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Abstract—One prominent tactic used to keep malicious behav-
ior from being detected during dynamic test campaigns is logic
bombs, where malicious operations are triggered only when spe-
cific conditions are satisfied. Defusing logic bombs remains an
unsolved problem in the literature. In this work, we propose to
investigate Suspicious Hidden Sensitive Operations (SHSOs) as a
step toward triaging logic bombs. To that end, we develop a novel
hybrid approach that combines static analysis and context-aware
anomaly detection techniques to uncover SHSOs, which we predict
as likely implementations of logic bombs. Concretely, DIFUZER++
identifies SHSO entry-points using an instrumentation engine and
conducting an inter-procedural data-flow analysis. Subsequently, it
extracts trigger-specific features to characterize SHSOs. To detect
abnormal triggers, we utilize multiple One-Class SVM models,
each trained on distinct sets of similar apps to more effectively
capture normal behavior patterns. To assess the added value of the
context-aware analysis, we compare DIFUZER++ against a baseline
approach with no context (that we name DIFUZER). We show that
the context-aware analysis leads to a significant improvement in
both the precision and F1 score. Furthermore, the probability of
successfully triaging logic bombs among SHSOs increases from
29.7% to 58.8%. All our artifacts are released to the community.

Index Terms—Logic bomb, malware, android security, static
analysis, clustering, anomaly detection.
ECURITY and privacy in Android have become paramount
S given its pervasive use in a wide range of user devices, be it
handheld, at home, or in the office [1]. Yet, regularly, new threats
are discovered, even in the official Google Play app store [2].
Typically, thousands of apps are regularly flagged by antivirus
engines: for the year 2022 alone, the ANDROZOO [3] repository
has collected over 3825000 apps, among which over 145000
apps are flagged by at least five antivirus engines hosted by

VirusTotal [4]. Addressing the spread of malware in app markets
is therefore a prime concern for researchers and practitioners. In
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the last decade, several approaches have been proposed in the
literature to automate malware identification. These approaches
explore static analysis techniques [5], [6], [7], [8], [9], [10], dy-
namic execution [11], [12], [13], or a combination of both [14],
[15], [16], as well as the use of machine-learning [17], [18].

While the aforementioned techniques have been proven ef-
fective on benchmarks, attacks evolve rapidly with increasingly
sophisticated evasion techniques. Typically, malware writers
rely on code obfuscation [19] to bypass static analyses. To
evade detection during dynamic analysis, attackers seek to hide
malicious code behind triggering conditions. These are known
as logic bombs, the triggering conditions of which being varied.
For example, a logic bomb could execute malicious instructions
only at a specific time that is not likely to be reached when
market maintainers dynamically analyze the software before it
is distributed.

Logic bombs can be used for any malicious activity such
as adware [20], trojan [21], ransomware [22], spyware [23],
etc. [24]. Furthermore, as the trigger and the malicious code are
generally independent of the core application code (i.e., their
context differ), logic bombs can easily be added in legitimate
apps and repackaged for distribution [25], [26],[27], [28]. There-
fore, detecting logic bombs is of great importance, especially in
mobile devices that carry much personal information. However,
due to the undecidable nature of this detection problem in
general [29], and the fact that dynamic analyses will likely fail
to detect such behaviors [30], analysts explore static-analysis
based heuristic or machine learning approaches to detect logic
bombs.

A logic bomb is characterized by the fact that it implements a
hidden sensitive operation. Therefore, recent works addressing
logic bombs have focused on the identification of Hidden Sensi-
tive Operations (HSOs) as a target [31]. However, not all HSOs
are logic bombs. Indeed, an HSO may be neither intentional
nor malicious, while logic bombs always are. In this work, we
propose to identify Suspicious HSOs (SHSO) towards triaging
logic bombs among HSOs. We hypothesize that logic bomb code
is decoupled from apps’ code, since these apps can be infected
with pre-existing logic bomb code, which makes the logic bomb
code more suspicious than any piece of code in the app. As
an example, suppose a logic bomb’s triggering condition relies
on location data, implemented through the getLastKnown-
Location () Android API method, and the infected app is a
calculator. In that case, both the triggering condition and the
code executed would be regarded as highly suspicious and even
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abnormal in the context of a calculator app. Consequently, we
suggest utilizing a context-aware detection technique to identify
suspicious HSOs, thereby improving the probability of detecting
logic bombs.

Further note that, in this study, we do not attempt to address
a binary classification problem of discriminating malware from
benign apps (e.g., by using logic bombs as a key criteria of
maliciousness). Instead, our ambition is to improve the detection
of logic bombs, which are considered sweet spots for targeting
the understanding of malware’s malicious behaviors. Indeed,
while the literature proposes a variety of approaches for predict-
ing Android apps’ maliciousness (i.e., malware detection), the
community still seeks to make significant breakthroughs in the
localization of malicious code parts. Detecting logic bombs thus
provides an opportunity to localize and characterize malicious
code implemented as hidden sensitive operations.

Recent literature on Android has already approached the
problem of detecting sensitive behavior triggered only when
certain conditions are met. Such triggers are referred hereafter
as sensitive triggers. TRIGGERSCOPE [32] was proposed as a
static analysis tool to detect logic bombs: its analyses are based
on heuristics and are thus limited to certain trigger types (i.e.,
time-related, location-related, and SMS-related triggers). TRIG-
GERSCOPE further relies on symbolic execution, which reduces
its capacity to scale to massive datasets. Unlike TRIGGERSCOPE,
HSOMINER [31] leverages a supervised learning approach with
engineered features to reveal sensitive triggers. HSOMINER,
however, does not specifically target malicious triggers: it flags
up to 20% of apps (including a large portion of benign apps),
which makes it inefficient for isolating dangerous triggers in
the wild; it also takes on average 13 min/app, which makes it
challenging to exploit for large-scale experiments.

HSO triggering conditions are typically implemented by if
statements. A given app code, however, may contain from hun-
dreds to thousands of such conditional statements. Therefore,
a major challenge in the research around HSO is to reduce
the search space for accurately spotting suspicious sensitive
triggers. Our core idea towards achieving this ambition is to
model specific trigger characteristics to spot SHSOs.

In this work, we propose a novel approach to identify sus-
picious hidden sensitive operations where we rely on an unsu-
pervised learning technique to perform anomaly detection. We
intend to detect suspicious triggers deviating from the normality
of the myriads of conditional checks performed in typical apps.
To do so, we explore specific trigger/behavior features to guide
our detection system towards enumerating truly suspicious trig-
gers and thus refine the search space for uncovering logic bombs.
We propose DIFUZER++, a novel hybrid approach that combines
@ code instrumentation to insert particular statements required
for taint analysis, @ inter-procedural static taint analysis to
find suspicious sensitive triggers, and ® context-aware anomaly
detection to reveal Suspicious Hidden Sensitive Operations in
Android apps.

While the literature includes work [31] that proposed su-
pervised learning techniques for detecting HSOs, DIFUZER++
relies on unsupervised learning to spot “abnormal” triggers.
Moreover, towards ensuring that the model is accurate in the
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detection of suspicious HSOs: DIFUZER++, on the one hand,
utilizes specifically-engineered features that capture the seman-
tic properties of maliciousness. On the other hand, it groups
apps based on their context using clustering techniques to ensure
that anomaly detection is performed with a contextual approach,
i.e., on multiple sets of similar apps rather than a single set of
unrelated apps. Previous research has shown the advantages of
grouping similar apps to identify malicious behavior [33] and to
profile malicious apps based on their data flow signatures [34].
The main contributions of our work are as follows:
® We propose DIFUZER++, a novel approach to detect SHSOs
in Android apps. DIFUZER++ combines code instrumen-
tation, static inter-procedural taint tracking, and context-
aware anomaly detection techniques.
® We evaluate DIFUZER++ and show its ability to reveal
SHSOs with a 98.56% precision in less than 48 seconds
on average per app, outperforming previous approaches.
® We demonstrate that the trigger- and behavior-specific
features are relevant for triaging logic bombs among HSOs.
® We demonstrate that the context of apps is relevant to triage
logic bombs among SHSOs:
while DIFUZER (i.e., a version of DIFUZER++ with not con-
text information) uncovers 29.7% of logic bombs among
the detected SHSOs, DIFUZER++ uncovers 58.82% of logic
bombs.
® We show that DIFUZER, our baseline approach is enough to
outperform the state-of-the-art logic bomb detector, TRIG-
GERSCOPE. Indeed, DIFUZER reveals more logic bombs
than TRIGGERSCOPE while yielding fewer false positives.
® We release the DIFUZER++ prototype in open-source and
further make available to the research community a new
Android logic bomb dataset, called DATABOMB++: https:
/I github.com/Trustworthy-Software/DifuzerPlusPlus
Extension Disclaimer: This paper is an extension of our
previous work [35] which was published at the 44th International
Conference on Software Engineering 2022 (ICSE 2022). In our
previous work, we presented DIFUZER, a novel hybrid approach
that employs a combination of data flow analysis techniques and
anomaly detection to discriminate logic bombs among SHSOs
within Android apps. This extension expands upon our previous
work by incorporating contextual information about apps to
enhance the training of anomaly detectors and improve the
distinction between normal and abnormal behavior. Our new
approach will be referred to as DIFUZER++, in contrast to our
baseline approach, which we will simply refer to as DIFUZER.

II. BACKGROUND AND DEFINITIONS

In this section, we first introduce Taint Analysis and Anomaly
Detection, two techniques used in our approach. Then, we briefly
present the two algorithms used to incorporate the context in
our approach, categorizing the apps into groups of similar apps:
Latent Dirichlet Allocation (LDA) and K-Means. In the last part
of the section, we carefully define important concepts and finally,
succinctly give the context for our study.

Taint Analysis: Taint analysis is a dataflow analysis that
follows the flow of specific values within a program. A variable
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V is tainted when it gets a value from specific functions called
sources. The taint is propagated to other variables if they receive
a derivation of the value in V. If a tainted variable is used as a
parameter of specific functions called sinks, it means that during
execution, the value derived from a source can be used as a
parameter of a sink. In this paper’s context, we rely on taint
analysis to check if the conditional expression involves sensitive
data value(s).

