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Abstract—AI-as-a-Service has emerged as an important trend
for supporting the growth of the digital economy. Digital service
providers make use of their vast amount of customer data to train
AI models (such as image recognition, financial modelling and
pandemic modelling etc) and offer them as a service on the cloud.
While there are convincing advantages for using such third-party
models, the fact that model users are required to upload their
data to the cloud is bound to raise serious privacy concerns, es-
pecially in the face of increasingly stringent privacy regulations
and legislation. To promote the adoption of AI-as-a-Service while
addressing privacy issues, we propose a practical approach for
constructing privacy-enhanced neural networks by designing an
efficient implementation of fully homomorphic encryption. With
this approach, an existing neural network can be converted to pro-
cess FHE-encrypted data and produce encrypted output which are
only accessible by the model users, and more importantly, within an
operationally acceptable time (e.g., within 1 s for facial recognition
in typical border control systems). Experimental results show that
in many practical tasks such as facial recognition, text classification
and so on, we obtained the state-of-the-art inference accuracy in
less than one second on a 16 cores CPU.

Index Terms—Fully homomorphic encryption, privacy-
enhanced neural networks, look-up table algorithm, deep neural
network, digital trust, secure cloud computing, data privacy,
cryptographic protocol, applied cryptography.

I. INTRODUCTION

A I-AS-A-SERVICE (AIaaS) has been experiencing rapid
development in recent years due to the strong demand in

sharing of sophisticated and powerful AI models, which require
not only technological advancement but also availability of vast
amount of data resources. For digital service providers, it allows
them to deploy their trained AI models on the cloud and offer
the inference as a service, instead of disclosing their models to
their users. For such users, with the trained AI model as a cloud
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service, they simply upload their inputs to the cloud and obtain
the inference results in return, instead of being required to train
their own computationally expensive AI models in-house.

Besides, AIaaS plays an important role in the development of
smart cities by supporting efficient implementation of intelligent
distributed solutions, which typically also involve the adoption
of Internet of Things (IoT) technology to gather data from
the physical environment for automated control and decision-
making at the cloud. However, the data handling process may
lead to privacy and security concerns [1], [2], [3]. When using
AIaaS, there are always non-trivial concerns that the cloud
servers can access users’ raw data. Either users’ input or the
inference result may contain privacy-sensitive information, such
as biometrics, healthcare records and financial data. A cloud
service that offers privacy-enhanced inference of AI models is
highly desirable in order to promote the adoption of AIaaS, so
that users can enjoy the service without disclosing their plaintext
data to the cloud.

Typically, AI models, such as deep neural networks (DNNs),
apply a sequence of evaluations on the input data and model
parameters to obtain an inference output. Many techniques
are studied for privacy-preserving machine learning, such as
differential privacy [4], [5] and federated learning [6], [7], [8],
[9]. These techniques address the concern of privacy issues of the
training data and of the data sharing during model training. In this
work, we focus on privacy-enhanced neural networks (PE-NN)
inference and propose a Fully Homomorphic encryption (FHE)
[10] based solution. FHE provides a way to encrypt data while
supporting computations through the encryption envelope [11].
There are recent works [11], [12], [13], [14], [15], [16] that
reported feasible implementation of privacy-enhanced neural
network inferences over encrypted data by applying FHE. The
flow is shown in Fig. 1.

In FHE-based PE-NN inferences, the user encrypts its sen-
sitive data before sending it to the server. The server homo-
morphically evaluates the neural network over encrypted data
and produces an encrypted inference output, then it returns the
ciphertext to the user. The user who possesses the corresponding
private key can decrypt the encrypted result. The server does
not have the private key, hence it is unable to decrypt neither the
input nor the output. In this model, users can enjoy AI services on
the cloud without disclosing their plaintext data, and AI service
providers also do not disclose the trained AI models to users.

An additional instance of Privacy-Enhancing Neural
Networks (PE-NN) manifests in the realm of international
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Fig. 1. Basic FHE-based privacy-enhanced neural network model (basic FHE-
PE-NN).

Fig. 2. Example: International collaboration to fight against transnational
crime (basic model).

cooperation aimed at combating trans-border crimes. For
example, when a suspect is identified within country X,
law enforcement agencies (LEA) seek to ascertain whether
the individual possesses a criminal record in other nations.
However, the law enforcement agencies in country X are faced
with limitations in accessing the datasets of other countries
while transmitting unsecured data for cross-checking purposes
is prohibited. Through the utilization of privacy-enhancing
techniques, it is possible to employ Fully Homomorphic
Encryption (FHE) to encrypt the suspect’s data and transmit
the resulting ciphertext to the collaborating authorities.
The receiving end can subsequently perform homomorphic
evaluations to determine the existence of a criminal record
associated with the suspect. As the evaluation results are likewise
encrypted, they can be securely transmitted back to country
X. Finally, the law enforcement agency decrypts the received
data using their own private key, thereby obtaining the pertinent
results. Homomorphic encryption could also be utilized to
perform secure data analysis and operations on other sensitive
information. This could involve running encrypted machine
learning algorithms on encrypted data to extract insights,
identify patterns, or optimize criminal operations without
exposing the underlying data. The flow is shown in Fig. 2.

However, high inference latency and low accuracy restrict
existing works to be applied in real-world AI services.

a) Inference latency. High inference latency is an obstacle to
applying FHE-based PE-NN in DNNs. Existing works usually

take very long time per inference in simple and shallow net-
works. CryptoNets [13] takes over 200 seconds per inference
on encrypted image from MNIST[17]. Faster CryptoNets im-
proved the result. It takes around 40 seconds and 20,000 seconds
per inference on encrypted image from MNIST and encrypted
image from CIFAR-10 [18] respectively. Recently, [14] further
improved the latency and achieves around 10 seconds and 2000
seconds per inference on MNIST and CIFAR-10 respectively.

MNIST and CIFAR-10 are most commonly used datasets
in existing works for benchmarks, which are simple and well
studied. But in real-world applications, we usually anticipate
neural network can solve more complex problems such as facial
recognition and text classification. For such tasks, only [14]
mentioned that it uses architectures of AlexNet, ResNet-18 and
Shuffle Net for inferences on ImageNet and the result is 5 hours
per inference with an accuracy of 69.4%.

To solve this problem, we analyze the architectures of various
FHE schemes and concluded that there is no general-purpose
FHE scheme which performs well in all homomorphic eval-
uations in neural networks. Evaluation of neural networks on
encrypted data involves both arithmetic operations such as
weighted sum and convolutions, evaluation of non-linear ac-
tivations and bootstrapping after each neuron to enable further
computations.

In practice, there are two main kinds of FHE schemes which
are required in constructing FHE-based PE-NN. The word-wise
CKKS/BGV/BFV schemes [19], [20], [21] (adopted in many
works such as CryptoNets [13]) are good at linear evaluations but
the non-linear activation evaluations are implemented by poly-
nomial approximation, while the activations are usually chosen
from non-polynomial functions such as ReLU and Sigmoid.
In the other aspect, these schemes accumulate noise and it is
inevitable to run the significantly slow bootstrapping in order
to reduce noise. The bit-wise FHEW/TFHE schemes [22], [23]
provides very efficient non-linear evaluations and bootstrapping
operation, but the linear evaluations have to be computed gate by
gate. Neither word-wise schemes nor bit-wise schemes is good
at all evaluations of neural networks.

In this research, we propose that an optimized FHE scheme
which combines the advantages of CKKS/BGV/BFV and
TFHE/FHEW schemes to reduce the inference latency.

b) Accuracy. The poor performance of homomorphic evalu-
ations of activations causes the low accuracy. DiNN [11] and
CryptoNets [13] only support sign function and square function
as the activation function separately, where both of them are
not commonly used in machine learning area. n-GraphHE [24],
Lola [15] and Faster CryptoNets [12] have to use the low-degree
polynomial approximation activations and thus fail to obtain the
state-of-the-art inference accuracy. For example, Faster Cryp-
toNet achieves 76.72% inference accuracy on CIFAR-10, while
in an unencrypted network with ReLU activations, it is 93.72%.

The bottleneck to improve the accuracy is homomorphical
evaluation of non-linear activations. ReLU and Sigmoid are
widely used in modern neural networks. However, existing
works in FHE-based PE-NN usually use sign function, square
function, or low degree polynomials to approximate activa-
tions. Although it is possible to improve the inference accuracy
of FHE-based PE-NN by enlarging the degree of polynomial
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approximation activations, the computing overhead increases
exponentially with the degree and thus the time taken becomes
unacceptable. Efficient algorithms which can evaluate the acti-
vations in modern networks accurately over encrypted data are
urgently needed.

