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A Privacy-preserving State Estimation Scheme
for Smart Grids

Hong-Yen Tran, Jiankun Hu*, Senior Member, IEEE, and Hemanshu R. Pota

Abstract—With the appearance of electric energy market deregulation, there exists a growing concern over the potential privacy
leakage of commercial data among competing power companies where data sharing is essential in the applications such as smart grid
state estimation. Most of the existing solutions are either perturbation-based or conventional cryptography-based where a trusted
central 3rd party would often be required. This paper proposes privacy-preserving state estimation protocols for DC and AC models.
The proposed idea is to distribute the overall task of the system state estimation into sub-tasks which can be performed by local
sub-grid operators with their private data. A masking method is designed inside a homomorphic encryption scheme which is then used
to ensure both the input and output data privacy during the collaboration process among individual sub-task players. Security is
achieved via the computationally indistinguishable post-quantum security guaranteed by a levelled homomorphic encryption scheme
over real numbers and the differential privacy of the output estimated states provided by the Laplace mechanism perturbation
integrated into the masking linear transformation. Simulation results are presented to demonstrate the validity of our proposed
privacy-preserving system state estimation protocols.

Index Terms—smart grids, privacy-preserving, competitive privacy, power industry deregulation, state estimation, homomorphic
encryption, perturbation.

✦

1 INTRODUCTION

THe prominent deployment of Advanced Metering In-
frastructure (AMI), Phasor Measurement Units (PMUs)

and other types of sensors and smart devices on power sys-
tems provides rich sources of energy data for various types
of analytics, ranging from energy management to security
operations on smart grids [1], [2]. One of the most critical op-
erations in smart grids is system state estimation [3]. Smart
grid system states can support many useful applications
such as quick fault identification and outage restoration
management, real time performance optimization, etc. [4].
Therefore, it is critical to obtain an accurate system state
estimation for smart grid management.

Power industry deregulation is driving the need for
state estimation of interconnected power systems [5]. In a
deregulated power grid environment, independent trans-
mission grid companies (TGCs) possess their internal mea-
surements, line parameters, network topology, and states
of the portion of the grid they manage. To estimate the
system state of a power grid, certain information from all
involved sub-grids must be shared [6]. However, competing
power companies (TGCs) may be reluctant to contribute
their private data due to the potential of compromising their
interests [7] or the threats of cyber-physical attacks once
the power grid data are accidentally or deliberately leaked
to hackers (e.g, false data injection attacks [8], [9]). For
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example, the knowledge of the system states of neighboring
power systems can be used to create competitive advan-
tages on an electricity market by tuning a bidding strategy
based on a good forecasting of location marginal price [5].
The more TGCs participate in a wider interconnected grid,
the more complex and cumbersome regulatory and legal
frameworks need to be established to govern the sharing
of data between different operators. This also leads to the
concern of competitive privacy between multiple power
operators [10]. For convenience, the terms ‘’TGC’ and ‘’sub-
grid operator’ will be used interchangeably. A grid model is
represented as a set of interconnected buses attached with
power generators and loads as in a standard power flow
analysis.

State estimation in an interconnected power grid can be
performed in an integrated (global) or distributed (local)
manner. For an integrated estimator, the whole measure-
ment set is collected and processed in a single state esti-
mator. For a distributed approach [11], [12], each sub-grid
performs local state estimation with local measurements
taken within its area and then exchanges some information.
The distributed approach is less accurate than the integrated
one, but less information needs to be shared. Although
the distributed estimator requires fewer data to be shared,
the vulnerability of privacy leakage still exists. Thus, it is
necessary to find solutions for privacy-preserving state es-
timation in interconnected transmission power systems that
can achieve the integrated state estimation while protecting
the privacy of individual sub-grids.

Under the constraint of controlling the trade-off be-
tween state estimation accuracy and the privacy of sub-
grid operators, privacy-preserving state estimation in an
interconnected transmission power grid requires non-trivial
solutions. Encryption and perturbation are two primary
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tools for addressing privacy issues [13]. MPC [14] adopting a
multi-key homomorphic encryption scheme which supports
computation over encrypted data might be a candidate
solution. The drawback is that a multi-key homomorphic
encryption scheme is demanding in not only computation
but also communication costs. The reason is that all parties
have to generate partial decryption and share them so that
it is able to decrypt or evaluate a function in the ciphertext
space [15]. Masking the true data before sharing is another
solution, namely perturbation. But it comes at the expense of
state estimation accuracy degradation [16] or a requirement
of a trusted centre and a secure distribution noise protocol
[17], [18].

This paper examines the solutions to deal with the
competitive privacy of transmission power companies when
collaboratively implementing state estimation in an inter-
connected transmission power grid. From this perspective,
privacy-enhanced versions for DC and AC state estimation
are designed with the main contributions as follows:

• A novel idea is proposed that the overall task
of privacy-preserving system state estimation, for
both DC and AC models, is conducted by privacy-
preserving collaborative computation over dis-
tributed pre-processed data from sub-grid operators.

• Privacy-preserving DC and AC state estimation pro-
tocols in a multi-area transmission grid are designed
to provide a theoretical assurance of achieving state
estimation accuracy and competitive privacy in a
semi-honest adversarial model.

• Analysis of privacy regarding different types of ad-
versaries is given. Privacy is mainly achieved via
(1)- semantic security of a homomorphic encryption
scheme and (2)- local differential privacy of the out-
put estimated states with the Laplace mechanism
integrated into a linear masking transformation.

• Experiments assessments are given and analyzed
with the adoption of parallel matrix computation
on high-performance computing to demonstrate the
accuracy, efficiency, and scalability.

This paper consists of eight sections. Following this In-
troduction section are the Related Works and Preliminaries
sections. The system model and threat model are presented
in Section 4, which is followed by the description and anal-
ysis of the proposed protocols in Sections 5 and 6. Empirical
evaluation is provided in Section 7. Finally, Section 8 is for
the conclusions.

2 RELATED WORKS

The trade-off between privacy and state estimation accuracy
was investigated in an information-theoretic framework
[7], [10]. The study in [16] proposed a privacy-preserving
state estimation method in a single feeder of a distribution
network based on load measurements from smart meters.
Consumers’ meter readings are perturbed with Laplace or
Gaussian noise to achieve differential privacy. While the
perturbation method provides differential privacy, it affects
the quality of state estimation. In addressing this problem,
a privacy-preserving state estimation scheme was proposed

based on the perturbation of meter readings at the distribu-
tion level of a power grid in protecting consumers’ privacy
while still allowing a distribution operator to implement
accurate state estimation [17]. The noise elements perturbed
meter readings are centrally calculated to exploit the kernel
of an electric grid configuration matrix supporting noise-
cancelling in a state estimation process; thus, it does not
affect the quality of state estimation as in [16]. The limitation
is that the obfuscation necessitates a trusted lead smart
meter to distribute each noise element to each designated
meter. If this lead smart meter is compromised or acts as a
semi-honest adversary, the scheme is insecure. The work in
[18] improved [17] by splitting the process of generating
and distributing the obfuscation vector among multiple
gateways to reduce this vulnerability. However, this ap-
proach also does not provide a secure noise distribution
protocol and still requires a trusted third party. Moreover,
the issue of missing data (e.g., due to a communication loss)
was not considered, whereas this problem could destroy
the distortion error-free property, consequently affecting the
correctness of state estimation. The system models of the
state estimation schemes in [17], [18] are centralized with
only one distribution system operator who carries out state
estimation for a distribution grid; thus, only consumers’
meter readings are required to be kept private. The con-
figuration matrix (i.e, system parameters) and the estimated
states are available for the distribution system operator in
the scheme.

Considering a different privacy scenario in a transmis-
sion system, articles [10], [19], [20], [21] dealt with the threats
of privacy leakage when state estimation is collaboratively
processed between k sub-transmission systems. Existing
approaches to decentralized state estimation partition the
measurement vector such that each local area-based player
attempts to perform local state estimation with measure-
ments taken within its area. To estimate system-wide state
variables, sub-systems need to share a portion of their data
with others, but this raises the threat of breaching the private
information of each sub-system. For a specific problem of
distributed linear state estimation, [10] presented a trade-off
between estimation fidelity and leakage of private state data
as a result of sharing data in a two-agent network model. In
[19], [20] a privacy-preserving distributed state estimation
with phasor measurement units was investigated but the
scheme still violates the privacy of sub-systems due to the
exchange of information related to measurements on tie-
lines linking neighbouring area. To securely contribute pri-
vate information for a privacy-preserving hierarchical state
estimation, [21] proposed a privacy-preserving distributed
state estimation framework in which a cloud-based high-
level control centre coordinates low-level control centres to
compute the estimated states. The scheme requires multi-
key homomorphic encryption to implement secure multi-
party computation.