Anomaly Detection: When analyzing data of the same class,
several items can significantly differ from the majority. They
are called outliers and can be viewed as abnormal. There are
numerous techniques in the state-of-the-art for achieving this
outlier detection in sets of data [36]. This paper relies on One-
Class Support Vector Machine (OC-SVM) [37], an unsupervised
learning algorithm that learns common behavior based on fea-
tures extracted in an initial dataset. Once the model is learned,
a prediction is performed by checking whether a new sample
features make it more or less abnormal w.r.t. the common model.
In this paper’s context, an anomaly is computed by considering
distances among vectors representing triggers, i.e., a condition
along with the behavior triggered.

Apps Categorization: Applications available on the Google
Play Store are sorted into specific categories to provide users
with an idea of their functionality. However, alternative methods
can also be used to group apps together based on similarities,
such as analyzing the app’s description or other kinds of data.
Latent Dirichlet Allocation (LDA) [38] is a probabilistic topic
modeling algorithm that discovers hidden topics within a large
corpus of text data. It assumes that each document is a mixture
of topics, and each topic is a probability distribution over a
set of words. LDA works by iteratively assigning words to
topics and updating the topic distributions until convergence.
The resulting topic distribution for each document and word
distribution for each topic can be used for analysis and classifica-
tion. K-means [39] is an unsupervised machine learning method
that partitions a dataset into k clusters. It randomly selects k
initial centers, assigns data points to their nearest center, and
computes new centers as the mean of their assigned points until
convergence or a maximum number of iterations is reached.
Both LDA and k-means are unsupervised machine learning
algorithms that group similar data together; LDA groups similar
text documents into topics based on word distributions, while
k-means groups data points into clusters based on similarity or
distance measures.

Definitions: We define terms that will be used and referred to
throughout the paper. Fig. 1 visually depicts our definitions.

Definition 1 (Trigger): A trigger is a piece of code that
activates operations under certain conditions. In Fig. 1(a), the
trigger 7 (dashed rectangle) is represented by the condition ¢
(rounded rectangle node), the true branch 7. and the false branch
®... The true branch 7. represents all the statements (nodes) for
which each path from the entry-point must go through c and are
executed if and only if 7 is true. The false branch . represents
all the statements for which each path from the entry-point must
go through ¢ and are executed if and only if 7 is false. Note
that every path from the entry-point to the hatched node must
go through c. In other words, c strictly dominates the hatched
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Fig. 1. Definitions illustrations. The graphs represent the Control-Flow Graph
of the same function.

node. However, the hatched node can be executed if 7 is true or
false. Therefore it is not part of 7. nor ®..

More formally, let > be the set of statements of a function
(nodes in Fig. 1). Let ¢ € X be a conditional statement (i.e., an
if statement, rectangle nodes in Fig. 1). Let 7 be ¢’s predicate. Let
¢ be the conditional execution function such as e(7, o) is true if
o € X isexecuted if and only if 7 is true. Let ¢ be the dominator
function such as §(d, o) is true if d € ¥ strictly dominates o €
Y], false otherwise.

Let 7, and ®, be the true and the false branch' of ¢ such as:

T.={c|oceXAd(c,o)Ne(m, o)}
O, ={o|oceXAdic,0)Ne(—m,0)}

Then, a trigger 7 is defined as a triplet: 7 = (¢, Te., ®.).

Definition 2 (Guarded code): Let T be a trigger such as: 7 =
(e, T, D).

Then, the code guarded by cis: I' =T, U ..

Definition 3 (Trigger entry-point): We define a trigger entry-
point as the condition triggering the guarded code. More for-
mally, given a trigger 7 = (¢, Te., ®..), ¢ is defined as its entry-
point.

Definition 4 (Hidden Sensitive Operation (HSO)): An HSO
is a piece of code that represents a set of instructions, which
(1) implement a security-sensitive operation and (2) are only
executed when specific criteria are met (cf. Fig. 1(b)). More
formally, let n = (¢, T, ®.) be a trigger and S a piece of
sensitive behavior such as S C Y. Then, 7 is a hidden sensitive
operationif S C 7.V .S C ..

Definition 5 (Suspicious Hidden Sensitive Operation
(SHSO)): An SHSO refers to an HSO that implements a sensitive
operation that appears to be suspicious given the context of the
app. For example, a navigation app may legitimately retrieve
user location information (which is a sensitive operation), while
a calculator is suspicious if it attempts to retrieve such sensitive
data.

Definition 6 (Logic bomb): A logic bomb is a piece of ma-
licious code triggered under specific circumstances. More for-
mally, let A = (¢, T, ®.) be an SHSO, S its sensitive behavior,

INote that in case there is no false branch, . = 0.



4738
1 // Example simplified for reading, with renamed methods
2 public static String ml() {
3 int phoneType = telephonyManager.getPhoneType ();
4 if (phoneType == 1) {
5 GsmCellLocation gsmCellLocation
— = telephonyManager.getCellLocation();
6 int a = gsmCelllocation.getCid();
7 int b = gsmCelllLocation.getLac();
8 String strl = a + b;
9 else { String strl = ""; }
10 return strl;

1 }

13 public static void m2() {

14 if (ml().isEmpty()) {
15 performSomeActivity (str2);
16 }
17 else(
18 performMaliciousActivity (str2);
19 }
20 }
Listing 1: Logic bomb identified by DIFUZER++ in “com.xxooapp-

.bubbleshot” app.

and M a piece of malicious code such as M C X. Then, A is a
logicbombif M C S (cf. Fig. 1(c)). In other words, a logic bomb
is an SHSO which suspicious sensitive behavior is malicious.

Listing 1 provides an overview of a real-world example of
a logic bomb that DIFUZER++ detected in an application called
“com.xxooapp.bubbleshot.” This application is a member of the
“Bubble Shooter” game family and has a straightforward game-
play. However, an analysis of its code revealed that it attempts to
retrieve the Cell ID (CID) and Location Area Code (LAC) using
the getCid () and getLac () methods, respectively. In the
context of mobile network communication, the CID and LAC
are used to identify the specific cell tower to which a mobile
device is connected, which can help determine its approximate
location. This is highly unusual behavior for a simple arcade
game, highlighting the need for context-aware analysis.

In this example, the different parts of the SHSO, including
triggering condition checks, are split across methods m1 and
m?2. The triggering condition check occurs in line 4, where m1
returns a string with the CID and LAC information only if the
getPhoneType () method returns 1, which corresponds to
the phone type of GSM (Global System for Mobile Communica-
tions). If get PhoneType () returns any other value, an empty
string will be returned instead. In m2, the malicious behavior
will be activated only if the string returned by m1 contains the
CID and LAC values.

The challenge in detecting the logic bomb described above
is that traditional methods, such as rules or models, are not
reliable due to the absence of a formal definition of malicious
behavior. As a result, malicious code can easily evade most
dynamic analyses with little effort from malware authors. This is
because testing environments and sandboxes often return default
values for environment variables making it difficult to detect
the logic bomb [11]. For example, testing environments may
always return the same value for getPhoneType (), thus
failing to identify the malicious behavior. Besides the device’s
phone type, different environment values (e.g., sensors, settings,
GPS, remote values, etc.) can be used to trigger malicious code.
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DIFUZER++ found a logic bomb that would constitute a
challenge to the existing state of the art. TRIGGERSCOPE
[32] cannot identify this logic bomb, as its heuristics are
limited to time-, location-, and SMS-related triggers (e.g.,
GSM Cell values such as the value returned by getCid ()
orgetLac () are missed). Although HSOMINER [31] could
detect this logic bomb if its training set includes similar
examples, its tendency to flag a large number of HSOs (~20%
of apps) makes manual checking a cumbersome task. In
contrast, DIFUZER++ offers a reasonable number of warnings
to be checked manually. Moreover, by taking into account the
category of an app, and thus, by flagging “abnormal’ behavior
wrt. the context of the app, we expect that DIFUZER++ can
further reduce the number of false alarms (i.e., wrongly
detected logic bomb) than our initial tool DIFUZER.

III. APPROACH

Goal: With DIFUZER++, we do not aim at detecting any HSOs,
but only suspicious HSOs (SHSOs) for which the likelihood of
being logic bombs is high.

Intuition: As shown in previous studies [31], the number of
HSOs per app can be large, even in benign apps. This suggests
that although HSOs are “sensitive” operations, most of them are
legitimate, i.e., they are used to implement common behavior.
In contrast, logic bombs are rare, especially in benign apps.
The primary objective of DIFUZER++ is to identify abnormal in-
stances of HSOs (i.e., SHSOs), for which the likelihood of being
logic bombs is high. This is achieved through a context-aware
anomaly detection approach, utilizing specifically designed fea-
tures.

Overview: In Fig. 2, we provide an overview of the DI-
FUZER++’s approach. The upper part illustrates the Application
Phase of DIFUZER++, which includes all the steps executed
whenever an application is given as input. In contrast, the lower
section of Fig. 2 represents the DIFUZER++ Training Phase,
which is performed only once to train multiple context-aware
anomaly detector models. The DIFUZER++ approach comprises
three key modules.

® (1): SHSO entry-point candidates Identification.

® (2): Clustering.

® (3): Anomaly Detection.

These modules will be explained in detail in the following
subsections.