In addition to the optimizations in FHE schemes, we review
the structure of DNNs. DNNs, which may consists of hundreds
of layers, are considered to be computationally expensive. If
the whole DNN is evaluated on encrypted data in the AI model
owner’s server, then it is obvious that it will be too slow to
be acceptable. Recall that in the example of trans-border crime
investigation, it may take more than one day to recognize the
person and check the record homomorphically. It can be ac-
celerated significantly if all parties adopt an open human face
feature extractor such as FaceNet [25]. The LEA of country
X can run face feature extractor locally without encryption.
Then it encrypts the feature vector before sending it out. Based
on our experiment, recognizing a person from an encrypted
feature vector takes less than one second, which is much faster
than facial recognition from encrypted photos and yet with no
accuracy loss.

A. Our Results

Towards practical FHE-based PE-NN constructions, we pro-
pose a practical approach for constructing privacy-enhanced
neural networks by designing an efficient implementation of
fully homomorphic encryption.

We first propose a optimized fully homomorphic encryption
scheme together with an efficient design for non-linear
activation evaluation. We show that our FHE scheme achieves
better results in both inference accuracy and time in the
benchmark MNIST dataset.

Then we propose a new model which splits a deep neural
network into a plaintext evaluation part and a ciphertext evalua-
tion part. We deploy some pre-trained feature extraction layers
to user’s side and evaluate it in clear. The fine-tuned layers are
retained at model owner’s server and the input to the server
is encrypted. In this way, we reduce the number of expensive
homomorphic evaluations without disclosing either users’ data
and model providers’ trained parameters. We call this model
Hybrid FHE-based privacy-enhanced neural network (Hybrid
FHE-based PE-NN).

The proposed hybrid model prevent itself from potential infor-
mation leakage risks because the plaintext evaluation part, which
is evaluated within the confines of the user’s trusted computing
environment. Following the completion of the plaintext evalua-
tion part, the user encrypts the feature vector before sending it
to the server. The security guarantees defined by our encryption
scheme substantiates the incapacity of the server to obtain any
information of the feature vector, let alone the original data. Con-
sequently, this hybrid model satisfies the requirements of strong
privacy-preserving, and meanwhile is much more efficient.

As a result, we can perform facial recognition under one
second, where it requires more than a day for basic FHE-based
PE-NN model. We also show that our hybrid model can be
used to solve practical tasks such as speaker verification, text
classification and object classification.

c) Optimized FHE scheme. Our optimized FHE scheme en-
ables us the ability to perform weighted sums and convolu-
tions on the approximate LWE-based additive homomorphic
encryption schemes, and to evaluate non-linear activations on
FHEW ciphertexts. Therefore, the evaluations of both linear and
non-linear functions are very fast. Then the noise will be reduced
during the evaluation of non-linear activations by applying an
optimized homomorphic look-up table algorithm (LUT) [26].

We also observed the fact that the neural network is good at
noise tolerating, i.e., the neural networks are usually not sensitive
to the noise in less significant bits of input. This noise tolerating
property also help us to reduce the size of encryption parameters
and thus improves the efficiency while keeping high inference
accuracy in the following ways: 1) On receiving of an input,
we discard the less significant bits before encrypting; 2) In the
beginning of LUT algorithm, we also discard the less significant
bits of the LWE ciphertext.

In summary, our optimized FHE scheme has the following
properties: 1) It can be applied to neural networks of arbitrary
depth. 2) It supports many kinds of widely used activations,
such as ReLU and Sigmoid. 3) When applied to inference of
privacy-enhanced neural networks, it is fast and accurate.

d) Efficient design for non-linear activation evaluation. We
further improve the evaluations of non-linear activations to speed
up our system. Typically, a general method used to evaluate
non-linear activations is homomorphic look-up-table algorithm
(LUT) [11], [26], [27]. The core idea of LUT is to encode the
“Table” containing the value of the non-linear activation into a
polynomial, so that we can use ciphertext to locate the position
of the desired output.

In this work, we focus on improving the LUT algorithm. Our
LUT algorithm takes the characteristics of neural network which
tends to be able to tolerate noise into consideration and propose
an approximate LUT algorithm over integer. Compared to DiNN
[11], the output of our LUT is in an integer ring, instead of binary.
Compared to PEGASUS [27], we choose a small degree of LUT
function to reduce time cost because of the characteristics of
activation function which tends to be able to tolerate noise. We
also propose two approaches to improve the efficiency of LUT
algorithms:

1) RNS polynomial multiplication. We use number theoretic
transform (NTT) multiplication to speed up the multiplication.
As a brief introduction, one NTT multiplication includes: 1)
(NTT) turn two polynomials into two vectors (We call it residue
numeral system (RNS) form); 2) (Position-wise multiplication)
Perform position-wise multiplication between two vectors; 3)
(Inverse-NTT (INTT) ) turn the resulted vector into a polyno-
mial. Lastly, we reduce the number of NTT and INTT to a third
of before.

2) Modulo function. We design different modulo functions
for different operations. We also reduce the number of modulo
function by half compared to the previous method.

As a result, our improved system only takes 0.14s per infer-
ence on MNIST dataset, while 0.42s is needed without improve-
ments.

e) Hybrid FHE-based PE-NN model. The applications of basic
FHE-based PE-NN is restricted by the fact that evaluation an en-
tire DNN on encrypted data is too inefficient. In order to reduce



4454 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

the inference latency, we develop the idea that divide the network
into two parts: an open network and a private network. We call
it Hybrid FHE-based privacy-enhanced neural network model.

In this model, we make use of edge computing in a different
purpose. The open network is distributed in the users’ side and
the private network is remained in the cloud server. The user
first runs the open network in plaintext locally, then the results
are encrypted and being sent to the server. The server evaluates
the private network on encrypted input and returns an inference
output which is also encrypted. Only the user who has the secret
key can decrypt the output and see the result. By replacing some
computationally expensive ciphertext evaluations in the server
side with low-cost plaintext computations in the user side, our
model significantly reduce the inference latency.

The open network is made up of general feature extracting
layers such as convolutional layers. Usually, it is chosen from
well-known open-source networks such as FaceNet [25] (for
facial recognition), TextCNN [28] (for text classification) and
InceptionV3 [29] (for object classification). The private model
consists of some lower layers which is highly related to the
dataset and the task. The private model is trained by the AI
model owner. The training method and trained parameters are
often considered as critical intellectual property by AI model
owner, who are typically not willing to share them. Notice that
when we set the whole network as private network, our model
is exactly same as basic FHE-PE-NN model, so our model can
be viewed as a generalization of basic FHE-PE-NN model.

B. Overview of the paper

In Section II, we introduce backgrounds of our work. In
Section III, we propose our optimized FHE scheme and propose
a protocol for its application on PE-NN. Followed by Section
IV, where we further optimize our FHE scheme, and focus on
improving the evaluation of non-linear activations. Next up in
Section V, we propose a hybrid PE-NN model so that homo-
morphically evaluating deep complex neural networks becomes
practical. Finally in Section VI we report the performance of our
system and show our evaluation results of different PE-NN such
as hand-writing digits recognition, facial recognition, speaker
verification, text classification and object classification.

II. PRELIMINARIES

A. Notations

We denote all real numbers by R. We denote all integers by
Z. For a positive integer q, we use Zq := Z/qZ to denote the
multiplicative group of integers modulo q. We use upper-case
letter for matrix and use lower-case bold letters for vectors.
Given a vector x, we write x[i− 1] for its ith entry, i.e., x[0] is
its first entry. We denote 〈a, b〉 the inner product of vectors a
and b. We use lower-case letters for polynomials. For a positive
integer n, we write [n] to denote the set {0, 1, 2, . . . , n− 1}.
We write a

$← S to denote that, a is sampled uniformly random

from set S. Let E be a distribution, we use e
$← E to denote that

e is randomly sampled according to E .

Finally, we use 1S to denote the indicator function

1S :=

{
1, S is TRUE
0, S is FALSE

.

B. (Ring) Learning With Errors

The learning with errors (LWE) problem [30] was proposed
as a generalization of learning parity with noise and it is widely
used in construction of many cryptosystems.

For positive integers n and q ≥ 2, a vector s ∈ Zn
q , and

a probability distribution E = E(n) over Zq , let As,E be the

distribution obtained by choosing a vector a
$← Zn

q uniformly

at random and a noise term e
$← E , and outputting (a, 〈a, s〉+

e) ∈ Zn
q × Zq . The LWE problem is defined as follows.

Definition II.1. (LWE) For an integer q = q(n) and an error
distribution E = E(n) over Zq , the LWE problem LWEn,m,q,E
is defined as: Given m independent samples from As,E , output
s with non-negligible probability.

The decisional version is to distinguish between m samples
chosen according to As,E for some uniformly random s and m
samples from the uniform distribution over Zn

q × Zq .
The Ring learning with errors (RLWE) problem [31] is a

variant of LWE which is widely used to design homomorphic
encryption schemes [19], [20], [23], [32]. The secret s is chosen
from ring R. An RLWE sample (a, as+ e) ∈ R2

q is generated

by choosing a
$← Rq uniformly at random and noise e from the

error distribution E over R. Here q ≥ 2 is an integer modulus.
The decisional version is to distinguish between the RLWE
sample for some secret s and a sample from uniform distribution
over R2

q .