In this paper, we consider the privacy scenario in a multi-
area transmission grid system. This is a competitive privacy
problem [7] amongst the transmission system companies
that have the conflict between the need of sharing data to
estimate global system states with high accuracy (utility)
and the need to withhold data (privacy) for competitive
reasons. The proposed protocols focus on protecting the
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private data of a transmission grid company, not only its
input data (meter measurement readings, power line pa-
rameters, network topology) but also its output estimated
states, while simultaneously achieving the accuracy of the
integrated state estimation. The solution is a hybrid of an
obfuscation technique guaranteeing differential privacy and
a single-key post-quantum secure homomorphic encryption
scheme established in a two non-colluding server model.
The two-non-colluding server model [22] is a core archi-
tecture commonly used by previous works on privacy-
preserving machine learning (e.g., see [23], [24], [25], [26])
where no server is trusted to handle the clear data. In
this core setting, after collecting private data in protected
forms (often in encryption) from many data-owners, the
two servers then securely compute the model in a 2-party-
secure-computation setting. The first server works on the en-
crypted data over the key of the second server while the sec-
ond server works on the transformed data over the random
elements of the first server. As long as the two servers do not
collude, the security is guaranteed. This approach can help
reduce the complexity of secure multi-party computation.
A single-key homomorphic encryption scheme working on
real numbers and achieving post-quantum security [27] is
adopted. The proposed masking technique guarantees the
differential privacy of the output estimated states.

3 PRELIMINARIES

3.1 Notations and definitions
Column vectors are denoted by lower-case bold letters, like
v. The i-th entry of the vector v is vi. vT is the transpose
of the column vector v. Matrices are denoted by upper-case
bold letters, like A, where AT is the transpose of the matrix
A, and A−1 is its inverse. Either the zero-vector or the zero-
matrix is represented by 0, which will be clear from the
context. Given a set S , x ←$ S indicates that x is sampled
uniformly at random from S . The sup-norm of a vector is
defined by ∥x∥∞ = maxi{|xi|}. The notions used in this
paper are given in Table 1.

3.2 State estimation
State estimation for electric transmission grids was first
formulated as a weighted least-squares problem in [3]. State
estimation is a central and essential part of every power
control system. The main function of state estimation is to
perform computer analysis of grid states under the condi-
tions characterized by a set of measurements. Specifically,
the output of state estimation is the value of the system state
vector at a specific time point of measurement reading. Most
state estimation programs in practical use are formulated
as over-determined systems of equations (i.e., systems with
more equations than unknowns) and solved as weighted
least-squares problems.

The relationship between the measurement data and the
states can be represented as a vector function h(·) relating
measurements to states, which are linear functions in DC
models or non-linear functions in AC models [28]:

y = h(x)+ e (1)

where x ∈ Rn is the true system state vector of an N -
bus power system, y ∈ Rm is the measurement vector,

TABLE 1: Notations used in the proposed
privacy-preserving state estimation schemes

Notation Description

N Number of buses
n Number of state variables
m Number of devices (measurement readings)
k Number of transmission grid companies (TGCs)
σ2
i Variance of reading errors of the i-th measuring device

Gi Sub-grid managed by TGCi

G0 Interconnection grid managed by SO
ni Number of state variables of TGCi,

∑k
i=1 ni = n

mi Number of devices of TGCi

B Set of boundary buses
Bi Set of boundary buses of TGCi

L Set of inter-area lines
Di Set of devices in TGCi

C Set of controlled parties
Enci(µ) Encryption of message µ using the public key of party i
Deci(µ) Decryption of message µ using the secret key of party i
Evali(f) Homomorphic evaluation of function f using the

evaluation key of party i
x State variables of the grid, x = [x1, · · · , xn]T

xflat Flat voltage profile (Vi = 1 pu, θi = 0)
xi State variables of TGCi, ∪k

i=1xi = x
x̂∗ Masked state estimates of the grid, x̂∗ = [x̂∗

1, · · · , x̂∗
n]

T

x̂∗
i Masked state estimates of TGCi, ∪k

i=1x̂
∗
i = x̂∗

x̂(t) State estimates of the grid at the t-th iteration
x(in) Internal state variables
x(bo) Boundary state variables
H0(x̂(bo)(t)) Estimates of partial derivatives of boundary measurement

functions at x̂(bo)(t)

h0(x̂(bo)(t)) Estimates of boundary measurement functions at x̂(bo)(t)

Hi(x̂
(t)
i ) Estimates of partial derivatives of TGCi’s measurement

functions at x̂(t)
i

hi(x̂
(t)
i ) Estimates of TGCi’s measurement functions at x̂(t)

i
T The number of iterations until πAC converges
viewπ

i View of adversary Ai in the protocol π
MAX The maximum value of a state variable x ∈ [−MAX,MAX]
ε Differential privacy parameter
τ Convergence threshold of ACSE
X

c
≡ Y X and Y are computationally indistinguishable

e ∈ Rm is a measurement error vector assumed to be zero-
mean Gaussian distributed. The corresponding variance
matrix is denoted by S = diag(σ2

1 , σ
2
2 , · · · , σ2

m), where
σ2
i is the variance of reading errors of the i-th measuring

device (i ∈ {1, · · · ,m}). Every two measuring devices are
mutually independent.

The process of obtaining the estimated state vector x̂ is
called state estimation which is considered the problem of
minimizing the function:

J(x) =
1

2

m∑
i=1

(
yi − hi(x)

σi

)2

(2)

where the function hi(x) are the expressions of the mea-
surements (e.g. power flows) in terms of states x. Define a
Jacobian matrix H ∈ Rm×n as:

H =
∂h(x)

∂x
=


∂h1(x)
∂x1

∂h1(x)
∂x2

. . . ∂h1(x)
∂xn

∂h2(x)
∂x1

∂h2(x)
∂x2

. . . ∂h2(x)
∂xn

...
...

. . .
...

∂hm(x)
∂x1

∂hm(x)
∂x2

. . . ∂hm(x)
∂xn

 (3)
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3.2.1 DC state estimation

In a DC model, the state variables are the angles. The
linear relationship between the measurement data, y, and
the states, x, is given by:

y = H · x+ e (4)

J(x) = (y −H · x)T · S−1 · (y −H · x) (5)

where x = [θ2, θ3, · · · , θn]T ∈ Rn−1 are bus voltage angles
for a n-bus power grid.

The value of x̂ minimizing J satisfies the normal equa-
tion A ·x = b where A = HT ·S−1 ·H , b = HT ·S−1 · y.
Thus, by solving the linear system equations A · x = b, the
state estimate x̂ with regarding to a DC model is obtained
[28]. Algorithm 1 (DCSE) presents DC state estimation.

• If a device d measures a power flow from bus i to
bus j over the line ij connecting bus i to bus j, then:

hd(x) = bij(θi − θj) (6)

where bij is the parameter of the line ij

Algorithm 1: DCSE(y,R,G) [28]
Result: State estimate x̂

1 Based on the DC network model of G, form
h(x) = H · x

2 Compute A = HT ·W ·H , b = HT ·W · y, where
W = S−1

3 Solve A · x = b to obtain x̂
4 return x̂

3.2.2 AC state estimation

In an AC model, state variables are phase angles and voltage
magnitudes. The relationship between the measurements
(e.g., active power flows, reactive power flows) and the
states forms a set of non-linear equations. The state vari-
ables in AC models are voltages magnitudes Vi and angles
θi (i ∈ {1, · · · , N}) of all buses in the power grid. The
nonlinear relationship between the state variable, x, and the
measurement, y, can be formulated as:

y = h(x) + e, (7)

where x = [θ2, θ3, · · · , θn, V1, V2, · · · , Vn]
T ∈ R2n−1 and

h(x) is the nonlinear function between the measurement
data and the state variables.

• If a device d measures an active power flow from bus
i to bus j over the line ij connecting bus i to bus j,
then:

hd(x) = fP
ij (Vi, Vj , θi, θj)

= V 2
i gij − ViVj(gijcosθij + bijsinθij)

(8)

h∗d = hd(x̂) = fP
ij (Vi = V̂i, Vj = V̂j , θi = θ̂i, θj = θ̂j)

(9)

• If a device d measures an reactive power flow from
bus i to bus j over the line ij connecting bus i to bus
j, then:

hd(x) = fQ
ij (Vi, Vj , θi, θj)

= −V 2
i (bij + bsij)− ViVj(gijsinθij − bijcosθij);

(10)

h∗d = hd(x̂) = fQ
ij (Vi = V̂i, Vj = V̂j , θi = θ̂i, θj = θ̂j)

(11)

where θij = θi − θj and (gij , bij , b
s
ij) are the parameters of

the line ij.
Consider these above measurements with (Vi, Vj , θi, θj)

as the state variables, the corresponding elements of a
Jacobian matrix H of h are given as follows:

H =



...
...

...
...

. . .
∂fP

ij

∂θi
. . .

∂fP
ij

∂θj
. . .

∂fP
ij

∂Vi
. . .

∂fP
ij

∂Vj
. . .

...
...

...
...

. . .
∂fQ

ij

∂θi
. . .

∂fQ
ij

∂θj
. . .

∂fQ
ij

∂Vi
. . .

∂fQ
ij

∂Vj
. . .

...
...

...
...