A. SHSO Entry-Point Candidates Identification

Previous works [11], [40], [41], [42], [43] have shown that
specific values, such as system inputs and environments vari-
ables, are often used to trigger HSOs. State-of-the-art ap-
proaches have thus proposed to check whether the conditions
of if statements contain these sensitive data. To that end, they
rely on symbolic execution [32] or backward data-dependency
graphs [31] that could suffer from scalability problems. With D1-
FUZER++, we propose to use taint analysis to track sensitive data
values and check if they are involved in conditional expressions.
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Fig.2. Overview of the DIFUZER++ approach on a given APK file.
Taint analysis tools generally track data from sources to sinks. TABLEI
. . . . EXAMPLES OF SENSITIVE SOURCES
The implementation of FLOWDROID, a popular taint analysis
framework for tracking sensitive information, considers sources Device
d sink h hod 1 LI h ink Internal External
and sinks at the method level. In our case however, sinks are System | Content Build SIM Tnternet GPS
_ . . . L . Sensors, | Call Logs, Model, Phone call, | Parameters, Latitude,
fine-grained code locations, which are conditional expressions Examples | o0 | s e | s Content | Longitude

of if statements. This requires for DIFUZER++ to instrument
apps in order to insert dummy method calls that will make the
apps ready for analysis by FLOWDROID (cf. Section III-A2).
Moreover, sources can be method calls or data field accesses.
To build the set of source and sinks we propose to make a
systematic mapping (cf. Section III-A1) that explores internal
and external system properties and their associated APIs as well
as environment variables.

1) Systematic Mapping Toward Defining Sources: As al-
ready explained, a first step is to track sensitive values. In this
work, these values are derived from particular source methods.
Then, if a sensitive value falls into an if statement, we consider
the condition as a potential SHSO entry-point. This section will
describe how we gathered a comprehensive list of source meth-
ods used for the taint tracking phase. Note that we did not rely on
the reference sources list produced by SUSI [44] since it has been
shown that most of the methods are inappropriate for tracking

sensitive data, and lead to a high amount of false-positives (e.g.,
>80%) [45], [46], [47].

In general, decisions on whether to trigger SHSOs or not are
taken on system properties [31], [40], [42], [48]. Hence, we
performed a systematic mapping of the Android framework from
SDK version 3 to 30 (versions 1 and 2 were unavailable) to gather
a comprehensive list of source methods. In particular, since in
the case of Android apps, system properties can be derived from
the device’s internal and external properties, we inspect the
successive versions of the framework to identify various means
to access these properties.

In Table I, we enumerate the different property types (with
examples) on which we reasoned to retrieve sensitive sources,
which are classically focused on in the literature [31], [40], [42],
[48]. We follow a systematic process to perform the retrieval of
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sources from the given property types: we first extracted patterns
from the different ways to access the aforementioned properties.
Then, we used those patterns to automatically discover the sensi-
tive sources that we make available to the research community in
the DIFUZER++ project’s repository. In the following, we further
detail the internal and external properties that we consider.

Internal: In the case of internal properties, a developer can get
sensitive information of the device from three main channels:
1) System properties, 2) Content in internal databases, and 3)
Information from BUILD class (see Table I). In the following, we
describe how we obtain a list of sources for those three channels:

@ System properties: While developing an Android app,
developers have access to several useful APIs. In this case,
the most interesting is android.content.Context. -
getSystemService(java.lang.String) [?] which
returns the system-level handler for a given service. The service
is described by a string given as parameter to get SystemSer -
vice method. The Context class gives developers access to
pre-defined constants (e.g., SENSOR_SERVICE).

In fact, every constant contains the name of the service with
“_SERVICE” appended to it. The return value type of the
getSystemService method call is derived from the con-
stant name (e.g., SENSORSERVICE will give a SensorMan-
ager [?]) which in turn can be used to get a object whose type
is also derived from the constant name (e.g., a SensorManager
object can be used to obtain a Sensor object [?]). We used this
pattern to compile our list of sensitive sources for the System
properties. More specifically, we verify if the class exists in at
least one SDK version for each class obtained. If this is the
case, we list the methods of the class and keep only the “getter
methods”, i.e., those starting by “get” or “is” (e.g., methods such
as getId() or isWifiEnabled()).

@ Content in internal databases: To access databases
fields, one has to perform a query which returns a an-
droid.database.Cursor [?] object. This object is then
used to iterate over the result of the query. Hence, to get sensitive
source methods related to content in internal databases, we
applied the same process as for system properties (i.e., to retrieve
the “getter” methods) but on the Cursor class.

® Build class: The Build class [?] allows developers
to access information about the current build of the device
from its fields. For instance, one can get the brand associated
with the device by accessing Build.BRAND. Note that our
objective is to retrieve a list of source methods. However, the
information a developer can get from the Bui 1d class can only
be retrieved from class fields, not method calls. Consequently, in
Section III-A2, we will explain how we instrument the app under
analysis to add method call statements representing Build field
accesses.

We gathered a list of 618 unique methods for internal values.

External: In the case of external properties, a developer can
get sensitive information from three channels: 1) SIM card, 2)
Internet Connection, and 3) GPS chip. The process to collect
the source methods is similar to the one followed with Cursor
class, except we do not know in advance the name of the classes
to inspect. Therefore we relied on a heuristic to identify such
classes: for each SDK version, we listed all the classes and kept
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1 public void method() {
String b = Build.BRAND;

3 + b = BuildClass.getBRAND () ;
— // dummy method call for field access
4 String p = Context.TELEPHONY_ SERVICE;
5 Object o = this.getSystemService (p);
6 TelephonyManager tm = (TelephonyManager) o;
7 String countryCode = tm.getNetworkCountryIso();
8 + IfClass.ifMethod (countryCode,
— "RU"); // dummy method call for if statement
9 if (countryCode.equals ("RU")) {

— performMaliciousActivity(); }
10 }

Listing 2:  Example of app instrumentation performed by DIFUZER++ (Lines
with “+” represent added lines).

only those with class names containing the following words:
“Sms, Telephony, Location, Gps, Internet, and Http”. Once the
classes were retrieved, we listed the methods for each class and
kept those starting by “get” or “is”. The intuition is the same as
in the case of internal sources.

We gathered a list of 794 unique methods for external values.
Finally, after combining sensitive sources from internal and
external values, our list contains 1285 unique methods (127
duplicates).

2) Instrumentation: Performing taint tracking, as briefly de-
scribed in Section II, consists of a data-flow algorithm that
propagates the taint from a source method to a sink method.

Sinks Related Challenge: We remind that one objective of
DIFUZER++ is to identify SHSOs’ trigger entry-points. Conse-
quently, the taints that DIFUZER++ tracks are supposed to fall into
if statements. However, being not a method call, an if statement
cannot be considered as a sink when using state-of-the-art static
taint analyzers [49], [50], [S1]. A concrete example of what
DIFUZER++ tracks is given in Listing 2. On line 7, countryCode
variable is tainted from getNetworkCountrylso() source. This
value is then used (line 9) to perform a test and trigger malicious
activity (line 9). As an if statement is not considered a sink, a
flow cannot be found.

Our approach overcomes this limitation by instrumenting
apps. To accomplish this, the app code is first transformed
into Jimple [52], the internal representation of Soot [53]. Then,
DIFUZER++ iterates over every condition of the app, and for each
condition, DIFUZER++ inserts a dummy method ifMethod
with the variables involved in the condition as parameters.
This ifMethod () is static and declared in a dummy class
IfClass that contains all instrumented methods related to
conditions. See line 8 in Listing 2.

Once the instrumentation is over, we dynamically register
every newly generated method calls as sinks to FLOWDROID.

Sources Related Challenge: As described in Section III-Al,
we consider, in this study, Build class’ fields as sources. Since
field accesses are not method calls, we follow the same process
as for if statements to insert dummy methods. More specifically,
DIFUZER++ generates a static method call on-the-fly represent-
ing a field access from the Build class. Listing 2 depicts an
example of this instrumentation process, where the dummy
method getBRAND () of the dummy class BuildClass is
inserted in line 3. Furthermore, newly generated method calls
are registered as sources for taint tracking.
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B. Module (2): Clustering

This section introduces DIFUZER++’s second module, namely
the clustering module. As our final objective is to train multiple
context-aware anomaly detection models on sets of similar apps,
we began by forming clusters of apps (see Section I1I-B4), for
each of which an anomaly detection model will be trained (see
Section III-C3, enabling the engines to learn legitimate behavior
while considering the app’s context. Once the clusters have been
formed, the trained clustering model is saved for future use
during the application phase. Indeed, when a new application
needs to be analyzed, it will be fed to the saved clustering model
to determine the cluster to which it is most closely related. This
identification will be crucial in the subsequent third module, as
it will enable the selection of the most appropriate model for the
anomaly detection phase.

1) Why a Context-Aware Analysis?: Providing context can
be essential in enhancing the accuracy of Anomaly Detection
models as it better helps distinguish normal from abnormal
behavior. A specific behavior can be considered normal for
one app but very unusual for another. For instance, a naviga-
tion app’s use of the getLastKnownLocation () method
to access position data is normal, whereas the same behavior
would be considered unusual for a calculator app. Previously,
in Section II, we presented a concrete example of a logic bomb
related to mobile network communication that we discovered
within a simple arcade game. Seeking out such contextually
unusual behavior can enhance anomaly detection performance,
emphasizing the necessity of context-aware analysis. Moreover,
previous research has demonstrated the benefits of grouping
similar apps to detect malicious behavior [33] and characterize
malicious apps using their data flow signatures [34]. So, we
decided to employ the same approach for DIFUZER++ by clus-
tering apps into groups of similar apps and training an anomaly
detection model for each group.

2) Categorization Techinques: The most straightforward
method for grouping apps based on their similarity is to con-
sider their assigned Google Play Category. However, several
research papers have consistently highlighted the inadequacy of
Google Play’s current app categorization system. [54], [55],
[56], [57]. As a result, we have opted to explore and compare
alternative categorization methods instead of solely relying on
the Google Play Category. In our extensive study on Android app
categorization [54], we conducted a comprehensive evaluation
of various categorization methodologies present in the existing
literature. Our analysis underscored the remarkable superiority
of approaches that utilize app descriptions, in contrast to those
exclusively reliant on data extracted from the APK file, such as
code information or XML values.