C. Homomorphic Encryption (HE)

A cryptosystem that supports computation on ciphertext with-
out decryption is known as homomorphic encryption (HE) [22].
A symmetric key HE scheme consists of following PPT algo-
rithms.
� Key generation. The algorithm takes security parameter λ

as input and outputs a secret key sk, and a evaluation key
evk.

� Encryption. The algorithm takes a message m and the
secret key sk as input and outputs a ciphertext ct =
Enc(sk,m).

� Decryption. The algorithm takes a ciphertext ct and the se-
cret key sk as input and output a messagem′ = Dec(sk, c).

� Homomorphic evaluation. The algorithm takes the evalua-
tion key evk, a function f and a set of ciphertexts as input
and output a ciphertext ct = Eval(f, evk, ct1, . . . , ctl).

Roughly speaking, a encryption scheme is homomorphic in an
operation ◦, if there is another operation 	 such that Enc(m1) 	
Enc(m2) = Enc(m1 ◦m2).

The security notion we consider is indistinguishability under
chosen plaintext attack (IND-CPA) security. [33]

Definition II.2 (IND-CPA security of symmetric key HE
scheme). A symmetric key HE scheme with message spaceM
is IND-CPA secure if for any polynomial time adversary A, it
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Algorithm 1: NTT Multiplication.

1: Input: Polynomials a, b ∈ Zq[x]/(x
n + 1).

2: Find ā = NTT (a), b̄ = NTT (b). (One NTT (·) costs
O(n log n).)

3: Calculate c̄ = ā× b̄. (Position-wise multiplication
(PMUL), O(n).)

4: Find c = INTT (c̄). (One INTT (·) costs O(n log n).)
5: Output: Polynomial c.

holds that ∣∣∣∣Pr[Aevk(Enc(sk,m0)) = 1]

−Pr[Aevk(Enc(sk,m1)) = 1]

∣∣∣∣ = negl(λ),

where (sk, evk)← KeyGen(1λ), and m0,m1 ∈M.
Briefly speaking, a encryption scheme is homomorphic in an

operation ◦, if there is another operation 	 such that Enc(m1) 	
Enc(m2) = Enc(m1 ◦m2). There are many sub-classes of ho-
momorphic encryption scheme, depending on the types and
number of operations it supports.
� Partially homomorphic encryption. It only supports the

evaluation of circuits consisting of one type of gate. It
is usually simple and fast. For example, ElGamal cryp-
tosystem [34] can evaluate unbounded number of modular
multiplications, and Paillier cryptosystem [35] can evaluate
unbounded number of modular additions.

� Somewhat homomorphic encryption. It supports the eval-
uation of arbitrary circuits with multiple types of gates of
pre-determined bounded depth. Typically, ciphertexts are
“noisy”, and the noise grows along with the increment of
homomorphic computations, where ultimately the noise
will make the resulting ciphertext indecipherable.

� Fully homomorphic encryption (FHE). It supports the eval-
uation of arbitrary circuits with multiple types of gates of
unbounded depth. FHE solves the noise problem by using
bootstrapping technique. In bootstrapping, the ciphertext
is “refreshed” to reduce its noise level [10].

D. Number-Theoretic Transform (NTT)

In our encryption scheme, almost all computations involve
high-degree polynomial multiplications. Naive polynomial mul-
tiplication costs O(n2) time, where n is the degree of polynomi-
als. In field R or C, using Faster Fourier Transforms (FFT) [36]
for polynomial multiplication is a common technique. It changes
the time cost from O(n2) to O(n log n), and this will have
significant improvement when n is large, especially in the area
of cryptography. Note that we only consider integers in cryp-
tography, so a variant of FFT algorithm is widely used on finite
field, which is called number-theoretic transform (NTT) [37].

The basic idea of NTT is that for some appropriately cho-
sen prime q, Zq[x]/(x

n + 1)1 and Zn
q are isomorphic, as

1We briefly introduce the choice of q and n here. We choose n is a power of 2
in xn + 1, i.e., xn + 1 is the 2nth cyclotomic polynomial. In this case xn + 1

stated in [31]. Therefore we can define a mapping NTT (·) :
Zq[x]/(x

n + 1)→ Zn
q , which turns a polynomial into a integer

vector. By definition of isomorphism, an inverse mapping is
INTT (·) : Zn

q → Zq[x]/(x
n + 1), which turns a vector back

to the polynomial. Based on the definition of isomorphism, we
have:
� NTT (a+ b) = NTT (a) +NTT (b).
� NTT (a× b) = NTT (a)×NTT (b).
Here the multiplication of vectors is position-wise multipli-

cation. The vector NTT (a) is called RNS form of polynomial
a, and we use ā to represent it in the following. Now we
are ready to propose NTT multiplication. The time cost is
2O(n log n) +O(n) +O(n log n) = O(n log n), which is bet-
ter than the naive O(n2).

III. OPTIMIZED FHE SCHEME

In FHE-based privacy-enhanced neural network inferences,
the user encrypts the data before sends it to the server. The
server homomorphically evaluates the neural network over en-
crypted data, and produces an encrypted inference output. It
then returns the result’s ciphertext to the user. Evaluation of
neural networks on encrypted data involves both arithmetic
operations such as weighted sum and convolutions, evaluation
of non-linear activations and bootstrapping after each neuron to
enable further computations. However, existing FHE schemes
are not designed for evaluation neural networks on encrypted
data. Most of them focus on high-precision evaluations and
are very slow in inferencing of neural network. Some of them
only support specific non-linear activations (e.g., [11], [13]).
Our optimized FHE scheme which combines the advantages of
CKKS and TFHE schemes will help to reduce the inference
latency, and achieve the state-of-the-art inference accuracy.

A. Background: Neural Network

Neural network is a artificial model inspired by biological
brains. A neural network can be considered as population of
artificial neurons arranged in layers. The raw data is encoded
properly and fed into the input layer and the output layer will
output the inference result. Each internal layer (i.e., hidden layer)
receives the data generated by its previous layer and outputs the
processed data for the next layer.

Neural networks are usually composed of layer of following
types: Fully-connected layer (FC layer, every neuron of the
layer takes all incoming data as inputs), convolutional layer
(convolution evaluation is applied to its input), and so on.

At each neuron in layer l, the processing happens in two steps:

is irreducible over Z, and thus Z[x]/(xn + 1) is an integral domain. For q,
we choose q such that any polynomial in Zq [x]/(x

n + 1) can be embedded
to a vector according to the Chinese remainder theorem (CRT). After that,
polynomial multiplication can be accelerated fromO(n2) toO(n log(n)). This
requires that xn + 1 splits modulo q, i.e.,

xn + 1 = Π2n−1
i=1 (x− zi) mod q ,

which is implied by q = 1 mod 2n.
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� Linear function: It is a weighted sum of inputs, which can
be described as γl = Wlxl−1 + βl. whereWl is the weight
matrix of layer l and βl is the bias of layer l.

� Activation function: The calculated weighted sum is passed
to the activation function. An activation function is a
mathematical function which adds non-linearity to the
network. There are some commonly used activation func-
tions: Sigmoid, ReLu and Softmax. It can be described as
xl = fl(γl).

The neural network with one hidden layer can approximate
any continuous function [38], [39]. Furthermore, a deep neural
network with several layers of non-linearities has better ability in
more complex tasks. In this work, our optimized FHE scheme is
able to evaluate neural networks of arbitrary depth with possibly
many hidden layers.

B. Overview

Our system is built on both a LWE-based secret key encryption
scheme and a RLWE-based secret key encryption scheme. The
entire part of our system run on integer, which provides us a
possibility to apply faster algorithms in implementation (such
as faster polynomial multiplication algorithm based on NTT).

Compared with LWE, which operates in Zq , RLWE operates
in polynomial rings. (e.g., Rq := Zq[x]/(x

N + 1) ). Therefore,
for simpler homomorphic evaluations, especially linear func-
tions, LWE can have short and efficient implementations, while
RLWE has increased computational complexity. However, for
more complex functions, RLWE is powerful and is widely used
in homomorphic encryption schemes. In general both LWE and
RLWE can be used simultaneously in one scheme. For example,
the famous homomorphic look-up table (LUT) algorithm which
we will elaborate later.

The LWE-based secret key encryption scheme is used to
encrypt the input test. Assume the length of input vector is lin, we
will generate lin LWE ciphertexts. In each ciphertext, according
to the noise-tolerance of neural network, we can add small noise
to the main message. As a result, we can choose relatively small
ciphertext modulus and dimension. In fact, it is a widely-used
way to include small noise and approximate processions when
applying homomorphic encryption scheme to neural network.
For example, CKKS [20], which is one of the most competitive
and efficient homomorphic encryption scheme, has added small
noise in the main message. It is also noteworthy that we are
not “assuming the sufficient noise tolerance of neural network”.
Instead, we observe that the existence of small noise won’t
deviate the neural network result too much. Our experiments
in Section VI show that inference accuracy on encrypted data
is only 0.8% less than the inference accuracy on plain data, on
MNIST dataset.