(12)

∂fP
ij

∂Vi
= 2Vigij − Vjgijcosθij − Vjbijsinθij (13)

∂fP
ij

∂Vj
= −Vigijcosθij − Vibijsinθij (14)

∂fP
ij

∂θi
= ViVjgijsinθij − ViVjbijcosθij (15)

∂fP
ij

∂θj
= −ViVjgijsinθij + ViVjbijcosθij (16)

∂fQ
ij

∂Vi
= −2Vi(bij + bsij) + Vjbijcosθij − Vjgijsinθij (17)

∂fQ
ij

∂Vj
= Vibijcosθij − Vigijsinθij (18)

∂fQ
ij

∂θi
= −ViVjbijsinθij − ViVjgijcosθij (19)

∂fQ
ij

∂θj
= ViVjbijsinθij + ViVjgijcosθij (20)

3.3 Differential privacy

Differential privacy [29] is a strong privacy model that re-
sists background attacks and provides a provable privacy
guarantee. Even if an adversary knows the maximum back-
ground information such as all the other records in a data set
except one record, differential privacy theoretically proves
that there is a low probability of the adversary figuring out
the unknown record.
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Algorithm 2: ACSE(y,R,G) [28]
Result: State estimate x̂

1 Based on the AC network model of G, form a vector
function h(x) and H(x) = ∂h(x)

∂x

2 t = 0, Initialize x̂(t) ← xflat

3 Compute H = H(x̂(t)),h∗ = h(x̂(t)),
A = H

T ·W ·H , b = H
T ·W · (y − h∗) where

W = S−1

4 Solve A ·∆x = b to obtain ∆x̂(t)

5 x̂(t+1) = x̂(t) +∆x̂(t)

6 If (∥∆x̂(t)∥∞ > τ ) then { t = t+ 1; go to 3; }
7 else return x̂(t)

A randomized mechanism M gives ε-differential pri-
vacy for every set of outputs S , and for any neighbouring
datasets of D and D′, ifM satisfies

Pr[M(D) ∈ S] ≤ exp(ε) · Pr[M(D′) ∈ S]

where Pr[·] denotes probability and ε is the privacy budget.
A smaller ε corresponds to stronger privacy protection, and
vice versa.

Laplace Mechanism [30]: Given a function f : D → R
over a data set D, the following mechanismM provides the
ε-differential privacy

M(D) = f(D) + Lap(0, b)

where Lap(0, b) is a random noise sampled from the Laplace

distribution with mean µ = 0, scale b =
∆f

ε
, and ∆f is the

sensitivity of the function f .
Differential privacy can be applied in the local setting

where there is no trusted data aggregator and each user
publishes the private data after adding noise individually
[31], [32]. This local setting is for local differential pri-
vacy, which is a distributed variant of differential privacy
[33]. The neighbouring datasets in local differential privacy
are defined as two different values of the input domain.
Randomized mechanisms satisfying differential privacy can
also be applied in a distributed manner to achieve local
differential privacy [33], [34], [35], [36], [37]. In a local
differential privacy model, each user locally perturbs her
data and then publishes the perturbed data to the server.
This model provides strong protection because only the
users know their exact data value. Given a noised output
from a user, the original data is protected because all the
possible values have similar probabilities to report the given
perturbed output.

Local differential privacy [31], [33]: A randomized mecha-
nism M satisfies ε-local differential privacy if and only if
for any pairs of input values v and v′ in the domain ofM,
and for any possible output s in the range R ofM, it holds

Pr[M(v) = s] ≤ exp(ε) · Pr[M(v′) = s]

3.4 Homomorphic Encryption

Informally, homomorphic encryption is a type of encryption
that allows a computation performed on ciphertexts to
generate an encrypted result such that if it is decrypted,

Fig. 1: Interconnection area between area i and area j

the computation result performed on the plain texts will be
the same. Formally, a homomorphic public-key encryption
scheme E with key space K, message spaceM, and cipher-
text space C is composed of the following algorithms:

• E .KeyGeneration(λ) −→ {sk, pk, ek}: given the secu-
rity paramter λ, output a secret key sk, a public key
pk, and an evaluation key ek.

• E .Encryption(pk, µ) −→ c: given the public key pk and
a message µ ∈M, output a ciphertext c.

• E .Decryption(sk, c) −→ µ: given the secret key sk
and a ciphertext c, output µ ∈ M, where c =
E .Encryption(pk, µ).

• E .Evaluation(f, c1, · · · , cl, ek) → cf : given a func-
tion f : Ml −→ M, l ciphertexts ci =
E .Encryption(pk, µi), i ∈ {1, · · · , l} and an evalua-
tion key ek, output a ciphertext cf such that:

E .Decryption(sk, cf ) = f(µ1, · · · , µl)

4 SYSTEM MODEL AND THREAT MODEL

4.1 System Model
Consider an N -bus multi-area grid as k non-overlapping
areas managed by k independent transmission grid compa-
nies (TGCs). If a bus in one sub-grid connects to buses in
other sub-grids, it is a boundary bus; otherwise, it is an
internal bus. States corresponding to boundary (internal)
buses are called boundary (internal) states. Similarly, if a
measurement in one sub-grid is relevant to state variables
or line parameters of other sub-grids, it is a boundary
measurement; otherwise, it is an internal measurement.
Each TGC owns private data, including internal measure-
ments, internal topology and line parameters, and a set of
estimated states corresponding to its buses. There are two
types of states (or buses) that belong to each TGC: internal
and boundary states (buses). For measurements, each TGC
controls its internal measurements. The boundary measure-
ments (i.e. power flows along tie-lines) are processed by a
system operator (SO). An SO manages the interconnection
area, consisting of tie-lines ending at two boundary buses
(Fig. 1). A state estimation service (SE) solves the state
estimation problem to help determine the states of the
whole grid. System-wide state estimates are delivered to the
corresponding TGCs (i.e. TGCi receives x̂i ).

Assume that SO and each TGCi possesses a set of mea-
suring devices Di = {di1 , di2 , · · · , dimi

} which provides
measurements yi = [ydi1

, ydi2
, · · · , ydimi

]T and the corre-
sponding variance matrix Si = diag(σ2

di1
, σ2

di2
, · · · , σ2

dimi

).
Here i = 0 for SO and i ∈ {1, · · · , k} corresponds to one of k
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TGCs,Di ⊂ D = {1, 2, · · · ,m},D0∪D1∪D2∪· · ·∪Dk = D,
Di ∩ Dj = ∅ with i ̸= j and i, j ∈ {0, .., k}.

For j = [0, · · · , k], define:

hj(x) =


hdj1

(x)
hdj2

(x)
. . .

hdjmj
(x)


where hdj1

(x), hdj2
(x), . . . , hdjmj

(x) are power flows (See
Eq. 6, 8, 10).

TGCi’s internal measurement yi relates to the state vec-
tor x by the vector function hi and the vector error ei as
yi = hi(x) + ei. SO’s boundary measurement y0 relates to
the state vector x by the vector function h0 and the vector
error e0 as y0 = h0(x) + e0. From Eq. 6, 8, 10, note that
hi (i ∈ {1, · · · , k}) just depends on states xi of a single
sub-grid while h0 depends on boundary states of multiple
sub-grids, then:

yi = hi(xi) + ei, i ∈ {1, · · · , k} (21)

y0 = h0(x
(bo)) + e0 (22)

4.2 Threat Model

A semi-honest adversarial model is considered against the
scheme. Adversaries are assumed to be semi-honest in the
sense that they follow the protocol but can obtain available
transcripts to learn extra information that should remain
private (i.e., passive security). A good estimate of system-
wide states supporting security operations and power man-
agement is a common interest of all parties; thus, it is
reasonable that they are incentivised to follow the protocol
to achieve the best output. However, some parties might
be motivated to conspire with each other against a target
party for some business benefits. For example, SE or SO may
attempt to learn information about private data contributed
by a target honest TGC since this data can potentially be sold
to other TGCs managed by competitive commercial power
rivals. In the above-proposed system model, a semi-honest
adversary can be any party except for the target honest
TGCh. SE and SO are assumed not to collude but might
conspire with other colluded semi-honest TGCc against the
target honest TGCh.

Moreover, it is assumed that private and authenticated
peer-to-peer channels exist between parties so that the data
transferred cannot be modified. This can be enforced in
practice with the appropriate use of Digital Signatures and
Certificate Authorities.

5 PROPOSED PRIVACY-PRESERVING STATE ESTI-
MATION SCHEME IN TRANSMISSION POWER GRIDS

The proposed privacy-preserving state estimation scheme
can be seen as secure multi-party protocols run by k + 2
parties (k TGCs, SE and SO). This section presents secure
multiparty computation protocols for privacy-preserving
state estimation (DC and AC models). First of all, non-
privacy-preserving multiparty DC and AC state estima-
tion are introduced. Then, protocols of privacy-preserving
DC state estimation (Fig. 2) and privacy-preserving AC

state estimation (Fig. 3) are designed based on the integra-
tion of privacy-preserving methods into the non-privacy-
preserving versions.

5.1 Non-privacy-preserving version of multiparty state
estimation
In the non-privacy-preserving version of multiparty state es-
timation for DC (Algorithm 3 - MDCSE) and AC (Algorithm
4 - MACSE), the data input for state estimation process is
partitioned and prepared by different parties according to
the partition of a whole transmission grid into multiple sub-
grids. The partition is compatible with the system model
provided above.