In addition, our paper [54] introduced a novel description-
based approach called G-CatA, demonstrating its substantial
advantages in improving tools reliant on app categorization.
G-CatA, an abbreviation for GPT-based CATegorization of
Android apps, leverages OpenAl’s powerful GPT-based text
embedding models [58] to effectively process and represent
app descriptions, using the c1100k_base tokenizer i.e., the
same tokenizer employed in ChatGPT 3.5 and ChatGPT 4 [59].
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TABLE II
APPS FILTERED FOR EACH STEP OF THE DATASET CREATION

#Apps
Filtering from ANDROZOO dataset 905 929
Retrieving categories and descriptions | 476 302
Removing non English descriptions 375135

As a result, to implement context-aware anomaly detection in
DIFUZER++, we opted to compare well-established strategies,
such as applying @ LDA and @ K-Means to the app descriptions,
along with our innovative ® G-CatA approach and ® Google
Play Categories.

3) Dataset Creation: Since anomaly detection models are
designed to comprehend the “normal” behavior of apps, a set of
“normal” apps is necessary. To achieve this, we rely on goodware
apps, aligned with the literature [35]. As mentioned earlier, in our
approach to clustering apps, we rely on both their descriptions
and Google Play categories. This implies the necessity of having
apps with available descriptions and categories. To accomplish
this, we collected all the goodware apps, defined as those with
a VirusTotal score of 0, from the ANDROZOO [3] dataset over
the past five years, specifically those from Google Play. (Since
Google Play displays apps’ descriptions and categories). In total,
this resulted in 905930 apps. We used the google-play-
scraper library [60] to obtain the Google Play category and
description of each app. Furthermore, we retained only apps with
English descriptions, using the langdetect library [61]

Table II provides a breakdown of the app count at differ-
ent stages of our dataset creation process. Our final dataset
comprises 375135 apps spanning across 49 distinct Google
Play categories. A comprehensive list of these 49 categories is
available on our repository in a file named googlePlayCat -
egories.csv.

On average, each category contains approximately 7655 apps,
although there is substantial variation, reflected in a significant
standard deviation of 7185. For instance, the BUSINESS cate-
gory has the most apps (33330), while the COMICS category has
the fewest (409). This underscores the importance of not relying
solely on the Google Play category to cluster apps into similar
groups, as it can introduce some bias.

4) Training Phase: After assembling the dataset of goodware
apps, our initial step involved preprocessing their descriptions
using standard NLP techniques, such as removing non-textual
items, stop-words (common words such as ‘the,” ‘is,” ‘at,’ etc.),
and stemming (a process of identifying the root of a word,
such as ‘fishing,” ‘fished,” and ‘fisher,” to match the common
root ‘fish’) [33], [62], [63]. Following the preprocessing of app
descriptions, we utilized the LDA and K-means implementations
from the scikit-learn library [64] in addition to the
G-CatA approach (which is described in detail in our paper [54])
with an input of 49 as the number of clusters. We matched
the number of clusters to the same number of Google Play
categories to better compare the four approaches. However,
further investigation into the optimal number of clusters may
be considered for future work.
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After categorizing the apps into 49 distinct groups, the clus-
tering model is saved using the joblib.dump method from
the jobliblibrary [65]. When a new app is analyzed during the
DIFUZER++ Application Phase, it will be possible to reload the
model using the joblib.load method to determine which of
the 49 clusters the analyzed app belongs to. This will be done
after preprocessing its description in the same way as the apps
in the training set.

C. Module (3): Anomaly Detection

This section presents DIFUZER++’s third module, which
performs anomaly detection. After grouping the applications
into clusters based on their similarities, as detailed in Sec-
tion III-B, the next step involves the training of multiple
anomaly detection models, with one dedicated to each clus-
ter. The trained models are stored for future use in the anal-
ysis of new applications. Specifically, during the application
phase, a single model is selected from the saved models
based on the output of DIFUZER++’s second module, to en-
sure a context-aware analysis. After selecting the appropriate
model, the features extracted from the analyzed app will be
fed to the model, which will output a list of potential logic
bombs.

1) Why a One-Class SVM?: A classical classification prob-
lem requires samples from positive and negative classes to build
amodel, which is then used to assign labels to test instances [66].
This induces possessing a reasonable amount of samples from
two classes, which is not the case in our study. Indeed, the
SHSO detection problem is challenging, and to the best of our
knowledge, there is no ground truth made publicly available.
Thus, using supervised learning in our study is not practical and
presents limited feasibility.

Therefore, we decided to rely on an unsupervised learning
technique to detect SHSOs, particularly on a One-Class Support
Vector Machine (OC-SVM) machine learning technique. An
SVM algorithm was chosen due to its ability to generalize [67]
and its resistance to over-fitting [68]. The general idea of OC-
SVM is to identify the smallest hyper-sphere to include most of
the samples of the positive samples [69]. A sample considered
as an outlier by the model means the data-point is not in the
hyper-sphere.

2) Features Extraction: As already said, the third DI-
FUZER++ module’s objective is to detect abnormal triggers with
the intuition that these triggers are HSOs for which the likelihood
of being a logic bomb is high, namely SHSOs. This module
implements an OC-SVM algorithm which takes as input feature
vectors computed from the triggers previously extracted from
the entry-points yielded by the first module of DIFUZER++ (cf.
Fig. 2).

To engineer anomaly detection features, we reviewed sur-
veys [24], [70] and related-papers [31], [71], [72], [73] dis-
cussing Android malware and investigated the techniques used
by malware writers to hide malicious code within apps. Eventu-
ally, we identified nine unique trigger/behavior features that are
described in the following.
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In the remainder of this section, we consider a trigger 7 =
(¢, Te, ®.) and its guarded code I" = T, U @, (cf. Section II).

For a given trigger, DIFUZER++ builds a feature vector v =<
S,N,D,R,B, P, M,S1,J > where:

S. Number of sensitive methods used in guarded code: In-
tuitively, this feature represents how much a trigger controls
the execution of sensitive methods. Indeed, while HSOs guard
the execution of sensitive operations for performing sensitive
activities [7], benign triggers, in the general case, perform benign
activities, i.e., invoke few sensitive methods, or not at all. To
retrieve this value, DIFUZER++ iterates over every statement of
I" and recursively checks whether a sensitive method is called
or not. For this purpose, we gathered a list of sensitive APIs
constructed in previous work [74].

N: Is native code used in guarded code? Since analyzing na-
tive code is more challenging than Java bytecode [75], Android
malware developers tend to hide malicious code from automated
analyses in native code [71], [72]. Hence, this feature is aboolean
value that, when set to 1, means native code is used in I', O
otherwise.

D: Is dynamic loading used in guarded code? Dynamic
class loading is not exclusively used in malware. However,
as malware is becoming increasingly sophisticated, they use
built-in capabilities like dynamic loading to hide from automated
analyses [73]. Consequently, likewise native code, this feature
is a boolean value set to 1 if dynamic loading is used in I', O
otherwise.

R: Is reflection used in guarded code? Android malware writ-
ers tend to use more and more reflection-based code [73] since
most of the state-of-the-art techniques overlook this property due
to the challenging task of resolving it. Therefore, this feature is
set to 1 if reflection is used in I', O otherwise.

B: Does guarded code trigger background tasks? Android
apps rely on the Service component to run background tasks.
Hence, with this feature, we aim at capturing the fact that the
app under analysis performs stealthy operations without user
knowledge. The intuition here is that SHSOs’ role is to hide
code both from security analysts and end-users (e.g., in the case
of a logic bomb). This feature is set to 1 if background services
are triggered in I', 0 otherwise.

P: Are parameters of condition used in guarded code? This
feature captures the dependency of a condition to its guarded
code. The hypothesis is that, in the case of SHSOs, the guarded
code does not use values used in the condition since they repre-
sent different behaviors. To achieve this, DIFUZER++ performs
a def-use analysis of the guarded code to verify if any variable
used in the condition is used before being assigned a new value.
If this is the case, the feature is set to 1, O otherwise.

M. Number of app methods called only in guarded code:
With this attribute, we attempt to uncover the number of methods
defined in the app called only in the guarded code of a trigger. The
rationale is that app methods that are only used under a specific
circumstance are likely to be defined only for this specific
circumstance, representing hidden behavior [32]. To retrieve
this number, DIFUZER++ queries the call-graph (built using
SPARK [76] algorithm) for each method call in the guarded
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Fig. 3. Building of the anomaly detection models.

code to verify if it has only one incoming edge (i.e., it is only
called within the current method).

S1. Number of sensitive methods called only in guarded code:
In the same way as M, we aim to capture the number of sensitive
methods only used in the guarded code of a given trigger.

J. Behavior difference between branches: Intuitively, two
branches of an SHSO should be noticeably different. Indeed,
of the two branches, one is considered the normal behavior
(no or few sensitive operations) if the condition is not satisfied
and the other as the sensitive behavior (sensitive operations) if
the condition is satisfied [31]. Therefore, to compute this dif-
ference, DIFUZER++ first inter-procedurally retrieves sensitive
method calls in both branches of a given trigger. Let X7 and
Xg, respectively be the sets of sensitive methods in the true
and the false branch of a trigger. Therefore, to compute this
difference of the two branches, DIFUZER++ relies on the Jaccard
distance: D;(Xr1,, Xo,) =1 — %,which characterizes
the behavior difference of the two branches. A value close to 1
means that both branches are dissimilar.

3) Training Phase: Asdepicted in Fig. 3, we trained a total of
196 models, 49 for each of the four approaches we used for clus-
tering (see Section III-B2). The first step consisted of extracting
the feature vectors from all the apps contained in our dataset of
goodware apps, i.e., the one described in Section III-B3. Then,
for each group of apps, we randomly selected 10000 feature
vectors from the ones extracted from apps belonging to the same
group. These feature vectors were then fed into a One-Class
SVM model to learn what constitutes normal behavior, using the
implementation provided by the scikit-learn library [64].
To ensure that the selected training set does not bias the trained
model’s performance, we split it and compute Accuracy in
10-fold cross-validation. Overall, we achieve a stable Accuracy
of 98.56% on average.
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IV. EVALUATION

We aim to answer the following research questions to assess
the efficiency of DIFUZER++ and demonstrate that context-aware
analysis provides superior precision in detecting logic bombs
compared to our baseline approach DIFUZER.