At each neuron, our scheme performs:
Homomorphic evaluation for linear functions on LWE cipher-

text. Since our LWE secret key encryption scheme is a type
of additive homomorphic, we can simply evaluate the linear
functions by homomorphic scale multiplication and addition.

Homomorphic evaluation for non-linear activations. We use
the homomorphic look-up table algorithm (LUT) to evaluate

non-linear activations and perform the bootstrapping at the same
time. The core of LUT is to encode all possible output of the
non-linear function g(·) into a polynomial f(X) (denote by
LUT function), so that we can “blindly” rotate the polynomial
to locate the position of the desired output. The rotates are
driven by a set of evaluation keys, which is an encryption of
LWE secret key under an RLWE secret key and stored as an
RGSW ciphertext. The evaluation keys are generated in the key
generation phase in users’ side, then they are stored in the server
and used to drive the activation evaluations.2 At the same time,
the noise is reduced since we always “refresh” the ciphertext.

In order to achieve better efficiency, we hope the degree of
polynomials in the LUT algorithm is small. So we make use
of the noise tolerance of neural network again. Before entering
LUT process, we squeeze the output range of the inner-product
first. We only store a few number of most significant bits and
discard some inaccurate least significant bits. Notice that the
coefficients of the LUT function f(X) store all possible value
of the algorithm’s output, so the number of coefficients (i.e.,
the degree of f(X)) is decided by the input range of the LUT
algorithm (i.e., the output range of the inner-product). We will
be able to achieve small degree of LUT function by squeezing
the inner-product into a small range.

Key switching and homomorphic rounding algorithms. The
LUT algorithm “re-encrypts” the input ciphertext, so that the
underlying secret key and ciphertext modulus are changed. To
ensure the network is extendable and can be applied to deep
neural network, the output ciphertext should be in same size as
the input ciphertext. Hence, we need key switching and homo-
morphic rounding algorithms to resize the output ciphertext.

In this way, the output of each neuron is in the same form as
the input to the neuron, and the noise is reduced during boot-
strapping. It ensures that the output of one neuron can be used
for further computations in the next layer without an initially
fixed limit on the number of layers one network has. Hence, our
scheme can evaluate arbitrarily deep neural networks.

C. LWE Encryption and Linear Evaluation

We show our LWE-based secret key encryption scheme and
related computations we used in our system. We write ct ∈
LWEn,q

s (m) to state that ct is a LWE ciphertext of m. Here
q is the modulus, n is the dimension, and s is the secret key.
And we use the same way for other encryption schemes. The
detailed algorithms are Algorithm 2.

We introduce two basic linear evaluation algorithms under the
LWE encryption scheme. Homomorphic addition 3 is to evaluate
an addition between two ciphertexts. It takes two LWE cipher-
texts (encryption ofm1 andm2) as input and outputs a new LWE
ciphertext whose decryption result is m1 +m2. Homomorphic
scale multiplication 4 is to evaluate a multiplication between one
plaintext number and one ciphertext, which takes an encryption
of m and a plaintext number c as input and outputs a new LWE
ciphertext whose decryption result is m · c.

2It is secure for users to send evaluation keys to the server, since the evaluation
keys are RGSW ciphertexts. Due to the security of cryptographic protocols, the
server can learn nothing about the LWE secret key from the evaluation keys.
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Algorithm 2: LWE Encryption Scheme.
Input: plaintext m, modulus q, dimension n, secret key

s
$← {−1, 0, 1}n, error distribution ELWE on Zq .

Output: LWE ciphertext (a, b) ∈ LWEn,q
s (m).

Sample an error value e
$← ELWE.

Sample vector a
$← Zq

n.
Define b := m+ e− 〈a, s〉 mod q.
Return (a, b).

Algorithm 3: Homomorphic Addition.

Input: LWE ciphertexts (a1, b1) ∈ LWEn,q
s (m1) and

(a2, b2) ∈ LWEn,q
s (m2)

Output: LWE ciphertext (a′, b′) ∈ LWEn,q
s (m1 +m2).

Compute a′ := a1 + a2 mod q and b′ := b1 + b2
mod q.

Return (a′, b′).

Algorithm 4: Homomorphic Scale Multiplication.

Input: LWE ciphertext (a, b) ∈ LWEn,q
s (m), plaintext

c ∈ Zq
n.

Output: LWE ciphertext (a′, b′) ∈ LWEn,q
s (c×m).

Compute a′ := c · a mod q and b′ := c · b mod q.
Return (a′, b′).

Algorithm 5: Homomorphic Inner Product Evaluation.

Input: LWE ciphertext ct of vector m: ct ∈ LWEn,q
s (m),

and plaintext vector c.
Output: LWE ciphertext (a′, b′) ∈ LWEn,q

s (〈c,m〉).
Let L = dim(c) = dim(m), a′ = 0, b′ = 0.
for i = 1, . . . , L do

Parse (ai, bi) ∈ LWEn,q
s (mi) from ct.

Compute a′ = a′ + ciai and b′ = b′ + cib
′.

end for
Compute a′ = a′ mod q and b′ = b′ mod q.
Return (a′, b′).

We extend 2 to encrypt a L dimension vector m

LWEn,q
s (m)

:= (LWEn,q
s (m1),LWEn,q

s (m2), . . . ,LWEn,q
s (mL)) .

Then homomorphic addition and scale multiplication can be
extended in a similar way. Using these algorithms, we are able
to homomorphically evaluate the inner product of a plaintext
vector and ciphertext vector (Algorithm 5). The homomorphic
inner product evaluation algorithm takes an encryption of vector
m and a plaintext vector c as input and outputs an encryption
of 〈m, c〉.

D. RLWE Encryption and Non-Linear Evaluations

We show the RLWE-based secret key encryption scheme and
related operations we used in our system. Our scheme is defined
on ring Rq := Zq[X]/(Xn + 1).

Algorithm 6: RLWE Encryption Scheme.
Input: plaintext m, modulus q, dimension n, secret key s
whose coefficients are sampled uniformly random from
{−1, 0, 1}, error distribution ERLWE.

Output: RLWE ciphertext (a, b) ∈ RLWEn,q
s (m).

Sample error element e
$← ERLWE.

Sample element a
$← Rq.

Define b := m+ e− a× s ∈ Rq .
Return (a, b).

Algorithm 7: Extended RLWE Encryption.
Input: plaintext m, modulus q, dimension n, secret key
s ∈ {−1, 0, 1}n, error distribution ERLWE, decomposition
base B.
Output: Extended RLWE ciphertext

{(ai, bi)}i∈[log(q)/log(B)] ∈ ˜RLWE
n,q

s (m).
for i = 0, 1, . . . , log(q)/log(B)− 1 do

Find (ai, bi) ∈ RLWEn,q
s (m×Bi).

end for
Return {(ai, bi)}i∈[log(q)/log(B)].

Algorithm 8: RGSW Encryption Based on Extended RLWE
Encryption.

Input: plaintext m, modulus q, dimension n, secret key
s ∈ {−1, 0, 1}n.

Output: RGSW ciphertext

(β, α) ∈
(
˜RLWE

n,q

s (m), ˜RLWE
n,q

s (s×m)

)
.

1) RLWE Encryption and Related Homomorphic Opera-
tions: The encryption scheme is Algorithm 6. And we can define
scale multiplication and addition for RLWE ciphertext, in the
same way as Algorithms 4 and 3.

Building blocks of evaluation key generation. The Algo-
rithms 7 and 8 are sub-algorithms for generating evaluation
keys. Since the algorithm of generating evaluation keys is related
to the LUT, for convenience, we present the algorithms of
generating evaluation keys together with the LUT algorithm (See
Algorithms 11 and 12).

Building blocks of LUT. Besides the generation of evaluation
key, we also introduce the external multiplication � (Algo-
rithm 10) and its sub-operation 	 (Algorithm 9). The external
multiplication is an important component of LUT, which shows
how to do multiplication between RLWE ciphertext and RGSW
ciphertext.

Extract0 (Detailed algorithm is shown in Appendix, available
online) is to extract the constant term of polynomial m from its
RLWE ciphertext RLWEn,q

s (m). It will output a LWE ciphertext
which encrypts the 0th coefficient of m. This extraction algo-
rithm allows us to be able to convert a RLWE ciphertext to into
LWE ciphertexts and will be in LUT algorithm.

2) Non-Linear Evaluations - Homomorphic Look-Up Table
Algorithm (LUT): The look-up table algorithm takes a LWE



4458 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

Algorithm 9: Extended RLWE Ciphertext Multiplication
(	).