In AC models, we have:

A = H
T ·W ·H ∈ Rn×n (23)

b = H
T ·W · (y − h∗) ∈ Rn (24)

where:

H = H(x̂) =


h

T
d1

h
T
d2

· · ·
h

T
dm

 ∈ Rm×n (25)

hdi
=



∂hdi

∂x1
(x̂1)

∂hdi

∂x2
(x̂2)

· · ·
∂hdi

∂xn
(x̂n)


∈ Rn, i = 1, · · · ,m (26)

h∗ =


hd1

(x̂)
hd2

(x̂)
· · ·

hdm
(x̂)

 ∈ Rm (27)

W = diag(σ−2d1
, σ−2d2

, · · ·σ−2dm
) (28)

Thus:

A =
∑
d∈D

σ−2d · hd · h
T
d (29)

b =
∑
d∈D

σ−2d · hd · (yd − hd(x̂)) (30)

Then we have:

A0 +A1 + · · ·+Ak =
k∑

i=0

∑
d∈Di

σ−2d · hd · h
T
d

=
∑
d∈D

σ−2d · hd · h
T
d

= A (31)

b0 + b1 + · · ·+ bk =
k∑

i=0

∑
d∈Di

σ−2d · hd · (yd − hd(x̂))

=
∑
d∈D

σ−2d · hd · (yd − hd(x̂))

= b (32)

Similar results apply to DC models. Therefore, the cor-
rectness of Algorithm 3 and Algorithm 4 is guaranteed as
the same as Algorithm 1 and Algorithm 2.
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Algorithm 3: MDCSE({yi,Si,Gi}i∈{0,···k})
Result: State estimate x̂

1 Based on the DC network model of Gi, each party i
forms a linear function vector: hi(x) = Hi · x

2 Each party i ∈ {0, · · · , k} computes
Ai = HT

i ·Wi ·Hi, bi = HT
i ·Wi · yi, where

Wi = S−1i , then sends (Ai, bi) to the server
3 The server solves A · x = b to obtain x̂, where

A =
∑k

i=0 Ai and b =
∑k

i=0 bi
4 return x̂

Algorithm 4: MACSE({yi,Si,Gi}i∈{0,···k})
Result: State estimate x̂

1 Based on the AC network model of Gi, each party i
forms a non-linear function vector hi(x) and
Hi(x) =

∂hi(x)
∂x

2 t = 1, Initialize x̂(t) ← xflat
3 Each party i ∈ {0, · · · , k} computes

Hi = Hi(x̂
(t)
i ),h∗i = hi(x̂

(t)
i ) if i ∈ {1, · · · , k}

Hi = Hi(x̂
(bo)(t)),h∗i = hi(x̂

(bo)(t)) if i = 0

and Ai = H
T
i ·Wi ·Hi, bi = H

T
i ·Wi · (yi − h∗i )

where Wi = S−1i , then sends (Ai, bi) to a server
4 The server solves A ·∆x = b to obtain ∆x̂(t) where

A =
∑k

i=0 Ai and b =
∑k

i=0 bi.
5 The server calculates x̂(t+1) = x̂(t) +∆x̂(t)

6 If (∥∆x̂(t)∥∞ > τ ) and (t < Tmax) then { t = t+ 1;
go to 3; }

7 else if (∥∆x̂(t)∥∞ ≤ τ ) return (sol = 1, x̂(t))
8 else return sol = 0

5.2 Privacy-preserving state estimation schemes in
transmission power grids

A commonly proposed approach is applied to construct
privacy-preserving versions of multiparty state estimation
for both DC and AC models. Each party encrypts/perturbs
data before contributing their data for state estimation.
The data protection process in both schemes includes data
preparation, encryption, and masking. For both DC and AC
models, the Setup procedure establishes cryptographic keys
of k+1 parties (k TGCs and SE) to be used during the execu-
tion. Each party generates keys of the homomorphic encryp-
tion scheme, including a secret value key sk for decryption,
a public key pk for encryption, and an evaluation key ek
for homomorphic evaluation from algorithm KeyGen(λ),
where λ is the security parameter of the homomorphic
encryption scheme. pk and ek of TGCs are published to SE
and SO. pk and ek of SE are published to TGCs and SO.
The followings are the descriptions of privacy-preserving
DC state estimation, as illustrated in Fig. 2, and privacy-
preserving AC state estimation, as described in Fig. 3.

5.2.1 Privacy-preserving DC state estimation
For a DC state estimator (Fig. 2), because of the linearity
property (see Eq. (4)), the matrix H is a constant matrix,

then Hi (H0) is directly constructed by a single TGCi (SO).
Each TGCi prepares its private data Ai ∈ Rn×n, bi ∈ Rn.

SO also prepares its A0, b0. For i ∈ {0, · · · , k}:

Ai = HT
i ·Wi ·Hi, (33)

bi = HT
i ·Wi · yi (34)

Ai, bi are encrypted by TGCi using the SE’s public key:

EAi = EncSE(Ai), (35)
ebi = EncSE(bi) (36)

Each TGCi sends their encrypted data (EAi, ebi) to
SO. When obtaining all data from k parties, SO homomor-
phically evaluates the function

∑k
i=0 Ai (

∑k
i=0 bi), given k

ciphertexts EAi (resp. ebi):

EA = EvalSE(
k∑

i=0

Ai) (37)

eb = EvalSE(
k∑

i=0

bi) (38)

SO generates an invertible matrix R ←$ [−1, 1]n×n, a
random vector r from Laplace distribution with zero mean
and variance v = 2·MAX

ε where MAX is the maximum value
of a state variable.

R and r are used to homomorphically mask the value of
A and b, given the ciphertexts EA, eb:

EA∗ = EvalSE(R ·A) (39)
eb∗ = EvalSE(R · (b+A · r)) (40)

Then SO sends (EA∗, eb∗) to SE. After receiving
(EA∗, eb∗) from SO, SE uses its secret key to decrypt:

A∗ = DecSE(EA∗) (41)
b∗ = DecSE(eb

∗) (42)

By solving the problem A∗ · x∗ = b∗, SE obtains x̂∗ =x̂
∗
1
...
x̂∗k

 ∈ Rn which is the masked version of the estimated

state vector x̂ =

x̂1

...
x̂k

 ∈ Rn. Next, SE encrypts the masked

states x̂∗i of TGCi using TGCi’s public key and then sends
these ciphertexts to SO.

ex̂∗i = Enci(x̂∗i ) (43)

SO receives ex̂∗ =

ex̂
∗
1

...
ex̂∗k

 and homomorphically evalu-

ates:

ex̂i = Evali(x̂∗i − ri) (44)

Then SO sends ex̂i to TGCi. Receiving ex̂i from SO,
party TGCi uses its secret key for decryption to get the
estimated state x̂i:

x̂i = Deci(ex̂i) (45)
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Privacy-preserving DC state estimation protocol
TGCi i = 1 · · · k SO SE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KeyGen(λ) r ← Lap(0, v, n),R←$ [−1, 1]n×n KeyGen(λ)

Hi ← DC(Gi) H0 ← DC(G0)

Ai = H
T
i ·Wi ·Hi A0 = H

T
0 ·W0 ·H0

bi = H
T
i ·Wi · yi b0 = H

T
0 ·W0 · y0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EAi = EncSE(Ai)

ebi = EncSE(bi)

(EAi, ebi) EA = EvalSE(

k∑
i=0

Ai)

eb = EvalSE(

k∑
i=0

bi)

EA
∗
= EvalSE(R ·A)

eb
∗
= EvalSE(R · (b + A · r)) (EA∗, eb∗) A

∗
= DecSE(EA

∗
)

b
∗
= DecSE(eb

∗
)

SE solves A
∗ · x∗

= b
∗ to obtain

x̂
∗
= (x̂

∗
1 , x̂

∗
2 , · · · , x̂

∗
k)

T ∈ Rn

x̂i = Deci(ex̂i)
ex̂i ex̂i = Evali(x̂

∗
i − ri)

(ex̂∗
1 , · · · , ex̂

∗
k) ex̂

∗
i = Enci(x̂

∗
i ), i ∈ {1 · · · k}

i ∈ {1 · · · k}

Fig. 2: Privacy-preserving DC state estimation

5.2.2 Privacy-preserving AC state estimation

For an AC state estimator (Fig. 3), H(x) = ∂h(x)
∂x is a

function of the states and changes its value based on the
estimated states of the previous iteration. A flat voltage
profile xflat (Vi = 1, θi = 0) can be used as the initialization
of state estimates x̂(1) (t = 1).

It can be seen that each TGCi can compute
hi(x̂

(t)
i ),Hi(x̂

(t)
i ) with its tie-line parameters and state es-

timates x̂
(t)
i from the previous iteration (line 3 of Algo-

rithm 2). However, SO cannot calculate h0(x̂
(bo)(t)) and

H0(x̂
(bo)(t)) by itself because it only has the boundary tie-

line parameters, not the boundary state estimates x̂(bo)(t).
Fortunately, homormophic encryption helps to solve this
problem by allowing SO to homomorphically compute the
encryptions of h0(x̂

(bo)(t)) and H0(x̂
(bo)(t)) based on the

encryption of several specific functions of the boundary
state estimates x̂(bo)(t)

i shared by each TGCi.
Each TGCi prepares its private data Ai ∈ Rn×n, bi ∈ Rn:

Ai = H
T
i ·Wi ·Hi, (46)

bi = H
T
i ·Wi · (yi − h∗i ) (47)

A0 and b0 are available to SO in DC state estimation, but
they are not in AC state estimation. What SO can have is the
encryption EA0 of A0 and the encryption eb0 of b0.