RQI: How does DIFUZER, our baseline approach without
context-aware anomaly detection, perform? We address this
question in 4 sub-questions:

® RQI.a: What is the performance for detecting SHSOs in

Android apps?

® RQI.b: Are SHSOs detected by DIFUZER likely logic

bombs?

® RQI.c: How does DIFUZER compare against TRIGGER-

SCOPE, a state-of-the-art logic bomb detector?

® RQI.d: From a qualitative point of view, does DIFUZER

lead to the detection of non-trivial triggers/logic bombs?

RQ2: How does DIFUZER++, our novel approach with
context-aware anomaly detection, perform? We address this
question in 2 sub-questions:

® RQ2.a: What is the performance for detecting SHSOs in

Android apps?

® RQ2.b: Can DIFUZER++ find more logic bombs in the wild

when the context is considered?

A. RQI: How Does DIFUZER, Our Baseline Approach Without
Context-Aware Anomaly Detection, Perform?

In this section, we evaluate our approach to detect SHSOs
and logic bombs without context-aware analysis. Up until now,
as outlined in Section III-B4, DIFUZER has been trained using a
context-aware methodology. Therefore, to evaluate the effective-
ness of DIFUZER without employing a context-aware approach,
itis necessary to train an OC-SVM anomaly detector on a dataset
of unrelated apps. Therefore, we randomly chose 10000 good-
ware (i.e., VirusToal [4] score = 0) from ANDROZOO [3]. Then,
for each of these apps, we applied DIFUZER to extract a feature
vector for each app’s condition. Afterward, we randomly chose
10000 feature vectors® from those yielded by DIFUZER, which
we labeled as positive (i.e., part of the normal behavior). We then
trained a One-Class Classification-based anomaly detector. To
ensure that the selected training set does not bias the trained
model’s performance, we split it and compute Accuracy in
10-fold cross-validation. Overall, we achieve a stable Accuracy
of 99.91% on average.

1) RQI.a. Suspicious Hidden Sensitive Operations in the
Wild: In this section, we assess the efficiency of DIFUZER to
find SHSOs on a dataset of malicious applications.

Dataset: To the best of our knowledge, there is no SHSO
ground-truth available in the literature. Consequently, in this
study, we considered 10000 malicious Android apps as our
malicious dataset. These apps were released in 2020, collected
from the ANDROZOO [3] repository, and have been flagged as
malware by at least five antivirus scanners in VirusTotal.

2The number of extracted vectors is orders of magnitude higher. However, for
efficiency, we validated that a random set of 10000 vectors yields an acceptable
performance.
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TABLE III
RESULTS OF THE EXPERIMENTS EXECUTED ON 10000 MALWARE WITH AND
WITHOUT TAKING INTO ACCOUNT LIBRARIES

Analysis with Tibs [ Analysis without libs
Number of apps with SHSO(s) 339 259
Number of SHSOs 5575 2435
Number of SHSOs/app 16.4 8.2
Average # triggers (i.e., before Anomaly detection) | 17.43 14.60
Average # SHSOs (i.e., after Anomaly detection) 0.56 0.24
Mean analysis time 35.63 s 33.54s

We contacted the authors of state of the art approaches (e.g.,
HSOMINER [31], and TRIGGERSCOPE [32]) to get their artifacts
(datasets and tools) for comparative assessment. Unfortunately,
no artifact was made available to us.

Libraries: It has been shown in the literature [77], [78] that
library code can affect analyses performed over Android apps
since it often accounts for a larger part than the app’s core
code. Consequently, in this study, we considered two cases: (1)
with-1ib analysis (i.e., we consider the entire app code including
library code); (2) without-lib analysis (i.e., we consider only de-
veloper code). Torule out libraries, we rely on the state-of-the-art
list available in [77].

Post-Filter: As a precaution, before analyzing the results
without libs, we listed the classes in which DIFUZER found
potential sensitive triggers to search for redundant classes that
could indicate libraries. We were able to filter out 19 additional
libraries that were not listed in the list we used and provided
by [77].

In the following, when referring to the analysis without li-
braries, we consider the 19 libraries previously presented as well
as the libraries of the list in [77] as filtered. It accounts for a total
of 5982 library classes and packages filtered.

Efficiency of Detecting SHSOs: We recall that DIFUZER is
targeted at detecting SHSOs. While in RQ1.b we investigate the
likelihood for these SHSOs to be logic bombs, we first investi-
gate the efficiency (with RQ1.a) of DIFUZER in the detection of
SHSOs. We further perform an ablation study to highlight the
performance of the anomaly detection module.

In Table III, we report the results of applying DIFUZER (with
the anomaly detection step activated) on our 10000 malware
dataset. When analyzing the entire apps, DIFUZER detects at least
one SHSO in 339 apps (3.39%). Overall, DIFUZER detects 5575
SHSOs in these 339 apps leading to an average number of 16.4
SHSOs per app. In comparison, when only the app developers’
code is considered, DIFUZER detects at least one SHSO in 259
apps (2.59%), with a total number of 2435 SHSOs detected and
an average number of 8.2 SHSOs per app. We note that the 3437
(5575-2435) SHSOs that are not in the app developer code,
are actually detected in 68 libraries suggesting that only a few
libraries contain SHSOs. Fig. 4 further details the distribution
of detected SHSOs per apps.

These first results show that SHSOs indeed exist in mali-
cious apps, but in relatively low number (in around 3% of the
apps). However, when SHSOs are present in an app, they are
not rare (on average, about 8 SHSOs per app in the devel-
oper code). Finally, SHSOs are more prevalent in library code
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Fig. 4. Distribution of the number of SHSO(s) per app in analyses with and
without libraries (only apps with at least one SHSO are considered).

TABLE IV
Top TEN TRIGGER TYPES DISCOVERED BY DIFUZER IN THE DEVELOPER CODE.
(T. = TRIGGERS)

Trigger Type | Examples of methods #T._|[ Trigger Type | Examples of methods T,
Database getString, getlnt, getCount 785 [ Location getLastknownLocation, gefLongitude | 84
Internet ponseCode, p 715 || WiEi isWifiEnabled, getConnectionlnfo 76
Build getMODEL, getMANUFACTURER 374 || Power isScreenOn, isknteractive 47
Telephony | getDeviceld, getNetworkOperatorName | 97 || Audio getStreamVolume, isMusicActive 37
Connectivity | getActiveNetworkInfo, getNetworkinfo | 88 || Camera getCameraldList 2

than in app developer code, but only a few libraries contain
SHSOs.

Table III also reports the average numbers of triggers before
and after applying the anomaly detection step (i.e., the sec-
ond module of DIFUZER). Interestingly, we can see that this
anomaly detection drastically reduces the number of triggers
that are considered as SHSOs. Indeed, when considering the
10000 apps, there are on average 174336,/10000 ~ 17.43 and
146018/10000 =~ 14.60 triggers per apps (with or without li-
braries respectively) generated by the first module of DIFUZER,
i.e., by the taint analysis step. After the anomaly detection step,
these numbers drop to 5575/10000 ~ 0.56 and 2435,/10000 =
0.24 respectively, corresponding to a decrease of 96% and 98%
respectively.

These results show that the anomaly detection step has a
significant impact on the number of detected SHSOs by sig-
nificantly reducing the search space of triggers by up to 98%.
This search space reduction is key when the ultimate goal is to
detect malicious code and to support security analysts manual
inspection (cf. Section IV-A2).

We further inspect the SHSOs detected by DIFUZER by focus-
ing on the app developer code only (we do not consider library
code). Table IV lists the top 10 types of trigger that DIFUZER
was able to discover. The second column gives some examples
of methods considered sources for the taint tracking to uncover
SHSO entry-points. We note the diversity of types of triggers that
developers use. For instance, a developer can decide to trigger (or
not) the sensitive code if: (Database trigger type) specific values
are present in databases (e.g., contacts, messages); (Internet trig-
ger type) external orders say so; (Build, Telephony, and Camera
trigger types) the device is not an emulator; (Connectivity, and
Wi-Fi trigger types) the device has Internet access; (Location
rigger type) the user is in a pre-defined location; Note that
the methods in Row 3 have been dynamically generated by
DIFUZER during instrumentation to track the Build class’s field
values.

Regarding the component types in which DIFUZER found
SHSOs, 90% of SHSOs are in methods of “normal” classes, i.e.,
not Android components. SHSOs are foundin Activitiesin
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9% of the cases. However, they are rarely found in Services
and Broadcast Receivers (less than 1%).

Manual Analyses: Since static analysis approaches often
suffer from false alarm issues, i.e., they report a large proportion
of false-positive results, we decided to verify the detection
capabilities of DIFUZER manually. To that end, the authors
of this paper randomly selected a statistically significant
sample of 102 apps out of the 259 apps in which SHSOs
exist in developer code, with a confidence level of 99% and a
confidence interval of = 10%. Only one sample was found to be a
false-positive result. Indeed this app verifies if it is running in an
emulator by comparing Build.PRODUCT, Build.MODEL,
Build.MANUFACTURER, and Build.HARDWARE
against well-known strings such as “generic”, “Emulator”,
“google_sdk”, etc. This test seems sensitive, but the guarded
code displays the following message to the user: “Scooper
Warning: App is running on emulator.”. Therefore, DIFUZER
achieves a precision of 99.02 % to find Suspicious Hidden
Sensitive Operations on this dataset. We release the annotated
list of 102 apps that were manually checked for transparency in
the project’s repository.

Analysis Time: The last row in Table III reports DIFUZER anal-
ysis time. DIFUZER outperforms state-of-the-art trigger detectors
with an average of 33.54 s per app (35.63 s for the analysis with
libraries, with an average DEX size of 7.03 MB per app), making
DIFUZER suitable for large-scale analyses. In comparison, state-
of-the-art tools such as TRIGGERSCOPE [7] and HSOMINER [31])
require 219.21 s and 765.3 s per app respectively. Note that
85.42% (i.e., 28.65 seconds on average) of this time is reserved
for the taint analysis. Also, 24 apps (0.24%) reached the timeout
(i.e., 1 h) before the end of the analysis.