Input: plaintext operand r, modulus q, dimension n,
decomposition base B, extended RLWE ciphertext

{(ai, bi)}i∈[log(q)/log(B)] ∈ ˜RLWE
n,q

s (m).
Output: RLWE ciphertext (a, b) ∈ RLWEn,q

s (r ×m).
Decompose r s.t. r =

∑log(q)/log(B)−1
i=0 ri ×Bi.

Compute (a, b) =
∑log(q)/log(B)−1

i=0 ri × (ai, bi) =∑log(q)/log(B)−1
i=0 (riai, ribi).

Ensure (a, b) in R2
q .

Return (a, b).

Algorithm 10: RLWE and RGSW Multiplication (�).
Input: (a, b) ∈ RLWEn,q

s (m1), (β, α) ∈ RGSWn,q
s (m2).

Output: (a′, b′) ∈ RLWEn,q
s (m1 ×m2).

Return (a′, b′) = a 	 α+ b 	 β and ensure (a′, b′) ∈ R2
q .

ciphertext ct ∈ LWEn,q
s (m) and an evaluation function F (·) as

input and it outputs a LWE ciphertext which encrypts ΔF (m),
where Δ is a scale factor to limit noise.

Bit-by-bit Look-up table algorithm for general cases. We first
show a bit-by-bit look-up table algorithm (Algorithm 11), which
can be used in any cases, however not optimized.

2-bit Look-up table algorithm for single hidden layer. When
the input LWE ciphertext has a secret key s ∈ {0, 1}n instead
of s ∈ {−1, 0, 1}n, we can use the optimized Look-up table
algorithm to reduce the number of external operations from n to
n/2 compared with Algorithm 11 while retaining the security
[40], [41]. The details are in Algorithm 12. In the case only one
activation layer is evaluated homomorphically, we can skip the
key switch and rounding operations after the look-up table evalu-
ation, and proceed to other linear evaluations directly. However,
this method cannot be applied if more than one activation layer.
This is because the output of any Look-up table algorithm must
be an LWE ciphertext with secret key s ∈ {−1, 0, 1}n.

2-bit Look-up table algorithm for multiple hidden layers. For
multiple hidden layers, the key switching algorithm is required
between each hidden layer, which consists of computations on
RLWE ciphertexts. However, the binary secret for the Ring
variant of LWE is still an open problem [22]. So, we cannot
convert the LWE secret key froms ∈ {−1, 0, 1}n tos ∈ {0, 1}n
here, but we can still construct a 2-bit look-up table algorithm.
We will include the details in Appendix, available online.

E. Other Building Blocks of Our Scheme

Our framework also contains the following functions: homo-
morphic rounding and key switching algorithms. We will briefly
introduce them in this section, and the detailed algorithms are
in Appendix, available online.

Rounding. The homomorphic rounding algorithm will change
a LWE ciphertext with ciphertext modulus q′ to a LWE ciphertext
with ciphertext modulus q.

Key switching. The key switching algorithm will change a
LWE ciphertext with secret key s′ and dimension n′ to a LWE
ciphertext with new secret key s and dimension n.

F. Security and Privacy Analysis

In our FHE-based solution, data privacy protection is to ensure
that the cloud server can know neither the raw input data nor the
inference results in clear. Since the cloud server only plays with
encrypted data in the whole inference process, the data privacy
protection relies on the security of underlying FHE schemes.
In Theorem 3.1, we show that the FHE scheme achieves CPA
security as in Definition 2.2.

Theorem III.1 (CPA security). The FHE scheme proposed in
Section III is CPA secure under the LWE and RLWE assump-
tions.

Proof (sketch of proof). The view of a CPA adversary for
our scheme is very similar to Regev’s scheme [30], which is
proved secure under LWE assumption, with the exception that
our adversary also gets to see the evaluation key. However, the
evaluation key contains a sequence of RLWE instances which are
in the same form as CKKS ciphertexts [20]. The evaluation keys
are indistinguishable from uniform according to the security of
CKKS scheme. Therefore, the security of our scheme can be
drived from the security of Regev’s scheme. Please refer [30]
and [20] for the detailed proof.

G. Our Framework

We show the full protocol for privacy-enhanced neural net-
work using our optimized FHE scheme in Algorithm 13.3

H. Noise Analysis of Optimized FHE Scheme

In this section, we analyze the growing of noise throughout
our system. Let σ2

LWE be the variance of noise used in the LWE
encryption. Define σ2

RGSW, σ2
KS in the same way.

By the widely used assumptions, we assume that in each poly-
nomial all the coefficients behave like independent zero-mean
random variables of the same variance [32] (weaker than i.i.d.),
and central limit heuristic [23]. The procedures are similar as
in [27]. Further, note that it suffices to find the change of error
variance within one neuron of each layer. Fix Layer l, assume
that LWEl−1 := {(ai, bi)}i∈[Hl−1] has an error whose variance
is σ2 in each LWE ciphertext (ai, bi).

a) Linear function. iph =
∑

i∈[Hl−1] Wl[h, i]× (ai, bi) +

βl[h] ∈ LWEn,q
s (·) and thus the noise becomes eip with variance

σ2
ip :=

∑
i∈[Hl−1] W

2
l [h, i]σ

2 ≤ ||Wl||2σ2. Here we define

||Wl||2 := max
h∈[Hl]

{ ∑
i∈[Hl−1]

W 2
l [h, i]

}
.

b) LUT. As in [27], the LUT evaluations outputs a LWE
ciphertext that decrypts to ΔF (m+ e1) + e2 for input m. And

3The LWE secret key s and RLWE secret key s′ are stored in the user’s side
and keep secret from the server. The encrypted key (i.e., evaluation keys and
key switching keys) are generated by the user and stored in the server. Since the
keys are encrypted, it is secure to pass them to the server.
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Algorithm 11: Bit-by-Bit Look-Up Table Evaluation.

1: Input: LWE ciphertext (a, b) ∈ LWEn,q
s (m) s.t. |m| < q/4, scale factor Δ, evaluation function F (·) : Zq → Zq , RLWE

parameter set (n′, q′), RLWE secret key s′, a set of evaluation keys w.r.t. the LWE secret key s ∈ {−1, 0, 1}n

EKj,+ = RGSWn′,q′
s′ (1s[j]>0),EKj,− = RGSWn′,q′

s′ (1s[j]<0), j = 0, 1, . . . , n− 1 .

2: Output: LWE ciphertext ct′ ∈ LWEn′,q′
s′ (ΔF (m)) where s′ is the trivial vector form of polynomial s′ (from high degree to

low degree).
3: Let ηk = kq/(2n′) for 1 ≤ k ≤ n′/2. Define a polynomial f ∈ Rn′,q′ whose coefficients are

fj =

⎧⎨
⎩

ΔF (0)� if j = 0

ΔF (−ηj)� if 1 ≤ j ≤ n′/2

−ΔF (ηn′−j)� if n′/2 < j < n′

.

4: Let b′ = 
2n′b/q�, let a′ = 
2n′a/q�.
5: Initialize AC = (0, f ×Xb′) ∈ R2

n′,q′ .
6: for j=0,1,...,n-1 do

7: AC+=

(
(Xa′[j] − 1)EKj,+ + (X−a

′[j] − 1)EKj,−

)
� AC, note that all calculations are in R2

n′,q′ .

8: end for
9: Return Extract0(AC).

Algorithm 12: 2-Bit Look-Up Table Evaluation for Single Hidden Layer Neural Network.

1: Input: LWE ciphertext (a, b) ∈ LWEn,q
s (m) s.t. |m| < q/4, scale factor Δ, evaluation function F (·) : Zq → Zq , RLWE

parameter set (n′, q′), RLWE secret key s′, a set of evaluation keys w.r.t. the LWE secret key s ∈ {0, 1}n, and for
j = 0, 1, . . . , n/2− 1:

EKj,0=RGSWn′,q′
s′ (s[2j]s[2j + 1]),EKj,1=RGSWn′,q′

s′ (s[2j](1−s[2j+1])),EKj,2=RGSWn′,q′
s′ (s[2j + 1](1− s[2j])) .

2: Output: LWE ciphertext ct′ ∈ LWEn′,q′
s′ (ΔF (m)) where s′ is the vector form of polynomial s′ (from high degree

coefficient to low degree coefficient).
3: Let ηk = kq/(2n′) for 1 ≤ k ≤ n′/2. Define a polynomial f ∈ Rn′,q′ whose coefficients are

fj =

⎧⎨
⎩

ΔF (0)� if j = 0

ΔF (−ηj)� if 1 ≤ j ≤ n′/2

−ΔF (ηn′−j)� if n′/2 < j < n′

.