TGCi sends their encrypted data (EAi, ebi) to
SO. Besides, for each boundary bus b in sub-grid
Gi, TGCi sends a vector of six ciphertexts cb =
(cb1 , cb2 , cb3 , cb4 , cb5 , cb6) which are encryptions of pb =

(Vb, sinθb, cosθb, V 2
b , Vbsinθb, Vbcosθb) to SO. SO homo-

morphically computes encryption of H0(x̂
(bo)(t)) and

h0(x̂
(bo)(t)) from these ciphertexts received from all TGCs.

Next, SO sends the encryptions of H0(x̂
(bo)(t)) and

h0(x̂
(bo)(t)) to SE, who decrypts them to get (H0,h

∗
0)

and calculates (A0, b0). Then SE creates the ciphertexts
(EA0, eb0) which are sent back to SO.

Each TGCi has an indicator β(t)
i , whose value 1 or 0 cor-

responds to the true or false of the condition ∥∆x̂
(t)
i ∥∞ > τ .

The encryption of the indicator value β
(t)
i helps hide the

information that whether ∥∆x̂
(t)
i ∥∞ is greater than τ or not.

The homomorphic encryption scheme is adopted again to
encrypt β(t)

i under the SE’s public key. Then, the encryption
of the sum

∑k
i=1 β

(t)
i is homomorphically evaluated by SO

and then decrypted by SE to obtain the value of cont(t)

which is sent back to all TGCs to instruct the loop to
terminate or continue.

eβ
(t)
i = EncSE(β

(t)
i ) (48)

econt(t) = EncSE(
k∑

i=1

β
(t)
i ) (49)

cont(t) = DecSE(econt
(t)) (50)

Similar to privacy-preserving DC state estimation, having
encrypted data from all k TGCs, SO homomorphically eval-
uates the sum function and the transformation using the
random noises (R,r) it freshly generated at each iteration
before sending the encrypted results to SE.
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SE decrypts the ciphertexts received from SO and then
solves the problem A∗ · ∆x∗ = b∗ to obtain ∆x̂∗(t).
Then, SE encrypts each ∆x̂

∗(t)
i using the public key of

the corresponding TGCi, and sends all these ciphertexts
to SO. Receiving these ciphertexts from SE, SO carries
out homomorphic computation on the encrypted data to
obtain the encryption of ∆x̂

(t)
i under the public key of the

corresponding TGCi. These ciphertexts are finally sent back
to TGCi. Using the secret key, TGCi obtains ∆x̂

(t)
i and the

state estimates for the next iteration x̂
(t+1)
i = x̂

(t)
i +∆x̂

(t)
i

6 ANALYSIS OF THE PROPOSED SCHEMES

6.1 Correctness

6.1.1 Privacy-preserving DC state estimation

Based on the correctness of the homomorphic evaluation of
the underlying homomorphic encryption scheme, from Eq.
(39), (40), we have:

A∗ = DecSE(EA∗) = R ·A (51)
b∗ = DecSE(eb

∗) = R · (b+A · r) (52)

From Eq. (44), (45):

x̂i = Deci(ex̂i) = x̂∗i − ri (53)
x̂ = x̂∗ − r (54)

Multiply both sides of Eq. (54) with the matrix A, we have:

A · x̂ = A · (x̂∗ − r)

= R−1 ·R ·A · (x̂∗ − r)

= R−1 · (A∗ · x̂∗ −R ·A · r) from Eq. (51)

= R−1 · (b∗ −R ·A · r)
= R−1 ·R · b from Eq. (52)
= b

A · x̂ = b shows that x̂ is the state estimates of non-privacy-
preserving state estimation.

6.1.2 Privacy-preserving AC state estimation

Note that protocol πAC is a sequential composition of INIT
procedure and T iterations of the function block within the
Repeat-Until loop (Fig. 3), which is denoted as πt.

πAC = INIT∥{πt}Tt=1

To demonstrate that πAC is correct, we prove that
πt correctly estimates ∆x̂ and the convergence condition
∥∆x̂∥∞ < τ is correctly checked at the t-th iteration.

As can be seen from Fig. 2 and Fig. 3, y − h∗ and
∆x̂ in πt substitutes y and x̂ in πDC respectively. The
changes between πDC and πt is that (H0,h

∗
0) (or (A0, b0))

are not available for party SO in πt. Thus, in πt SO needs
to homomorphically evaluate functions H0(x̂

(bo)(t)) and
h0(x̂

(bo)(t)) to get the encryptions of (H0,h
∗
0), and then

the encryption of (A0, b0). The correctness of homomor-
phic evaluation of the underlying homomorphic encryption
scheme guarantees that SO obtains the correct encryption of

(A0, b0). Consequently, πt correctly estimates ∆x̂(t) at the
t-th iteration.

b∗ = DecSE(eb
∗) = R · (b+A · r) (55)

∆x̂
(t)
i = Deci(e∆x̂

(t)
i ) = ∆x̂

∗(t)
i − ri (56)

∆x̂(t) = ∆x̂∗(t) − r (57)

Multiply both sides of Eq. (57) with the matrix A, we have:

A ·∆x̂(t) = A · (∆x̂∗(t) − r)

= R−1 ·R ·A · (∆x̂∗(t) − r)

= R−1 · (A∗ ·∆x̂∗(t) −R ·A · r) from Eq. (51)

= R−1 · (b∗ −R ·A · r)
= R−1 ·R · b from Eq. (55)
= b

The convergence condition is checked correctly. In fact,
the loop terminates when:

∥∆x̂(t)∥∞ ≤ τ ≡ {∥∆x̂(t)i ∥∞ ≤ τ}i=1···k

≡ {β(t)
i = 0}i=1···k

≡
k∑

i=1

β
(t)
i = 0

≡ cont(t) = 0

The homomorphic encryption scheme adopted guaran-
tees that cont(t) =

∑k
i=1 β

(t)
i .

6.2 Privacy
To implement global state estimation, it necessitates sharing
private data between TGCs and SO which violates TGCs’
privacy. There are three different types of private data
corresponding to each local TGCi, which are the meter
measurements (yi), internal line parameters (hi(xi)), and
the estimated states (x̂i). Here (yi, hi(xi)) is the private
input and x̂i is the private output of state estimation. The
following analyses the privacy protection that the schemes
provide in a semi-honest adversarial model, with regarding
to two types of adversaries:

• Semantic security protection of the private input and
output against an adversary A1 controlling SO and
colluded parties TGCs;

• Local differential privacy protection of the private
output and multiplicative masking protection of the
private input against an adversary A2 controlling SE
and colluded parties TGCs.

6.2.1 Privacy protection against an adversary A1

In a semi-honest adversarial model, the adversary A1 has
to follow exactly the protocol; thus, the leakage of private
information of an honest party is only attributed to the
view of A1 in the execution of the protocol. Therefore, the
proof of privacy is based on the construction of a simulator
who resides in a secure-by-definition “ideal world” and
generates a view for A1 given A1’s input and output. The
requirement is that the generated view is computationally
indistinguishable from the real view of A1 in the “real
world” (i.e. real execution of the protocol) [38]. This implies
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TABLE 2: Encryption of H0(x̂
(bo)(t)),h0(x̂

(bo)(t))

cb1 = EncSE(Vb)
cb2 = EncSE(sinθb)

cb3 = EncSE(cosθb)
cb4 = EncSE(V

2
b )

cb5 = EncSE(Vb · sinθb)
cb6 = EncSE(Vb · cosθb)

EncSE(h
∗P
ij ) = ci4 · gij − gij · (ci6 · cj6 + ci5 · cj5 )− bij · (ci5 · cj6 − cj5 · ci6 )

EncSE(h
∗Q
ij ) = −ci4 · (bij + bsij)− gij · (ci5 · cj6 − cj5 · ci6 )− bij · (ci6 · cj6 + ci5 · cj5 )

EncSE(
∂fP

ij

∂Vi
) = 2ci1 · gij − gij · (cj6 · ci3 + cj5 · ci2 )− bij · (cj6 · ci2 − cj5 · ci3 )

EncSE(
∂fP

ij

∂Vj
) = −gij · (ci6 · cj3 + ci5 · cj2 )− bij · (ci6 · cj2 − ci5 · cj3 )

EncSE(
∂fP

ij

∂θi
) = gij · (ci5 · cj6 − ci6 · cj5 )− bij · (ci6 · cj6 + ci5 · cj5 )

EncSE(
∂fP

ij

∂θj
) = −gij · (ci5 · cj6 − ci6 · cj5 ) + bij · (ci6 · cj6 + ci5 · cj5 )

EncSE(
∂f

Q
ij

∂Vi
) = −2ci1 · (bij + bsij) + bij · (cj6 · ci3 + cj5 · ci2 )− gij · (cj6 · ci2 − cj5 · ci3 )

EncSE(
∂f

Q
ij

∂Vj
) = bij · (ci6 · cj3 + ci5 · cj2 )− gij · (ci5 · cj3 − ci6 · cj2 )

EncSE(
∂f

Q
ij

∂θi
) = −bij · (ci5 · cj6 − ci6 · cj5 )− gij · (ci6 · cj6 + ci5 · cj5 )

EncSE(
∂f

Q
ij

∂θj
) = bij · (ci5 · cj6 − ci6 · cj5 ) + gij · (ci6 · cj6 + ci5 · cj5 )

that A1 learns from the real protocol execution nothing
more than from the ideal protocol execution which provides
security and privacy. In other words, a protocol protects
privacy in a semi-honest adversarial model if whatever can
be computed by a party participating in the protocol can be
computed based on its input and output only.