RQI.a answer: DIFUZER, without a context-aware anomaly
detector, detects SHSOs in Android malware with high pre-
cision, i.e., 99.02 % in less than 35 seconds on average.
Among the average 14.6 HSOs identified in an app based
on triggers spotted by static taint analysis, only 2% are
suspicious according to anomaly detection, which shows that
DIFUZER is effective in reducing the search space for manual
analysis.

2) RQI.b. Are SHSOs Detected Likely to Be Logic Bombs?:
Until now, we have shown that DIFUZER is effective in detecting
SHSOs. From a security perspective, however, we must further
show that these SHSOs are actually malicious. In other words,
are these SHSOs likely to be logic bombs. Unfortunately, such
assessment is challenged by the lack of ground truth in the
literature. We therefore require extra manual analysis effort of
reported results.

Initial Manual Analysis: In previous Section IV-Al, we
present our manual analysis of SHSOs detected in 102 apps.
During this analysis, we further checked if the detected SHSOs
contain malicious code. In particular, for each app under analy-
sis, we gathered information about the reason it was flagged by
antiviruses (e.g., on VirusTotal). Then, in the guarded code of
the potential SHSO found by DIFUZER, we looked for malicious
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behavior matching our information previously gathered. For
instance, if: (1) an app is labeled as being a trojan stealing
the device’s information; (2) the potential SHSO is performing
emulator detection (e.g., calling System.exit () method if
the device is running in an emulator); and (3) the behavior
exhibited in the code guarded by the condition detected by
DIFUZER is gathering the device’s information (e.g., unique
identifier, current location, etc.) and sending it outside the device,
the SHSO is considered a logic bomb.

Eventually, 30 apps (i.e., 29.7%) were manually confirmed to
be logic bombs, i.e., the SHSOs were triggering malicious code.

Semi-Automated further Analysis: Manual investigation is
time-consuming. This is the reason why we inspected 102 apps
and not all 259 apps reported to having at least one SHSOs
within the developer code parts. To quickly enlarge the set
of identified logic bombs, we decided to follow a simple but
efficient process. It is known that malicious developers often
reuse the same piece of code in different apps [70]. There-
fore, for each already identified logic bomb, we search for
similarities (i.e., SHSOs found in the same class name, same
method name, and the same type of trigger used) in SHSOs
contained in the 157 (259 — 102) remaining apps. Our analysis
yielded 16 additional apps containing logic bombs that were
manually verified and confirmed. Eventually, our logic bomb
dataset, called DATABOMB, contains 46 Android apps, each with
an identified logic bomb. We believe this dataset to be useful
to the community to further improve logic bomb detection in
Android apps. We made it publicly available in the project’s
repository.

Discussion About HSO, SHSO and Logic Bomb: In the
literature [31], [32], HSO is consistently defined as a sensitive
operation that is hidden by specific triggering conditions.
Nevertheless, the notion of “sensitive operation” is not clearly
delineated, which challenges comparison across approaches.
In our work, we postulate that while detecting HSOs is
an important first step, it is not enough to help security
analysts. Indeed, as shown by our manual analysis, a large
proportion of HSOs are indeed sensitive but not necessarily
suspicious. As a result, most of the detected HSOs are
legitimate and do not require any inspection effort from security
analysts.

In this context, if the goal is to detect real security issues and
reduce the burden of security analysts, a tool such as HSOMINER
[31] which detects HSOs in 18.7% of apps within a set of over
300000 apps (including malicious and benign apps) appears to
be unpractical. In contrast, DIFUZER detects suspicious HSOs in
3.39% of the analyzed apps (when libraries are considered), and
our manual analyses confirm that in about 30% of the apps,
these SHSOs are logic bombs, making the work of security
analysts easier. Though both HSOMINER dataset and our dataset
are different (we were not able to get the HSOMINER’s authors
dataset), if we compare the 18.7% of apps with HSOs reported
by HSOMINER, with the 3.39% reported by DIFUZER, we can
say that DIFUZER reduces the search space by up to 81.9%
((18.7 — 3.39) x % = 81.9) to accelerate the identification of
logic bombs.
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RQ1.b answer: By triaging HSOs to focus on suspicious ones
based on anomaly detection, DIFUZER was able to reveal 30
logic bomb instances in a sampled subset of malware apps
having SHSOs. Besides, we release the 46 apps in which we
found logic bombs in an annotated dataset of Android apps
confirmed to be using logic bombs, called DATABOMB.

3) RQI.c. How Does DIFUZER Compare Against TRIGGER-
SCOPE, a State of the Art Logic Bomb Detector?: In the absence
of a public ground-truth for Android logic bomb instances, we
perform experimental comparisons against the TRIGGERSCOPE
state-of-the-art detector in the literature that relies on static
analysis. Although TRIGGERSCOPE is not publicly available, we
are able to build on a replication based on technical details
provided in TRIGGERSCOPE paper [32]. As TRIGGERSCOPE does
not consider the context of analyzed apps, we have chosen
to compare it solely against our baseline approach DIFUZER,
rather than DIFUZER++, which also takes into account contextual
information.

Overall, our approach differs from TRIGGERSCOPE’s by three
major differences: @ Technique: TRIGGERSCOPE uses symbolic
execution to tag variables with a limited number of values, we
use static data flow analysis; @ Target: TRIGGERSCOPE detects
hidden sensitive operations (i.e., whether at least one sensitive
method is called within the guarded code of a trigger), whereas
DIFUZER’s goal is to detect suspicious hidden sensitive opera-
tions (i.e., the guarded code is sensitive and implements an ab-
normal behavior); and ® Approach: TRIGGERSCOPE maintains a
list of sensitive methods and uses the occurrence of any of them
as the sole criterion, DIFUZER implements an anomaly detection
scheme where the presence of sensitive methods is one feature
among many others. While TRIGGERSCOPE and DIFUZER both
rely on list of sources to find triggers of interest, TRIGGERSCOPE
handpicks a limited set of methods, whereas DIFUZER’s list is
based on a systematic mapping (cf. Section III-A1 - we leverage
patterns to systematically search for sources).

Does TRIGGERSCOPE identify as logic bombs the SHSOs
flagged by DIFUZER ?

We applied TRIGGERSCOPE on the subset of 102 apps where
DIFUZER identified a SHSO (cf. Section IV-A2). The objective
is to check whether TRIGGERSCOPE is more or less accurate
than DIFUZER. Typically, among the 30 logic bombs that have
been manually verified as true positives, how many are detected
by TRIGGERSCOPE. Similarly, does TRIGGERSCOPE detect logic
bombs (manually verified as true positives) that DIFUZER could
not. Fig. 5 illustrates the differences in logic bomb detection (left
figure). Overall:

® TRIGGERSCOPE did not flag any logic bomb that DIFUZER

did not.

e TRIGGERSCOPE could only detect 2 logic bombs among the
30 logic bombs that DIFUZER correctly identified.

e As reported in the literature [79], TRIGGERSCOPE exhibits
a very high false positive rate at 94.6%: 35 among its
37 detections are false positives (the rate for DIFUZER is
70.6%, 72/102).
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Fig.5. Venn Diagram representing results of TRIGGERSCOPE and DIFUZER on
102 apps originally detected by DIFUZER on the left, and TRIGGERSCOPE on the
right. (FP = False Positive, TP = True Positive).

Does DIFUZER fail to flag as SHSOs the logic bombs detected
by TRIGGERSCOPE ?
We recall that, contrary to DIFUZER, which builds on anomaly
detection, TRIGGERSCOPE is restricted to detect only logic
bombs where the trigger involves location-, time-, and SMS-
related properties. Aligning with the assessment of DIFUZER, we
applied TRIGGERSCOPE on our set of 10000 malware. TRIGGER-
ScoPE reported 591 logic bombs in 149 apps (~4/app): 98.6%
of the reported cases are time-related. In the absence of ground
truth, we again propose to manually verify a random sample set
of reported logic bombs. To facilitate comparison with DIFUZER,
we sample 102 apps (we simply considered the same number of
apps as in the previous question), and manually confirmed that
for 97 (95.1%) apps, the reported logic bombs are false positives.
In 5 (4.9%) apps, we found at least one reported logic bomb to
be a true positive.
We further check whether on these 102 apps where TRIGGER-
SCOPE reported a logic bomb, DIFUZER also flags any case of
SHSO: DIFUZER flagged 68 apps as containing SHSOs, among
which 7 are manually confirmed to be logic bombs. The details of
the comparison between TRIGGERSCOPE and DIFUZER are pre-
sented in the Venn Diagram in Fig. 5 (right figure). We note that:
e 2 ]ogic bombs are detected by both DIFUZER and TRIGGER-
SCOPE.

® 5 SHSOs detected by DIFUZER are actual logic bombs, but
not detected by TRIGGERSCOPE. Indeed, TRIGGERSCOPE
is limited by its focus on time, location and SMS-related
triggers.

® 3 logic bombs are detected by TRIGGERSCOPE, but not

detected by DIFUZER. Our prototype implementation con-
siders a limited list of sources, which do not cover those 3
logic bomb cases.

Although we do not have a complete ground truth (with
information about all cases of logic bombs), confirming and
comparing detection reports by DIFUZER and TRIGGERSCOPE
offers an alternative to assess to what extent each may be missing
some logic bombs. The results described above suggest that
DIFUZER suffers significantly less from false-negative results
than TRIGGERSCOPE.

RQI.c answer: Overall, DIFUZER outperforms TRIGGER-
SCOPE by detecting more logic bombs more accurately (wrt.
false positives), and by missing less logic bombs (wrt. false
negatives).
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4) RQI.d. From a Qualitative Point of View, Does DIFUZER
Lead to the Detection of Non-Trivial triggers/logic Bombs?: In
this section, we discuss two real-world apps in which DIFUZER
revealed logic bombs that cannot be detected by TRIGGERSCOPE.