4: Let b′ = 
2n′b/q�, let a′ = 
2n′a/q�.
5: Initialize AC = (0, f ×Xb′) ∈ R2

n′,q′ .
6: for j=0,1,...,n/2-1 do

7: AC+=

(
(Xa′[2j]+a′[2j+1] − 1)EKj,0 + (Xa′[2j] − 1)EKj,1 + (Xa′[2j+1] − 1)EKj,2

)
� AC, all calculations are in R2

n′,q′ .

8: end for
9: Return Extract0(AC).

the LUT input is the above ciphertext iph of linear function. We
first find e1, which is the error of look-up index. Our analysis is
based on the Algorithm 11, and for other proposed algorithms
the analysis is almost identical.
� By our LUT algorithm (Algorithm 11), (a′, b′) has de-

cryption result b′ + 〈a′, s〉 = 
2n′m/q�+ e. By the cen-
tral limit heuristic, e has variance 4n′2σ2

ip/q
2 + (||s||22 +

1)/12, where the second term is from the rounding 
·�.
Note that ciphertext is generated from uniformly random
distribution, thus the loss of 
·� is from U [−1/2, 1/2], i.e.,
the uniform distribution on [−1/2, 1/2].

� Next, note the definition of polynomial f ’s coeffi-
cients, the above error e is scaled up by a factor

of q/(2n′), which results in an error with variance
σ2
ip + q2(||s||22 + 1)/(48n′2). Also note that the error

of 
2n′m/q� is scaled up by a factor of q/(2n′), this
error has variance (1/12)× q2/(4n′2) if assuming the
loss of 
·� is from U [−1/2, 1/2]. Summing up both
parts we have var(e1) = σ2

ip + q2(||s||22 + 2)/(48n′2) =
||Wl||2σ2 + q2(||s||22 + 2)/(48n′2).

Next, we proceed to find e2. In each step j we calculate the
external product

AC+ =

(
(Xa′[j] − 1)EKj,+ + (X−a

′[j] − 1)EKj,−

)
� AC .
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Algorithm 13: Full Protocol for Privacy-Enhanced Neural Network.

1: Input Layer parameters: LWE parameter set (n, q, s).
2: Hidden Output Layer parameters: RLWE and RGSW related parameter set (n′, q′, s′) where n|n′, scale factor Δ.
3: Public parameters: Decomposition base B, Key-Switching decomposition base BKS.
4: Given input vector x of length N , define a set of N LWE ciphertexts {(ai, bi)} each of which is from LWEn,q

s (x[i]).
5: Generate a set of evaluation keys w.r.t. the LWE secret key s ∈ {−1, 0, 1}n:
6: EKj,+ = RGSWn′,q′

s′ (1s[j]>0),EKj,− = RGSWn′,q′
s′ (1s[j]<0), j = 0, 1, . . . , n− 1 .

7: Generate a set of LWE switching keys w.r.t. decomposition base B:

8: SKj ∈ ˜RLWE
n,q

s

(∑n−1
l=0 s[jn+ l]X l

)
, j = 0, 1, . . . , n′/n− 1 .

9: Let input layer be Layer 0 and let output layer be Layer L.
10: for l = 1, 2, . . . , L do
11: Let Hl be the number of neurons in layer l.
12: Let Wl,βl be the weight matrix and the bias vector from layer l − 1 to layer l, respectively.
13: for h = 0, 1, 2, . . . , Hl − 1 do
14: Let LWEl−1 := {(al−1,i, bl−1,i)}i∈[Hl−1], each of which is a LWE ciphertext LWEn,q

s (·) from Layer l − 1. For the sake
of simplicity we omit the subscript of layer l − 1 and write (ai, bi).

15: Homomorphically evaluate the linear function in the hth neuron in Layer l:
iph =

∑
i∈[Hl−1] Wl[h, i]× (ai, bi) + βl[h],i.e., iph ∈ LWEn,q

s (γl[h]).

16: Evaluate the look-up-table in the hth neuron: ct′h = LUT(iph) ∈ LWEn′,q′
s′ (Δ× ·).

17: Switch from n′ to smaller n: c̃th = LWE_KS(ct′h, BKS) ∈ LWEn,q′
s (Δ× ·).

18: Round from q′ to smaller q and rescale: cth = LWE_Rounding(c̃th) ∈ LWEn,q
s (·).

19: Include cth in LWEl.
20: end for
21: end for
22: Return LWEL to User. User can decrypt all ciphertexts in it with secret key s, and then find the inference result.

As in [32] and [23], under their assumptions we have: Given
polynomials a, b, whose variances of the coefficients are σ2

a and
σ2
b respectively, then:
� the variance of coefficients of polynomiala+ b isσ2

a + σ2
b ;

� the variance of coefficients of polynomial ab is n′σ2
aσ

2
b .

Based on the above we are able to find the variance of
polynomial calculations. For the sake of simplicity, when we
say the variance of a polynomial we mean the variance of the
coefficients of this polynomial.
� Let RGSWj := (Xa′[j]−1)EKj,++(X−a

′[j]− 1)EKj,−.
First we find the variances of the coefficients of the poly-
nomial in each slot of RGSWj . By our definition of al-
gorithm, EKj,+ and EKj,− have the same error variance:
σ2

RGSW in each slot. Then note that (Xa′[j] − 1)EKj,+

is a sum of Xa′[j]EKj,+ and −EKj,+. They both have
variances σ2

RGSW. The other part (X−a
′[j] − 1)EKj,− is the

same, so the variance in each slot of (Xa′[j] − 1)EKj,+ +
(X−a

′[j] − 1)EKj,− is 4σ2
RGSW.

� Suppose in step j, AC = (aj , bj) where both aj and bj
are polynomials from the same ring. Given decomposition
base B, they have decomposition

aj → (â0, â1, . . . , âd−1), bj → (b̂0, b̂1, . . . , b̂d−1),

where aj =
∑d−1

i=0 B
iâi, bj =

∑d−1
i=0 B

ib̂i. We also write

RGSWj = (β, α)

=

(
(β[0], . . . , β[d− 1]), (α[0], . . . , α[d− 1])

)
.

By definition of our RGSW each β[j] or α[j] is a pair of
polynomials. Then

RGSWj � AC = aj 	 α+bj 	 β=
d−1∑
i=0

(
âiα[i]+b̂iβ[i]

)
.

Since all âj and b̂j have B-bounded coefficients, the vari-
ance of each slot in RGSW� AC is bounded by

d× 2× n′B2 × (4σ2
RGSW) = 8n′dB2σ2

RGSW .

� Finally, RGSWj = (Xa′[j] − 1)EKj,+ + (X−a
′[j] −

1)EKj,− in each step j has the same distribution, and thus
has the same error variance. The total variance in n steps
is var(e2) = 8nn′dB2σ2

RGSW.
Key Switch. By our definitions of Key-Switching key {SKj}

and ˜RLWE, each SKj has d RLWE ciphertexts, each of which

has error of variance σ2
KS. The error eKS is from

∑n′/n−1
j=0 ãj 	

SKj . Similarly as the 	 operation in the LUT part, note that
deg(ãj) = n, the variance of eKS is bounded by

n′/n× nB2
KSσ

2
KS = n′B2

KSσ
2
KS .

c) Rounding. Suppose the rounding factor is z, simply round
down the variance by a factor of z2. To round the ciphertext
to integer, 
·� results in an additional variance of var(eRD) =
(||s||22 + 1)/12.

Like in [27] and many other works, we assume F (·) is
L-lipschitz and then we will have |F (m+ e1)− F (m)| ≤
L|e1|. Next, |e1|, |e2| and |eKS| can be bounded w.h.p. by
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Fig. 3. Test result on noise growing in LUT+KS+Rounding.

O(
√

var(ei)), i = 1, 2,KS under central limit heuristic [23].
To sum up, after scaling down Δ, the error between F (m) and
F (m+ e1) + e2/Δ+ eKS/Δ+ eRD is bounded by

O

(
L
√

var(e1) +

√
var(e2) +

√
var(eKS)

Δ
+
√

var(eRD)

)

= O

(
L
√
||Wl||2σ2 + q2(||s||22 + 2)/(48n′2)

+

√
8nn′dB2σ2

RGSW+
√

n′B2
KSσ

2
KS

Δ
+
√

(||s||22+1)/12

)
.

Also, we give the error variance of the LWE ciphertext that
output to the next layer

σ2
l+1 ≤

(
L2var(e1) +

var(e2) + var(eKS)

Δ2
+ var(eRD)

)

≤
(
L2

(||Wl||2σ2
l + q2(||s||22 + 2)/(48n′2)

)

+
8nn′dB2σ2

RGSW + n′B2
KSσ

2
KS

Δ2
+ (||s||22 + 1)/12

)
.