Definition 1. The protocol π realises state estimation function-
ality with privacy protection against a probabilistic-polynomial
time adversaryA1 who controls SO and colluded TGCs in a semi-
honest adversarial model if there exists a probabilistic -polynomial-
time algorithm S generating simulated views for the adversaryA1

such that:

{S(λ, IA1
,OA1

)} c≡ {viewπ
A1

(λ, I)}

where λ is the security parameter, IA1
,OA1

are the input
and output of the adversary A1, I is the input of all parties.
S(λ, IA1

,OA1
) is the simulated view, viewπ

A1
(λ, I) is the adver-

sary A1’s real view in an execution of protocol π which includes
the adversary’s input, internal random tapes, and incoming mes-
sages.

In the proposed privacy-preserving protocols for DC
and AC state estimation, what the adversary A1 can
have to deduce some information about an honest party
are its input, output, and incoming encrypted messages.
Informally, the above formal definition implies that what
the adversary A1 learns about the private data of an honest
party TGCh from the protocol execution is no more than
what she/he can derive from her/his input and output.
Obtaining incoming encrypted messages of the target
honest TGC’s private data in a real execution of the protocol
does not add up more information for the adversary A1.
In the followings, we will prove that both πDC and πAC
satisfy Definition 1 in terms of providing semantic security
protection of the private input and output against an

adversary A1 controlling SO and colluded parties TGCs.

a. Privacy-preserving DC state estimation
We prove that πDC realises DC state estimation functionality
with privacy protection against a probabilistic-polynomial
time adversary A1 who controls SO and colluded TGCs
in a semi-honest adversarial model with regard to Defini-
tion 1. That is, there exists a probabilistic polynomial-time
algorithm SDC

1 such that the generated views by SDC
1 are

computationally indistinguishable from the real views of the
adversary A1 in a real execution of protocol πDC:

{SDC
1 (λ, IC ,OC)}

c≡ {viewπDC
1 } (58)

where λ is the security parameter, IC is the input of A1’s
corrupted parties, OC is the output of A1’s corrupted par-
ties.

The view of A1 who controls colluded TGCs and SO
during an excecution of πDC consists of the inputs, the
internal random tapes of corrupted parties, and all the
messages corrupted parties received [39], which is:

viewπDC
1 = ((skc,Hc,yc)c∈C\SO,

(H0,y0,R, r), (pki, eki)i∈H∪{SE},

Ei,i∈{1···k}, ESE)

(59)

where Ei is the set of all ciphertexts using TGCi’s public key,
ESE is the set of all ciphertexts using SE’s public key sent to
A1’s corrupted parties:

ESE = ({EAi, ebi}i∈{0···k}) (60)
Ei = {ex̂∗i }i∈{1···k} (61)

SDC
1 is given the security parameter λ, input IC =

{Hc,yc}c∈C and output OC = {x̂c}c∈C\{SO} of A1’s col-
luded parties, and works to generate the view for A1 as
follows:

• SDC
1 honestly follows the protocol to generate the sets

of keys (sk′, pk′, ek′),R′, r′.
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• Due to the fact that SDC
1 does not have the input and

output of the honest TGCh, which is (Hh,yh, x̂h), it
sets the ‘garbage’ data of the n × n identity matrix
and the zero-vector of n components for the honest
parties’ data instead.

• SDC
1 honestly follows the protocol to generate the

encryption set E ′SE, which is:

E ′SE =({EA′c, eb
′
c}c∈C , {EncSE(I),EncSE(0)}h∈H)

(62)

• SDC
1 calculates the masked states x̂∗

′

i :

x̂∗
′

i = x̂i + r′i (63)

where x̂c is known by SDC
1 and x̂h = 0 is the

’garbage’. Then SDC
1 encrypts all masked states:

{E ′i}i∈{1···k} =({ex̂∗
′

c }c∈C\{SO}, {Ench(r
′
h)}h∈H)

(64)

• SDC
1 outputs the generated view for A1 as:

SDC
1 (λ, IC ,OC) = ((sk′c,Hc,yc)c∈C\SO,

(H0,y0,R
′, r′), (pk′i, ek

′
i)i∈H∪{SE},

E ′i,i∈{1···k}, E ′SE) (65)

It remains to show that the distribution of the real
view and the distribution of the generated view is
indistinguishable. Note that, because the estimated states
x̂h (the plaintexts) of the honest party TGCh is a part of
the whole estimated states x̂ computed from Ax = b,
the adversary can have some information about x̂h.
This derived information can be denoted as an auxiliary
information L(x̂h|(x̂c,Hc,yc)) of the plaintext x̂h that
is leaked to the adversary from the adversary’s input
(Hc,yc) and output x̂c. This is the deterministic leakage
from the output of the state estimation functionality given
a fixed input. This leakage is independent of the random
messages (i.e. the ciphertexts) generated in the proposed
protocol. Importantly, the definition of semantic security
also considers an arbitrary auxiliary information function
of the plaintext that may be leaked to the adversary. In state
estimation, the leaked information L(x̂h|(x̂c,Hc,yc)) of
the plaintext x̂h is auxiliary information of the plaintext
x̂h. Hence, the indistinguishability of the view distributions
can be justified by the indistinguishability of semantic
security of the underlying homomorphic scheme with
auxiliary information. By the semantic security of the
underlying homomorphic encryption scheme with
auxiliary information, the sets of the ciphertexts in the
real execution and in the simulation are computationally
indistinguishable. Besides, the sets of keys and random
elements are identically distributed in the real execution and
in the simulation (due to a semi-honest adversarial model).
Therefore, the views are computationally indistinguishable.
□

b. Privacy-preserving AC state estimation

We use the modular sequential composition theorem for
a semi-honest adversarial model [39], [40] to prove that πAC
privately computes AC state estimation functionality in the

present of adversary A1. Note that, πAC = INIT∥{πt}Tt=1,
then viewπAC

1 = viewINIT
1 ||{viewπt

1 }Tt=1

Sub-protocol INIT generates the keys (ski, pki, eki) used
in all subsequent sub-protocols πt. The view of A1 who
controls colluded TGCs and SO during an execution of
INIT consists of the inputs, the internal random tapes of
corrupted parties, and all the messages corrupted parties
received:

viewINIT
1 =((skc, pkc, ekc,Hc(xc),hc(xc))c∈C\SO,

(y0,H0(x
(bo)),h0(x

(bo))),

(pkh, ekh)h∈H, x̂
(0)) (66)

First, we prove that πt realises one iteration of ACSE
with privacy protection against a probabilistic-polynomial
time adversary A1 who controls SO and colluded TGCs
in a semi-honest adversarial model. That is, there exist
probabilistic polynomial-time algorithms St1 such that the
generated views by St1 are computationally indistinguish-
able from the real views of the adversary A1 in a real
execution of protocol πt:

{St1(λ, I
(t)
C ,O(t)

C )} c≡ {viewπt
1 } (67)

where λ is the security parameter, I(t)C is the input of
corrupted parties of A1, O(t)

C is the output of corrupted
parties of A1.

I(t)C =((skc, pkc, ekc),yc, x̂
(t)
c ,Hc(x̂

(t)
c ),hc(x̂

(t)
c ))c∈C\{SO},

(y0,H0(x
(bo)(t)),h0(x

(bo)(t))), (pkh, ekh)h∈H) (68)

O(t)
C =(cont(t), x̂

(t+1)
c,c∈C) (69)

where cont(t) =
∑k

i=1(∥x̂
(t+1)
i − x̂

(t)
i ∥∞ > τ?1 : 0)

The view of A1 who controls colluded TGCs and SO
during an execution of πt consists of the inputs, the internal
random tapes of corrupted parties, and all the messages
corrupted parties received, which is:

viewπt
1 = ((skc, pkc, ekc,yc, x̂

(t)
c ,

Hc(x̂
(t)
c ),hc(x̂

(t)
c ))c∈C\SO,

(R(t), r(t),y0,H0(x
(bo)(t)),h0(x

(bo)(t))),

(pkh, ekh)h∈H∪{SE}, cont
(t),

E(t)i,i∈{1···k}, E
(t)
SE )

(70)

where E(t)i is the set of incoming ciphertexts using TGCi’s
public key, E(t)SE is the set of incoming ciphertexts using SE’s
public key sent toA1’s corrupted parties at the t-th iteration:

E(t)SE ={{EA
(t)
i , eb

(t)
i , {c(t)b }b∈Bi , eβ

(t)
i }i∈{1···k},

EA
(t)
0 , eb

(t)
0 } (71)

E(t)i ={e∆x̂
∗(t)
i }i∈{1···k} (72)

St1 is given the security parameter λ, input I(t)C , and
output O(t)

C of the colluded parties and works to generate
the view for A1 as follows:

• St1 honestly follows the protocol to sample R(t), r(t).
• Due to the fact that St1 does not have the input

and output of the honest TGCh, it sets the ‘garbage’
data of the n × n identity matrix, the zero-vector
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of n components, and the zero value for the honest
parties’ data instead.