Advertisement Triggering: DIFUZER revealed an interesting
logic bomb in “com.walkthrough knife.assassin.hunter.baoer”
app which is an adware app of the HiddenAd family. The
app uses the android.app.job.JobService class of
the Android framework to schedule the execution of jobs (the
developer can handle the code of the job in onStartJob
method). In the onStartJob method, the app takes advantage
of the PowerManager of the Android framework to check if
the device is in an interactive state (i.e., the user is probably
using the device) with method isScreenOn (). If this is the
case, the app displays advertisements to the user and schedules
the same class’s execution after a certain time.

Data Stealer: Logic bombs can also be used to trigger data
theftunder the condition that the data is available. For instance, in
app “com.magic.clmanager”, which is a Trojan (hidden behind
a cleaning app) capable of stealing data on the device, DIFUZER
found a logic bomb related to the device unique identifier. In-
deed, in method d (Context c) of the class c.gdf, a check
is performed against the value returned by method getDevi -
ceId() to verify if the value matches specific values (emula-
tor detection) in a given file named “invalid-imei.idx”. In the
case the app considers that the device is not an emulator, it
triggers the stealing of sensitive information about the device
such as the current location, phone number, information on
the camera, information about the Bluetooth, disk space left,
whether the device is rooted or not, the current country, the
brand, the model, information about the Wi-Fi, etc. Afterward,
this information is written in a file and sent to a native method
for further processing.

B. RQ2: How Does DIFUZER++, Our Novel Approach With
Context-Aware Anomaly Detection, Perform?

In this section, we evaluate our approach to detect SHSOs and
logic bombs with context-aware analysis. However, we cannot
reuse the initial dataset used in RQ1, as the 10000 malicious
apps sourced from the ANDROZOO repository do not contain
the necessary metadata for context-aware anomaly detection.
For this reason, in the first sub-question RQ2.a we compare
DIFUZER++ against DIFUZER on DATABOMB, i.e., the 46 Android
apps containing logic bombs that have been manually verified
as true positives. However, we acknowledge that DATABOMB is
biased if our goal is to compare DIFUZER vs. DIFUZER++ as it
only includes logic bombs that were previously identified by
Di1FUZER. To address this limitation, in RQ.2b, we evaluate the
performance of DIFUZER++, and compare it against DIFUZER, on
a new dataset of 3743 malicious apps that were never analyzed
by DIFUZER.

1) RQ2.a. Incorporate Context Into DIFUZER++: With this
Research Question, we aim to evaluate the performance of
DIFUZER++ when incorporating context through the use of
anomaly detection models trained on groups of similar apps.
More specifically, we compare the results of the four clustering
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Fig. 6. Number of Logic Bombs found (blue) compared to the number of
SHSOs (red) among all the different approaches.

TABLE V
EVALUATION OF CONTEXTUALIZATION APPROACHES

Approach | #SHSOs  #Logic Bombs found Precision Recall  F1 Score
Baseline 288 45 15.63%  100.0% 27.02%
Category 75 31 41.33%  68.89%  51.56%
LDA +4 28 63.63%  6222%  62.92%
K-Means 94 36 3829%  80.00%  51.79%
G-CatA 65 36 55.38%  80.00%  65.45%

variant approaches (i.e., clustering with either the Google Play
Categories, LDA, K-Means, and G-CatA) against our baseline
DIFUZER approach.

Dataset: As stated before, we performed our evaluation over
the 46 Android apps containing logic bombs from DATABOMB.
We attempted to gather the category and description of all the
apps manually but could not obtain this information for one of
them (after searching extensively for different versions of the
app, it seems that it has been removed from all Android app
stores publicly available, including unofficial ones), resulting in
a reduced dataset of 45 apps.

Evaluation: In Fig. 6, we present the results of using DI-
FUZER++ on our dataset of 45 apps that were confirmed to
have a logic bomb. We find that when contextual information
is included, DIFUZER++ fails to detect some logic bombs. How-
ever, using context-aware analysis highly reduces the number
of SHSOs produced by DIFUZER++. Across all four approaches,
the average reduction in the number of SHSOs is 75%.

Table V presents the Precision for each approach, defined as
the ratio of the number of logic bombs to the total number of
SHSOs, while the Recall indicates how many logic bombs were
found. Then the F1 Score is presented and computed as

2 - Precision - l
Pl recision - Recal

Precision + Recall M

The Precision increased in all scenarios, reaching 63.63% (4
times compared to our baseline approach without the context
information) when using LDA to cluster the apps. These results
show that, by being more precise, DIFUZER++ can speed up
the identification of logic bombs. The results also show that,
while being more precise, DIFUZER++ still keeps a respectable
level of recall (i.e., only a limited number of logic bombs are
missed). Finally, based on the F1 score, the G-CatA approach
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TABLE VI
LoGIic BoMBS FOUND BY DIFUZER++ ACROSS GOOGLE PLAY CATEGORIES

Category ID # Logic Bombs | # Logic Bombs Found
COMMUNICATION 3 0
EDUCATION 1
ENTERTAINMENT 9 9
GAME_ACTION 1 0
GAME_ARCADE 1 1
GAME_CASUAL 3 2
GAME_SIMULATION 1 0
GAME_SPORTS 1 0
GAME_STRATEGY 1 1
MUSIC_AND_AUDIO 3 0
TOOLS 21 18
TOTAL 45 31

has demonstrated its effectiveness as the best method for incor-
porating context into DIFUZER++.

Considerations About Missed Logic Bombs: While
DIFUZER++ offers enhanced precision, it does come with
a trade-off: it detected, on average, 27% fewer logic bombs
than DIFUZER across all four approaches. However, it is crucial
to consider two significant factors. First, due to the absence
of ground-truth data, the evaluation was based on a biased
dataset consisting only of apps that DIFUZER had previously
correctly identified, inherently favoring DIFUZER in any
comparison against alternative approaches. Second, a potential
explanation for this variance in performance between DIFUZER
and DIFUZER++ could be attributed to the context-aware
analysis. Indeed, some categories may be too “heterogeneous”
to improve the performance of our baseline approach, while
others, characterized by more consistent app behavior, may be
better suited for anomaly detection. For instance, as reported
in Table VI, DIFUZER++ failed to detect logic bombs in all
apps from the COMMUNICATION category, while successfully
identifying all logic bombs in the apps belonging to the
ENTERTAINMENT category. Similarly, the same reasoning can
be applied to the LDA, K-Means, and G-CatA approaches. To
address potential biases arising from the limited categories (11)
in our ground truth dataset, it is essential to evaluate DIFUZER++
with a broader range of real-world apps in RQ2.b.

RQ?2.a answer: Although DIFUZER++ fails to detect some of
the logic bombs identified by DIFUZER, the incorporation of
context improved the Precision by up to 48%. This improve-
ment can speed up logic bomb identification.

2) RQ2.b. Logic Bombs Detection Incorporating Context:
In RQ2.a, we assessed the performance of DIFUZER++ when
incorporating context information. However, our evaluation was
restricted to a small dataset of 45 apps with confirmed logic
bombs, which may have resulted in biased results due to the
limited categories present. To overcome these limitations, we
conducted a comprehensive manual inspection to compare the
performance of our contextual approaches DIFUZER++ against
our baseline approach DIFUZER on a larger, more diverse set of
applications.

Dataset: As previously stated, we cannot rely anymore on
the initial dataset used in RQI, as the 10000 malicious apps
lack of metadata. Hence, we collected all malicious apps that
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Fig. 7. Number of apps with at least one SHSO.

TABLE VII
NUMBER OF APPS FLAGGED BY DIFUZER++ AND MANUALLY INSPECTED
Apps with Apps Inspected .
Approach at least In?l)elzfe d with confirmed D]:t)gcltcif:llill:te
one SHSO P logic bombs
Baseline 132 46 6 13.04%
Category 383 58 20 34.48%
LDA 45 28 15 53.57%
K-Means 256 54 13 24.53%
G-CatA 189 51 30 58.82%
Total (with duplicates) 1005 237 83
Total (without duplicates) 794 204 51

were available on the Google Play over the past two years
using the same techniques described in Section III-B3 to retrieve
the Google Play Category and app description. This resulted
in a final dataset of 3743 apps, categorized into 49 different
categories.

Detecting SHSOs: We ran DIFUZER++ on our new dataset
of 3743 malicious apps to obtain all potential SHSOs. Fig. 7
illustrates the number of apps with at least one SHSO that
DIFUZER++ detected, along with the percentage of these apps
relative to the total number of apps in the dataset. The results
show that using the Google Play category, K-means or G-CatA
leads to an increase in the number of apps flagged, while LDA
is the only approach that results in a decrease in the number of
flagged apps.

Although considering context may not seem effective in re-
ducing the search space for manual analysis, we still need to
assess the potential of these apps to contain logic bombs. To
that end, in the next paragraph, we perform a manual analysis
to check whether the flagged apps contain actual logic bombs.

Manual Analysis: As previously discussed, we aimed to assess
the potential of the SHSOs found by DIFUZER++ to be logic
bombs through manual analysis. DIFUZER++ identified a total
of 1005 apps with at least one SHSO across all five approaches
(including the baseline). While some overlap between the ap-
proaches might exist, manually analyzing so many apps would
be overly time-consuming. To address this, we randomly se-
lected a statistically significant sample for each approach with
a confidence level of 90% and a confidence interval of +10%,
reducing the number of apps to be analyzed from 1005 to 237.
Table VII provides the detailed number of apps inspected for
each approach.
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Fig. 8. Percentage of apps with confirmed Logic Bombs over the number of
apps inspected for each approach.

Evaluation: The main outcome of our manual analysis is
displayed in Fig. 8. For each approach, we present the Logic
Bomb Detection Rate, which represents the ratio of the number
of apps that were manually verified to have a logic bomb to the
total number of apps we manually inspected. Table VII provides
the detailed number of apps manually verified to have a logic
bomb. Our findings indicate that apps identified by DIFUZER++
as potentially containing a logic bomb are more likely to indeed
have one when utilizing a contextual approach. This is especially
apparent when using LDA and G-CatA, where over half of the
examined apps were found to contain a logic bomb. These results
validate our previous intuition that while our baseline approach
DIFUZER may identify fewer apps and thus reduce the scope
of the search, these apps are less likely to have a logic bomb.
Conversely, utilizing the Google Play Category, K-means, or
G-CatA methods may require the analysis of more apps, but
these have a higher probability of containing a logic bomb.
Finally, using LDA has a dual impact: it not only narrows down
the search space when compared to the baseline method but
also increases the probability of detecting logic bombs, almost
reaching the top score of 58.82% achieved by G-CatA.