1) Experiments on Noise Growing in Multiple Layers: After
showing that our system performed well in single hidden layer
neural network, we move our focus to multiple layers. The
key to achieve good results in multiple layers is to ensure that
the noise is always in a suitable range. In Section III-H, we
showed a theoretical analysis on the growing of noise. Now, we
show some experimental results about it. The noise is growing
in two steps. The first is in the inner-product computation. In
this part, the growing of noise is linear and easy to control by
choosing suitable parameters. So we focus on the second step:
Look-up table (LUT), key switching (KS) and rounding. We
ask the program to run one inner-product computation and then
to perform LUT+KS+Rounding 5 times continuously and get
the following Fig. 3 (the evaluation function in LUT is ReLu).
The picture shows the difference between the result of “ith
LUT+KS+Rounding” and the real value. 0 means that the result
in “ith LUT+KS+Rounding” is the same as the real value, which
means no error exists. From the picture we can see that, most of

points fall in (0,20), which is relatively small compared to the
inner-product range (−1000, 1000).

IV. EFFICIENT DESIGN FOR NON-LINEAR ACTIVATION

EVALUATION

A. Overview

In this section, we further optimize our FHE scheme and focus
on improving the evaluation of non-linear activations. Many
previous work on FHE-based PE-NN use polynomial approxi-
mation activations to evaluate non-linear activations. However,
it does not perform well. n-GraphHE [24], Lola [15] and Faster
CryptoNet [12] have to use the low-degree polynomial approx-
imation activations and thus fail to obtain the state-of-the-art
inference accuracy. High-degree polynomial approximation ac-
tivations can improve the accuracy, but the computing overhead
increases exponentially with the degree, so the inference be-
comes inefficient.

We adopt homomorphic look-up-table (LUT) algorithm to
evaluate non-linear activations. Although LUT algorithm is
faster than polynomial approximation, it is the slowest part
among all homomorphic evaluations in FHE-based PE-NN. To
achieve better performance, we propose an efficient design for
LUT-based non-linear activation evaluation.

We find that the NTT/INTT and the modulo calculations
take around 70% time in one LUT. Therefore, we reduce the
number of NTT and INTT in one LUT evaluation and opti-
mize modulo calculations. As a result, our system becomes 3
times faster than before. Our improved system only takes 0.14s
per input on MNIST dataset, while 0.42s is needed without
improvements. We list our optimizations in below sections
and an efficiency analysis to compare the difference in terms
of the amount of time where we managed to bring down
significantly.

B. Reduce the Number of NTT and INTT

In this section, we show our optimizations on polynomial
multiplications, which takes around 45% time (computed from
Table I) in one LUT. We introduce 2 methods to reduce the
number of NTT/INTTs in LUT algorithm. Section IV-B1 is a
general method and can be applied in any cases. Section IV-B2
is designed for the neural network where very large modulus
is necessary, such as hundreds of bits. In practical scenario,
we should choose suitable method according to the concrete
problems and neural networks.

1) General Method to Reduce Number of NTT/INTTs in LUT:
Taking our 2-bit look-up table evaluation for single hidden layer
algorithm (Algorithm 12) as an example, we will show how to
reduce the number of times where NTT/INTTs are called.

First, we count the number of NTT/INTTs in one LUT. We
use d to denote that in the beginning of each external product
�, each polynomial in AC is decomposed to d polynomials.
Regarding the computations of (Xa′[2j]+a′[2j+1] − 1)EKj,0,
(Xa′[2j] − 1)EKj,1 and (Xa′[2j+1] − 1)EKj,2, we discover that
instead of calling NTT multiplication 3d times, we can simply
implement it by rotating the polynomial in EKj,·, which only
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TABLE I
ANALYSIS ON LUT ALGORITHM

involves polynomial addition and subtraction and is faster than
NTT multiplication. We call it ‘quick multiplication’ and it
was used in the implementation of the non-optimized LUT
algorithm. Therefore, the NTT multiplications only appear in
�. One � includes 4d NTT polynomial multiplications. So one
LUT calculation includes 4d · (n/2) = 2dn NTT polynomial
multiplications. Each NTT polynomial multiplication includes
3 NTT/INTT transformations, so one LUT has 6dn NTT/INTT
transformations.

A general method is to store EKj,0, EKj,1 and EKj,2 in RNS
form when generating them. Such evaluation keys are generated
in the initialization phase and can be used repeatedly. When
generating the evaluation keys, we can do NTT transformations
after RGSW encryption to convert them into RNS form and store
them.

In LUT calculation, when calculating (Xa′[2j]+a′[2j+1] −
1)EKj,0 + (Xa′[2j] − 1)EKj,1 + (Xa′[2j+1] − 1)EKj,2, we
first perform NTT transformation on Xa′[2j]+a′[2j+1] − 1,
Xa′[2j] − 1 and Xa′[2j+1] − 1. Then we proceed to compute
position-wise multiplications and additions. The output of this
part is 4d RNS form polynomials.

Next, we move to the calculation of �. The left side of � is
already in RNS form. So we first decompose the right side from 2
polynomials to 2d polynomials and do NTT transformations 2d
times. The other calculations in� can be done by position-wise
multiplications and additions. Now the output of � is 2 RNS
form polynomials. We apply 2 INTT transformations on them
and get 2 regular polynomials.

Therefore, in each loop, we only need 3 + 2d NTT transfor-
mations and 2 INTT transformations. So one improved LUT
only has (3 + 2d+ 2) · (n/2) = dn+ 2.5n NTT/INTT trans-
formations.

For example, if we take n = 512 and d = 2 (same as our
experiments), then the number of NTT/INTT transformations
reduced from 6144 to 2304.

2) Further Improvements on Neural Network With Large
Modulus: When it is necessary to use hundreds bits modulus
Q, a well known technique is to set Q as a product of L distinct
and machine-word-sized primes: Q = ΠL−1

i=0 qi. Each qi is also
appropriate chosen so that NTT multiplication can be applied.
The propose of this decomposition is, when modulus is very
large, the multiplications and mod algorithm on computer/server
become very slow. Using machine-word-sized is many times
faster.

Algorithm 14: CRT Based LUT for Large Modulus.
1: First turn AC0, all RGSW ciphertexts into RNS form.
2: for i = 0, 1, . . . , n/2− 1 do
3: Calculate EKi

4: ACi+1 = EKi �ACi +ACi

5: end for
6: Output: Extract0(INTT (ACn/2)), i.e., the LWE

ciphertext of the constant term in the plaintext of
INTT (ACn/2).

Algorithm 15: (	) Operator in RNS Form, ᾱ 	 f̄ .

1: Input: Extended RLWE ciphertext ᾱ which includes L
RLWE ciphertexts, i.e., 2L polynomials (in RNS form).
According to CRT, find gadget vector
�g = (g0, g1, . . . , gL−1) ∈ ZL based on {qi}. Let
ᾱ = {(āi, b̄i)}L−1i=0 , where each
(ai, bi) ∈ RLWEn′,Q

s′ (gi × ·).
A RNS form polynomial f̄ ∈ ΠL−1

i=0 Zn′
qi

.
2: Decompose f̄ into {f̄i = f̄ mod qi, i =

0, 1, . . . , L− 1}.
3: Calculate and output

∑L−1
i=0 (f̄iāi, f̄ib̄i). (Position-wise

multiplication)

By Chinese remainder theorem (CRT), Rn,Q and ΠL−1
i=0 Rn,qi

are isomorphic, which means that for each polynomial f in
Rn,Q, it is equivalently L polynomials in Rn,qi , i = 0, . . . , L−
1, so its RNS form f̄ is L vectors in Zn

qi
, i = 0, . . . , L− 1.

For simplicity we write EKi := (Xa′[2i]+a′[2i+1] − 1) ·
EKi,0 + (Xa′[2i] − 1)EKi,1 + (Xa′[2i+1] − 1)EKi,2.

Recall in Algorithm 12, in each loop we calculate ACi+1+ =
EKi �ACi. We use overline to represent RNS form

f(x) ∈ Rn′,Q → f ∈ ΠL−1
i=0 Zn′

qi
,

which includes L vectors. The detailed algorithm is in Algo-
rithm 14.

If we write EKi = (αi, βi), and ACi = (ai, bi), then we
have

ACi+1 = EKi �ACi = αi 	 ai + βi 	 bi .
Define (	) operator in RNS form Algorithm 15.
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C. Optimize Modulo Calculations

In this section, we present our optimizations on modulo calcu-
lations, which takes around 25% time (computed from Table I)
in one LUT.

Different modulo calculations for different operations. Notice
that the modulo calculation after addition is much easier than
the modulo calculation after multiplication. The reason is that
the size of coefficients grows slowly in addition. For example,
we have two 59-bit coefficients c1 and c2, then c1 + c2 is at
most 60-bit, while c1 × c2 could be 118-bit. So we write two
modulo calculation functions: one is for addition, the other is
for multiplication.