• St1 honestly follows the protocol to generate the
encryption set E ′SE, which is:

E(t)
′

SE =({EA(t)′

c , eb(t)
′

c , {c(t)
′

b }b∈Bc
, eβ(t)′

c }c∈C\{SO},

{EncSE(I),EncSE(0), {EncSE(0)}b∈Bh
,EncSE(0)}h∈H,

EncSE(I),EncSE(0)) (73)

• St1 calculates the masked of the state difference
∆x̂
∗(t)
i :

∆x̂
∗(t)
i = ∆x̂

(t)
i + r

(t)
i (74)

where ∆x̂
(t)
c = x̂

(t+1)
c − x̂

(t)
c is known by St1 and

∆x̂
(t)
h = 0 is the ’garbage’. Then St1 encrypts all the

masked of the state difference:

{E(t)
′

i }i∈{1···k} =({e∆x̂∗(t)
′

c }c∈C\{SO},

{Ench(r
(t)
h )}h∈H) (75)

• St1 outputs the generated view for A1 as:

St1(λ, I
(t)
C ,O(t)

C ) = ((skc, pkc, ekc,yc, x̂
(t)
c ,

Hc(x̂
(t)
c ),hc(x̂

(t)
c ))c∈C\SO,

(R(t, r(t),y0,H0(x
(bo)(t)),h0(x

(bo)(t))),

(pkh, ekh)h∈H∪{SE}, cont
(t),

{E(t)
′
}i,i∈{1···k}, E

(t)′

SE )
(76)

From Eq. (70) (76) and the semantic security of the
underlying homomorphic encryption scheme, the sets of
the ciphertexts in the real execution and in the simulation
are computationally indistinguishable. Besides, the sets
of keys and random elements are identically distributed
in the real execution and in the simulation (due to a
semi-honest adversarial model). Therefore, the views are
computationally indistinguishable, and (67) is proved.

Next, to prove that πAC realises AC state estimation with
privacy protection against a semi-honest adversary A1 who
controls SO and colluded TGCs, we construct a probabilistic
polynomial-time algorithm SAC

1 such that the generated
views by SAC

1 are computationally indistinguishable from
the real views of the adversary A1 in a real execution of
protocol πAC:

{SAC
1 (λ, IC ,OC)}

c≡ {viewπAC
1 } (77)

where λ is the security parameter, IC is the input of cor-
rupted parties of A1, OC is the output of corrupted parties
of A1.

IC ={{yc,Hc(xc),hc(xc)}c∈C ,
{y0,H0(x

(bo)),h0(x
(bo))}} (78)

OC ={{x̂c}c∈C , sol} (79)

SAC
1 is given λ, IC ,OC and works to generate the view

for A1 as follows:

• SAC
1 honestly follows the protocol to generate sets of

keys (ski, pki, eki).

• Set t = 1, x̂(1) = xflat, and initialize:

S INIT
1 = ((skc, pkc, ekc,Hc(xc),hc(xc))c∈C\SO,

(y0,H0(x
(bo)),h0(x

(bo))),

(pkh, ekh)h∈H, x̂
(0)) (80)

From Eq. (66) (80), we have

{S INIT
1 } c≡ {viewINIT

1 } (81)

• Set V = S INIT
1

• Repeat

– Invoke the simulator St
1 on the input I(t)C and

the output O(t)
C of the corrupted parties.

– Set

V = V ∥ St1(λ, I
(t)
C ,O(t)

C )

– Set t = t+ 1,

Until (cont(t−1) == 0)||(t == Tmax + 1)
• Set T = t − 1 and output V as the simulated view
SAC
1 (λ, IC ,OC) that SAC

1 generates for adversaries
A1.

Finally, we prove that {SAC
1 (λ, IC ,OC)}

c≡ {viewπAC
1 }

using the hybrid technique of modular sequential composi-
tion theorem for semi-honest adversarial models [39] given
{St1(λ, I

(t)
C ,O(t)

C )} c≡ {viewπt
1 } and {S INIT

1 } c≡ {viewINIT
1 }.

Denote Ht as the hybrid distribution representing the
view of adversary A1 in an execution of πAC, with the
exception that the view of the INIT procedure is re-
placed by the simulated transcripts S INIT

1 and the views
of the first t invocations of π1, · · · , πt are replaced by
the simulated transcripts S1

1(λ, I
(1)
c ,O(1)

c ), S2
1(λ, I

(2)
c ,O(2)

c ),

· · · , St
1(λ, I

(t)
c ,O(t)

c ). So, HT = {SAC
1 (λ, IC ,OC)}. Besides,

{viewπAC
1 }

c≡ H0 given {viewINIT
1 } c≡ {S INIT

1 }, and Ht
c≡

Ht+1 given {viewπt+1

1 } c≡ {S(t+1)
1 (λ, I(t+1)

C ,O(t+1)
C )} (t =

0 · · ·T − 1). Thus, we have:

{viewπAC
1 }

c≡ H0
c≡ H1 · · ·

c≡ HT−1
c≡ HT = {SAC

1 (λ, IC ,OC)} □

6.2.2 Privacy protection against an adversary A2

In the proposed privacy-preserving protocols for DC and
AC state estimation, the additive and multiplicative mask-
ing methods provide privacy protection against A2. In
the followings, it will be demonstrated that the proposed
schemes provide local differential privacy protection of the
private output and sufficient multiplicative masking protec-
tion of the private input against an adversary A2.

The adversary A2 can only obtain the perturbed x̂∗

and ∆x̂(t)∗ in DC and AC state estimation, respectively.
For DC state estimation, the estimated state vector x̂ is
masked with an additive Laplace random noise vector
(x̂∗ = x̂+r), where r is randomly sampled from the Laplace
distribution Lap(0, v, n), v = 2·MAX

ε (xi ∈ [−MAX,MAX]).
Thus, πDC provides ε-local differential privacy protection
for x̂ with the Laplace mechanism [33], [36], [37]. For AC
state estimation, a new randomness r(t) is freshly sampled
at each iteration t from Laplace distribution Lap(0, v, n),
v = 2·MAX

ε . After each time of running AC state estima-
tion, A2 can only obtain the random perturbed ∆x̂∗(t) =
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∆x̂(t) + r(t). Assume that, having ∆x̂∗(t−1), the adversary
A2 can obtain x̂∗(t) = x̂(t−1) + ∆x̂∗(t−1) (e.g., with t = 2,
x̂(t−1) = xflat). Note that, x̂(t) = x̂(t−1) + ∆x̂(t−1) and
∆x̂∗(t−1) = ∆x̂(t−1) + r(t−1); thus, x̂∗(t) = x̂(t) + r(t−1),
where r(t−1) ← Lap(0, v, n), v = 2·MAX

ε . Therefore, πAC

provides ε-local differential privacy protection for x̂(t) with
the Laplace mechanism.

By adopting the multiplicative masking for A using
an invertible matrix R, from the public information that
the state estimation functionality is solvable or not, an
adversary can deduce the singularity of A. If the state
estimation problem is solvable, A∗ is invertible, and then
A is also invertible (det(R · A) = det(R) · det(A)).
However, even knowing about the singularity of A,
the adversary cannot deduce the singularity of Ah

(i.e., no information of Hh, yh) due to the fact that
det(Ac + Ah) ̸= det(Ac) + det(Ah). Besides, A∗c and b∗c
are not available to TGCc due to the unknown randomness
(R, r). Thus, having the relation A∗.x∗ = b∗ and (Ac, bc)
from colluded parties does not add more information
about (A∗h, b

∗
h) than from only knowing (A∗, b∗), given

A∗ = A∗h + A∗c , b∗ = b∗h + b∗c . Moreover, from the
result of the statistical properties of multiplicative noise
masking for confidentiality protection [41], the efficacy
of noise multiplication R · A for privacy protection of
Ah is estimated formally according to the variance of
the noise distribution to generate the randomness R.
The disclosure risk assessment is put in the scenario
where an adversary knows the perturbed cell total
(A∗[i, j] =

∑
k R[i, k] ·A[k, j]) and tries to infer about the

value of a specific cell A[k, j] (not mention the value of
Ah[k, j]). As from [41], the sufficient privacy for practical
applications to be required would be that approximate 95%
error bounds for each value A[k, j] are at least p% away
from its actual value. One possibility is to set σR = p/200
[41]. Therefore, we can choose suitable noise distribution
to achieve sufficient privacy protection with multiplicative
masking R · A. For example, with R ←$ [−1, 1]n×n,
σR = 2/

√
12, then p ≈ 115.