DATABOMB++. Considering all the methods we employed in
testing DIFUZER++, we have successfully identified a total of 83
apps that were manually confirmed to contain a logic bomb. We
eliminated the logic bombs that were identified by more than
one approach, resulting in 51 remaining applications that were
then used to construct a new dataset of apps infected with logic
bombs. We named this dataset DATABOMB++ and have made
it publicly available in the project’s repository as a valuable
resource for the research community.

Considerations Regarding Logic Bombs Found: In Section I,
we presented an example of a logic bomb that determined a
device’s location using methods associated with the context of
mobile network communication. At the time of writing, the
simple arcade game app containing the logic bomb, namely
“com.xxooapp.bubbleshot,” is no longer available on Google
Play, along with 11 other apps that we manually confirmed
to contain logic bombs. Since we did not report these apps to
Google Play, we cannot definitively confirm that their removal
was a direct result of the logic bombs we discovered. However,
there is a high probability that these apps were removed for
security reasons.
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RQ2.b answer: Through our empirical study and our manual
analysis, we showed that the apps detected by DIFUZER++
have a higher probability of actually containing a logic bomb
when the context is taken into account. However, this can re-
sultin a wider search area when compared to the baseline. The
G-CatA approach achieves the highest Logic Bomb Detection
Rate of 58.82%, which means that out of 10 apps flagged
by DIFUZER++, almost 6 are likely to contain a logic bomb.
Furthermore, we release DATABOMB++, a dataset consisting
of 51 apps that were identified by DIFUZER++ and verified to
contain a logic bomb through manual analysis.

V. LIMITATIONS AND THREATS TO VALIDITY

An essential step in our approach is the identification of
SHSOs entry-points. To do so, DIFUZER++ relies on state-of-
the-art tool FLOWDROID [50]. Therefore, it carries the analysis
limitations of FLOWDROID, i.e., unsoundness regarding reflec-
tive calls [80], dynamic loading [81], multi-threading [82] and
native calls [83].

Although our approach proved to be efficient in detecting
SHSOs and logic bombs, feature selection can impact the per-
formance. Indeed, feature engineering is a challenging task and
can be prone to unsatisfactory selection since it does not capture
everything.

Besides, our approach is based on SHSO entry-points de-
tection using taint analysis, which relies on sources and sinks
methods. Sinks are not an issue in our approach since they always
represent if conditions. However, sources selection is at risk
since they have been selected systematically, using heuristics
and human intuitions. Therefore, our list of sources might not
be complete.

Moreover, as we conducted a systematic mapping of the An-
droid framework across SDK versions 3 to 30, we acknowledge
that certain APIs may be deprecated (e.g., getDeviceId was
deprecated in API level 26) or do not exist in the recent versions
of Android (versions 31 to 34). However, the initial module
of Difuzer++ will simply not consider them when analyzing
the ICFG. It will still consider all possibly identified APIs
within those specific apps as sources. Therefore, even though
deprecated APIs are considered as sources, they do not impact
the performance of DIFUZER++.

Although, we have implemented TRIGGERSCOPE by strictly
following the description in the original paper, our implementa-
tion might not be exempt from errors.

In the absence of a-priori ground truth, some of our assessment
activities rely on manual analysis based on our own expertise.
While we follow a consistent process (e.g., we carefully verify
the hidden behaviour implementation against the antivirus re-
port), our conclusions remain affected by human subjectivity.
Nevertheless, we mitigate the threat to validity by sharing all
our artefacts to the research community for further exploitation
and verification.

For context-aware anomaly detection, we exclusively used
apps from the Google Play for model training and testing due to
its convenient access to categories and descriptions. However,
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it is important to acknowledge that Google Play, while the
official Android app store, is not the sole available market.
Other third-party app markets may offer different selections,
potentially biasing our models and limiting their representation
of the full range of Android apps available.

During the Training Phase of DIFUZER++, when performing
app clustering, we employed four different techniques. As previ-
ously explained in Section III-B4, we opted to match the number
of clusters to the number of Google Play categories, which is
49. We acknowledge that 49 may not be the optimal number
of clusters for the LDA, K-Means, and G-CatA approaches.
However, we made this choice to ensure a fair comparison of
DIFUZER++’s outcomes when using Google Play Categories,
without introducing any bias related to the number of clusters
as no ground-truth data is available for this problem.

VI. RELATED WORK

Logic Bombs in General: Hidden code triggered under spe-
cific conditions is a concern in many programming environ-
ments. The literature includes studies of the logic bomb phe-
nomenon in programming prior to the Android era [16], [84] and
targeting the Windows platform for example. Since then, various
approaches have been proposed to tackle the challenging task
of trigger-based behavior detection [85], [86], [87], [88], [89].
State-of-the-art techniques for the detection of trigger-based
behaviour are varied and leverage fully-static analyses [8], [9],
[32], dynamic analyses [13], hybrid analyses [16], [90], and
machine-learning-based analyses [31].

Trigger-Based Behavior Detection for Android DIFUZER++
combines static taint analysis and unsupervised machine learn-
ing techniques. Our closest related work is thus HSOMINER [31],
which relies on static analysis and automatic classification to
detect HSOs. Contrary to our work, however, HSOMINER is not
targeting suspicious HSOs and therefore does not focus on logic
bombs.

Fratantonio et al. [32] proposed TRIGGERSCOPE, an automated
static-analysis tool that can detect logic bombs in Android apps.
TRIGGERSCOPE leverages a symbolic execution engine to model
specific values (i.e., SMS-, time-, location-related variables).
TRIGGERSCOPE models conditions using predicate recovery.
It combines symbolic execution results and path predicate re-
covery results to infer suspicious triggers. Finally, potential
suspicious triggers undergo a control dependency step to ver-
ify if it guards sensitive operations. Nevertheless, the whole
approach relies on static analysis to check defined properties
of suspiciousness. In contrast, DIFUZER++ takes advantage of
unsupervised learning to discover abnormal (hence suspicious)
trigger-based behavior.

Anomaly Detection for Security: We note that the idea of using
anomaly detection to detect malware has been presented in the
Avdiienko et al.’s paper [91]. Indeed, they present MUDFLOW
that relies on anomaly detection to spot malware for which
sensitive data flows deviate from benign data flows. It proved
to be efficient by detecting more than 86% malware. While our
approach is also based on anomaly detection to triage abnormal
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triggers (i.e., suspicious sensitive behavior) that deviate from
normality (i.e., normal triggers/conditions), the end goal of both
approaches is different. Indeed, MUDFLOW addresses a binary
classification problem to discriminate malware from goodware.
In contrast, DIFUZER++ addresses the problem of detecting and
locating Suspicious Hidden Sensitive Operations that are likely
to be logic bombs in Android apps.

Malicious Behavior Detection in Android Apps: Malware de-
tection does not only focus on trigger-based malicious behavior.
Indeed, the Android security research community worked on
tackling general security aspects [24], [92], [93], [94], [95].
In the literature, numerous approaches have been proposed
to detect Android hostile activities. Among which, machine-
learning techniques [96], deep-learning techniques [97], static
analyses through semantic-based detection [98], privacy leaks
detection [50], [99], [100], as well as dynamic analyses [11],
[12], [101]. Each of these approaches tackles a particular aspect
of Android security. Therefore, analysts could combine our
approach with the aforementioned techniques to detect a wide
variety of Android malicious behavior more efficiently.

Context-Aware Analysis Clustering similar mobile apps to-
gether and considering the context of each app can actively
improve the accuracy of anomaly detection in mobile apps. For
instance, CHABADA by Gorla et al. [33] uses anomaly detec-
tion to identify malicious apps by comparing their behavior with
their descriptions. This work has been extended by Maetal. [62],
who used an active semi-supervised approach, and Zhang
et al. [63], who detect apps that use suspicious third-party
libraries or exhibit behavior inconsistent with their descriptions.
Another approach proposed by Yang et al. [34] involves char-
acterizing malicious Android apps based on their data flow sig-
natures, analyzing the topics of their data flows, and identifying
patterns indicative of malicious behavior. Previous research has
explored the benefits of context-aware analysis in detecting mali-
cious behavior, but these studies have generally focused on iden-
tifying threats in a broad sense. In contrast, DIFUZER++ focuses
on detecting logic bombs, combining static inter-procedural taint
tracking with context-aware anomaly detection and leveraging
features that are specifically designed for this task.

VII. CONCLUSION

We proposed DIFUZER++, a novel approach for detect-
ing Suspicious Hidden Sensitive Operations in Android apps.
DIFUZER++ combines bytecode instrumentation, static inter-
procedural taint tracking, and context-aware anomaly detection
for addressing the challenge of accurately spotting relevant
SHSOs, which are likely logic bombs. Our empirical evaluation
of DIFUZER++ shows that it can detect SHSOs with high preci-
sion in less than 48 seconds per app. DIFUZER++ can detect up
to 58.82% of logic bombs among SHSOs, which is a significant
improvement over our baseline approach, DIFUZER, which only
detects 29.7% of logic bombs among SHSOs and does not rely
on context-aware anomaly detection. We, therefore, improve
over the performance of the current state of the art, notably
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TRIGGERSCOPE, which yields significantly more false positives
while detecting fewer logic bombs.

DATA AVAILABILITY

For the sake of Open Science, we provide to the community all
the artifacts used in our study. In particular, we make available
the datasets used during our experimentations, the source code
of our prototype, the executable used for our experiments, the
annotated list of our manual analyses, and a dataset of logic
bombs.

The project’s repository, including all artifacts (tool, datasets,
etc.), is available at: https://github.com/Trustworthy-Software/
DifuzerPlusPlus
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