generate
v’ and inject it to the system, then uses the corresponding
matching score to guide its estimation direction until v’ is
accepted by the system. Hill-climbing attacks are a big threat
to traditional biometric systems because once the attacker
obtains a synthetic feature vector accepted by the system,
raw biometric features are considered exposed forever. In
the following experiment, we verify that the proposed can-
celable template design can effectively protect raw biometric
features and that hill-climbing attacks do not pose a major
threat to the system.

In our experiment, we implement the Nelder-Mead al-
gorithm, a downhill simplex method for derivative-free
optimization, to perform the hill-climbing attack [17]. The it-
eration ends when the matching score between the template
generated from the submitted input and the reference tem-
plate is > 6, or when the maximum number of submissions
(20,000) is reached. The results of the hill-climbing attack are
presented in terms of success rate (SR) and efficiency Ny,

e -[mject v’]# -[Estimate u’]<-

Feat Decision-|d
ea u.re Y Transformation t Matching ec:s.lon
Extraction making

[

EEG
Acquisition

Fig. 13: Tllustration of hill-climbing attacks on the authenti-
cation system.

which are defined as the percentage of user accounts that
are compromised and the average number of submissions
(attempts) used to break a user account. Fig. 14 reports
the SR and N, results of the hill-climbing attack on the
proposed system. At the EER operating point, which is
0 = 0.33 for EO and 8 = 0.34 for MM, the SRs are around
0.67 and 0.33, respectively. As the threshold 6 increases, the
SR of finding a synthetic input v’ to enter the user account
drops dramatically, along with the efficiency. A similar trend
is observed under the two signal acquisition protocols.

In the following analysis, we demonstrate that the syn-
thetic input v’ obtained through hill-climbing attacks is
unlikely to reflect the true biometric feature v; therefore
it becomes invalid once the compromised user template is
revoked. Let ty denote the user reference originally stored
in the system and v’ the synthetic feature vector estimated
by the hill-climbing attack. This v’ is tentatively accepted by
the system since it produces a t{, that matches t¢. To defend,
the system would revoke the compromised template t, and
replace it with a new one t; which has no relation with ty.
Let t} denote the template transformed from the obtained
synthetic feature vector v’ using the same new key. We
demonstrate that t| is far from t; so that the attacker will
not be able to break in the system again. Re-entering user
accounts using previously estimated feature vectors after
template revocation is referred to as second attacks [48].

The success rate of launching a second attack on the
proposed method is reported in Fig. 15. At each ¢, we first
performed a hill-climbing attack on each user, then for users
whose templates were compromised, we revoked their tem-
plates and launched a second attack on each of them. For ex-
ample, at § = 0.33 (the EER operating point under the EO),
the success rate of hill-climbing attacks is 0.67, that is, 73 out
of 109 users are successfully cracked. Then for each of the
73 users, we carry out the second attack using the estimated
features obtained in the hill-climbing attack. The results
indicate that even with a threshold smaller than the EER
operating point, the system is unlikely to be compromised
by second attacks. In addition, matching scores between real
biometric features and estimated features obtained through
hill-climbing attacks show that estimated features do not
reflect true biometric features.

6.4 Brute Force Attacks

Brute force attacks aim to obtain raw biometric features
through exhaustive search. It is important to ensure that
the search space is relatively large so that the probability
of successfully finding the secret is low. In our method, the
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Fig. 14: Success rate (SR) and efficiency (Ng4) of hill-
climbing attacks on the system.

EEG feature vector v has m elements (m=70), where each
element is a real number (double precision floating number).
Hence, the number of trials to traverse all possible guesses
in the search space is 244%°, which is enormous. In the actual
deployment of the system, m is related to the number of
electrodes of the EEG acquisition device, and it can be ad-
justed according to application scenarios and requirements.
Having a larger value of m can improve security strength,
but at the same time it means less efficient data collection
and more computational costs. Hence, a proper value for m
should be set in order to balance security and efficiency.

7 CONCLUSION

This paper addresses two security concerns of EEG biomet-
ric systems: 1) the stored raw EEG templates leak users’
private or personal information; 2) the systems are vulner-
able to attacks such as ARM and hill-climbing attacks. A
privacy-preserving and cancelable EEG biometric system
was designed, in which we proposed a non-invertible trans-
formation based on multivariate polynomial equations em-
bedding trigonometric functions, a template-corrupting pro-
cess and a corresponding matching algorithm. The proposed
method not only protects the privacy of raw EEG features
and users’ sensitive information that can be inferred from
raw EEG features, but also provides revocability that allows
the replacement of compromised templates. The proposed
system achieved the authentication performance of 1.49%
EER with a resting state protocol, 0.68% EER with a motor
imagery task, and 0.46% EEG under a watching movie con-
dition, in the encrypted domain, which is comparable to the
performance of EEG biometric systems in the non-encrypted
domain. A comprehensive security analysis shows that the
proposed method can effectively defend against ARM at-
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Fig. 15: Success rate of second attacks at different thresholds
(top), and matching scores between real biometric features
and estimated features obtained through hill-climbing at-
tacks at different thresholds (bottom). The vertical lines
indicate the EER operating point.

tacks, preimage attacks, hill-climbing attacks, second attacks
and brute force attacks.

Research on the security of EEG biometric systems has
just begun, so we will continue this line of study and
develop cryptographic methods (e.g., the Zero-knowledge
proof) in building secure bio-cryptographic EEG systems.
In addition, this study targeted the template matching-
based systems, however, how to tackle the security issues
of classifier-based systems is still an open question. Since
classifier-based authentication systems store a classification
model for each user rather than a template, cancelable
template design is not applicable in this case. Therefore,
appropriate protection methods need to be designed. Our
future work will also investigate this problem.
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