6.3 Communication and computation analysis
6.3.1 Computation cost
We estimate computation overhead in terms of the number
of homomorphic computation operations in the protocols,
including homomorphic encryption (#Enc), homomorphic
decryption (#Dec), and homomorphic evaluation (#Eval).

TABLE 3: Computation cost of πDC

#Enc #Dec #Eval

TGCi 2 1 0

SO 0 0 5

SE k 2 0

The computation cost of πDC is summarised in Table 3.
In πDC (Fig. 2), each TGCi executes 2 encryption operations
and 1 decryption operation. SO executes 5 homomorphic
evaluation operations. For SE, the number of encryption and
decryption operations is k and 2, respectively.

TABLE 4: Computation cost of πAC

#Enc #Dec #Eval

TGCi T · (3 + 6 · |Bi|) T 0

SO 0 0 T · 8

SE T · (k + 2) T · 5 0

The computation cost of πAC is summarised in Table 4.
In πAC (Fig. 3), for each πt, each TGCi executes 3 encryption
operations to get EAi, ebi, eβi, and 6 encryption operations
to get cb corresponding to each of its boundary bus b, thus
counts to T ·(3+6 · |Bi|) encryption operations. The number
of decryption operations that each TGCi computes is T . SO
executes 8 homomorphic evaluation operations. For SE, the
number of encryption and decryption operations is T ·(k+2)
and T · 5, respectively.

6.3.2 Communication cost
Table 5 provides the overall communication complexity of
πDC and πAC in terms of the number of the plaintexts and
the ciphertexts sent at each step of the protocol. Denote
Lp, Lc, Lk as the size of a plaintext, a ciphertext, and a pair
key (pk, ek) respectively.

In πDC, each TGCi sends its (pki, eki) to SE and SO,
2 ciphertexts to SO; SO sends 2 ciphertexts to SE and k
ciphertexts to k TGCs; SE sends its (pki, eki) to SO and
TGCs and k ciphertexts to SO. Thus the number of key
messages is: 2 · k + k + 1 = 3 · k + 1, the number of cipher
messages is: 2 · k + 2 + k + k = 4 · k + 2.

In πAC, besides 4 ·k+2 ciphertexts as in πDC, for each πt,
there are additional 2 ciphertexts (EH0, eh

∗
0) sent from SO

to SE and 2 ciphertexts (EA0, eb0) sent from SE to SO, 6·|B|
of ciphertexts corresponding |B| boundary buses, k cipher-
texts eβi sent from k TGCi to SO, and 1 ciphertext econt sent
from SO to SE. Thus, the total number of ciphertexts trans-
ferred is T ·(4·k+2+2+2+6·|B|+k+1) = T ·(5·k+7+6·|B|).

7 EMPIRICAL EVALUATION

In this section, the proposed privacy-preserving state esti-
mation schemes are simulated on the IEEE 14-bus system
[42]. The efficiency and scalability are then analysed on big-
ger systems (for example, IEEE-118 bus [43] and IEEE-300
bus [44]) with the adoption of parallel matrix computation
on high-performance computing infrastructure.

The IEEE 14-bus test case represents a simple approxima-
tion of the American Electric Power system as of February
1962 [42]. It has 14 buses, 5 generators, and 11 loads (Fig. 4).
The IEEE 14-bus system is divided into 3 sub-systems TGCs
with the statistics of the partition of the boundary (#bo)
and internal (#in) buses and lines as in Table 6, in which
three sub-systems are managed by TGC1,TGC2,TGC3 and
the interconnection area is handled by SO.

DC and AC load-flow calculations are performed using
the open-source power system simulator Pandapower [45]
to update voltage magnitudes and phase angles throughout
the system. The results of the load-flow calculation represent
the true states. Measurements are generated from the true
states by adding device errors which are assumed Gaussian
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TABLE 5: Communication cost of πDC and πAC

Communication cost

πDC Lk · (3 · k + 1) + Lc · (4 · k + 2)

πAC Lk · (3 · k + 1) + T · Lc · (5 · k + 3 + 6 · |B|))

Fig. 4: IEEE 14 bus system [42]

TABLE 6: Partition of the IEEE-14 bus system

Subsystem bus line

#bo #in #bo #in

TGC1 ([1, 2, 5, 6]) 3 1 0 4

TGC2 ([3, 4, 7, 8, 9]) 3 2 0 5

TGC3 ([10, 11, 12, 13, 14]) 5 0 0 3

SO 0 0 8 0

random noise with zero-mean and standard deviation of
0.01. The convergence threshold ε for AC state estimation is
set to 10−5. The performance metric is Root Mean Square
Error (RMSE):

RMSE =

√√√√ 1

n
·

n∑
i=1

(x̂i − xi)2

where xi is the true state from load-flow calculation and x̂i

is the i-th estimated state.
The homomorphic encryption scheme CKKS [27] is

adopted as the underlying homomorphic encryption. An
encryption operation Enc(x) includes encoding x first and
then encrypting. A decryption operation Dec(y) includes
decrypting y first and then decoding. This scheme supports

arithmetic operations over ciphertexts and arithmetic opera-
tions over ciphertexts and plaintexts. The scheme’s security
is based on the RLWE assumption over the cyclotomic ring
R = Z[X]/(Xλ + 1). The setting is based on [46], with λ =
213. We also utilise library HEMat, [46] which demonstrates
reasonable performance for practical use (e.g. homomorphic
evaluation of CNN, making a prediction based on encrypted
data and model) to encrypt a matrix homomorphically and
perform arithmetic evaluation on encrypted matrices.

TABLE 7: DC state estimation on IEEE-14 bus system

DCSE MDCSE πDC

RMSE of x̂θ 0.7932 0.7932 0.7928

Time (s) 0.0568 0.0972 38.689

We carry out the proposed privacy-preserving DC and
AC state estimation and compare the results with the cor-
responding non-privacy-preserving version. As can be seen
from Table 7 and Table 8, the RMSE errors of the proposed
scheme are similar to the non-privacy-preserving versions.
The approximation is due to the approximation property
of the underlying homomorphic encryption CKKS working
on real numbers. The proposed privacy-preserving state
estimation does not degrade the overall state estimation
accuracy significantly. For time complexity, the privacy-
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TABLE 8: AC state estimation on IEEE-14 bus system

ACSE MACSE πAC

RMSE of x̂θ 0.0788 0.0788 0.0793

RMSE of x̂V (×10−3) 1.233 1.233 1.251

Time (s) 0.0795 0.1303 190.818

preserving versions take longer to finish than the non-
privacy-preserving versions due to the homomorphic op-
erations applied in the scheme.

Next, the efficiency and scalability of the system are
analyzed on bigger systems (for example, IEEE-118 bus and
IEEE-300 bus) with the adoption of parallel matrix compu-
tation on high-performance computing infrastructure.

With λ = 213, a matrix of size 64 × 64 can be encrypted
in one ciphertext, which is sufficient for a data matrix of
size 27 × 27 in the IEEE-14 bus system. For bigger systems
like IEEE-118 bus and IEEE-300 bus, 235 × 235-matrices of
IEEE-118 bus system and 599 × 599-matrices of IEEE-300
bus system are too large to be encoded into one ciphertext.
The approach is to partition these large data matrices into
k2 sub-matrices, where k = ⌊n/64⌋ + 1, and then encrypt
them individually (n = 2 ·N −1, N is the number of buses).
Arithmetic operations (addition, multiplication) over large
matrices can be expressed as block-wise operations over the
sub-matrices of 64 × 64 size as the same as IEEE-14 bus
system. With parallel matrix computation algorithms [47],
high-performance computing can be adopted to accelerate
the computation speed. For instance, DNS algorithm of
matrix multiplication performs matrix multiplication in time
O(logk) · T64 by using O(k3/logk) processes where k2 is
the number of blocks and T64 is the time for homomorphic
matrix multiplication of 64× 64-matrices.

For the IEEE-118 bus system, by utilizing the computing
system with k3/logk = 32 CPUs (k = 4) with DNS
algorithms for matrix multiplication [36], the computation
time can be estimated as logk = 2 times as that of the
IEEE-14 bus system due to the fact that homomorphic
matrix multiplication consumes the most computation
cost. Similarly, for the IEEE-300 bus system (k = 10),
the corresponding computation time can be estimated as
logk = 3.322 times as that of the IEEE-14 bus system.

8 CONCLUSION

This paper designs privacy-preserving state estimation
schemes for DC and AC models to solve the problem of
competitive privacy in a deregulated environment of inter-
connected transmission grids. Private protocols based on
a hybrid approach of a linear transformation for masking
and a quantum-secure homomorphic encryption scheme
established in the two-non-colluding-server model are de-
signed and analysed to be secure. The proposed protocols
guarantee the state estimation accuracy and the competitive
privacy of each sub-grid. The results from this research
motivate us to design other privacy-preserving security
operations in smart grids, such as privacy-preserving false
data injection detection schemes which utilize the private
estimate outputs of the proposed system.
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