Reduce the number of modulo calculation. We separate the
modulo calculation from the polynomial addition. In most
works, modulo calculation is followed by every polynomial
addition, which means that at any time, when we do a polynomial
addition, then we will do a modulo calculation. In fact, many
modulus calculations are not necessary. For example, in our
previous face recognition experiment, the modulus is a 59-bit
prime. However in our implementation, we use 64-bit integer
data type to store the coefficients.

From AC+ = ((Xa′[2j]+a′[2j+1] − 1)EKj,0 + (Xa′[2j] −
1)EKj,1 + (Xa′[2j+1] − 1)EKj,2)� AC, we can see that
we only need compute one modulo calculation after two
additions in the left side of �. Similarly, by the definition of
� (Algorithm 10) and 	 (Algorithm 9), we only need one
modulo calculation after 2-3 additions. As a result, the number
of modulo calculations is half of before.

D. Efficiency Analysis

In this section, we test and record the time taken of each part
in one LUT, and to determine how much time our algorithm
could save.

The parameters are same as those we used in our experiments.
Length of LWE secret key is 512. Degree of LUT function
and RLWE ciphertext is 2048. The modulus in our experiment
is a 59-bit prime, which is not very large, so the method in
Section IV-B2 does not fit for our case. Therefore, we apply
the general method (Section IV-B1) to speed up our system. We
summarize our results in the Table I. To observe the comparison
clearly, we only ran it in single thread. From the table we can
see that compared to our non-optimized LUT algorithm, our
improved LUT saves 60% time.

V. HYBRID FHE-BASED PE-NN MODEL

A. Overview

The applications of basic FHE-based PE-NN is restricted by
computationally expensive evaluations of DNNs on encrypted
data. However, DNNs are widely used to solve many practical
applications, such as facial recognition. Aiming for real-world
scenarios, we develop Hybrid FHE-based PE-NN model, which
could solve many practical problems within 1 second, such as
facial recognition, text classification and object classification.

In many multi-party cases, such as the example of interna-
tional collaboration to fight against transnational crime, if all

Fig. 4. Example: International collaboration to fight against transnational
crime (hybrid model).

Fig. 5. Hybrid FHE-based PE-NN model.

parties commit on a feature extractor, then only the extracted
vectors need to be encrypted and sent out, instead of the original
photos. The flow is shown in Fig. 4 and the details can be found in
Section I It can reduce the inference and communication latency
significantly.

In AIaaS, there are two privacy problems in this model: 1.
For AI solution providers, private networks are often trained by
private datasets, and owners do not want to share the parameters
with others. 2. On users’ side as well, the users of AI models
are not willing to disclose both the input data and the inference
results to the server. To solve problem 1, model owners only
publish open networks, and keep private networks in providers’
cloud servers which allow users to make queries. To solve
problem 2, users encrypt their data by homomorphic encryption,
then the cloud servers evaluate the private networks on encrypted
data and return encrypted inference results.

In summary, we use edge computing to drive the model in
two steps (see Fig. 5): 1. User first runs the open network in
plaintext locally; 2. The user encrypts the output from open
network and sends the ciphertext to the server; 3. The server
evaluates the private network on encrypted data and returns an
encrypted inference output. 4. Only the user who has the secret
key can decrypt and see the result.

In practical applications, such as facial recognition
(FaceNet [25]) and object classification (InceptionV3 [29]),
there are many open-source pre-trained neural network projects.
Since both the parameters and models of these projects are
public, so we can set them as the open network (usually discard
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Fig. 6. Freezing all parameters in pre-trained network.

the fully connected layers). Meanwhile, the open project is
usually not sufficient enough to solve their problems perfectly.
There are two scenarios that might happen, either users’ tasks
differ too much from the open projects’ tasks, or the open
projects are not specific enough to solve the users’ problem while
running the inference on users’ dataset. In the other words, the
performance of open projects might tie to their own dataset.
Inspired by transfer learning, AI solution provider can train
a shallow network follows open network to solve user’s task.
Since the AI solution provider who trains the private network
is usually not willing to share the parameters with users, so we
set it as the private network and remain unseen in provider’s
cloud server. By transferring some computationally expensive
ciphertext evaluations in the server side to lower-cost plaintext
computations in the user side, our model significantly reduce the
inference latency.

B. Training Method and Network Structure

Transfer learning [42] is a good technique to train the network
in our hybrid model. Transfer learning focuses on storing knowl-
edge gained while solving problem and applying it to a different
but related problem. From practical standpoints, transferring
information from previously learned tasks for the learning of
new tasks could significantly improve the sample efficiency.

We now talk about how to use transfer learning to train the
network in our hybrid model. Assuming that we want to build
a network to solve task B, and we have a dataset D2, we first
search for a open-source pre-trained network on a related task
A (trained by dataset D1). If we can find such a network, then
we can apply transfer learning to obtain our network. There are
two training methods to obtain the base of our network on task
B from the pre-trained network on task A.

Freeze all parameters in pre-trained network. The idea of
this method is that we use the pre-trained network as a feature
extractor. Then we add a simple and shallow fully connected
network (usually consists of 1 or 2 fully connected layer) and
train the shallow network on these features. In this case, since
the pre-trained network is open-source and we do not modify
its parameters, so it can be set as the open network in our
hybrid model. The shallow fully connected network is trained
by ourselves and use our own dataset, so we can set it as the
private network. The training method and network structure can
be found in Fig. 6.

Fig. 7. Fine-tuning some layers in pre-trained network.

Fig. 8. Training method instruction.

Fine-Tune some layers in pre-trained network. The method
will be used when the difference gap of A and task B are huge,
or our own datasetD2 is large, then we can consider this method.
The idea of this method is that we only freeze the parameters of
the top layers in the pre-trained network, and we add a simple and
shallow fully connected network (usually consists of 1 or 2 fully
connected layer). Then we train the lower layers in pre-trained
network together with the shallow fully connected network on
our own dataset. In this case, the frozen part of the open-source
pre-trained network can be set as the open network in our hybrid
model, since we do not modify it. But the parameters in the
lower layers are re-trained by our own dataset, so both the lower
layers and the shallow fully connected network should be set as
the private network. The training method and network structure
can be found in Fig. 7.

Summary. When making a choice on training method, there
are two criteria that we need to consider: (1) Task and data
similarity; (2) Size of our datasetD2, and follow the instruction
in Fig. 8. The training method depends on the problem and
sometimes should be decided by experiments in plaintext.

The worst case is that we cannot find a suitable open-source
pre-trained network. Then we need to train the whole network
by ourselves and determine which part can be open to public.

C. Time Complexity and Space Cost Analysis

The time complexity of one inference includes: 1) time of
evaluating the open network in plaintext; 2) time of encrypting
the extracted feature vector; 3) time of all homomorphic linear
evaluations (inner-products in each layer of private network);
4) time of all homomorphic non-linear evaluations (activations
in each layer of private network); 5) time of decrypting the
inference result.
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The time of open network evaluation depends on the com-
plexity of open network and the computation resources in user
side. For example, as shown in Section VI, in a 16-core CPU,
some open network only takes 0.01s (such as text classification
and object classification) while others may take 0.6s (speaker
verification). It will be much faster if we use a powerful GPU to
evaluate the open network. The encryption and decryption parts
are very fast, which usually take less than 0.1 second in a laptop.
Time of homomorphic linear evaluation grows linearly of the
size of weight matrices, which typically takes 0.01s to evaluate
a weight matrix with about 1,000 elements in private network.
Evaluation of non-linear activation is the slowest part among
all computations in our system. Time of one homomorphic
non-linear evaluation takes about 0.1s in single-thread model.
In our experiments, we apply multi-thread model to do homo-
morphic non-linear evaluation in a parallel way. Therefore, the
total time of all homomorphic non-linear evaluations depends
on the number of CPU cores and the number of activations.

The space cost consists of two parts: 1) the size of evaluation
keys; 2) the size of input and output ciphertexts. Size of both
parts depends on the security parameters of the FHE scheme.
Evaluation keys are large (about 32 MB in our experiments) but
the user only needs to send evaluation keys to the server once
before all inferences, instead of sending them to the server in
every inference. Input and output ciphertexts, whose size grows
linearly of the length of input/output vectors, are small (less than
2 MB in our experiments).

VI. EVALUATION RESULTS

Besides the LUT evaluation in Section IV-D and noise grow-
ing evaluation in Section III-H1, in this section, we report the
performance of our system. We evaluated all schemes on an
AMD Milan 7313P 3.0 GHz CPU which owns 16 cores. The
security level is at least 80 bits.4 Our experiments include one
of the most popular benchmark dataset, MNIST and practical
applications such as facial recognition, speaker verification, text
classification and object classification. For MNIST dataset, we
train a BP network with one hidden layer and 30 hidden nodes,
which is a commonly used network structure in the area of
inference on encrypted data [11]. The average time for one
inference is 0.14s and the accuracy loss compared to inference
in plaintext is only less than 1%.

Beside that, we also show that our system can be used to solve
practical problems, such as facial recognition and so on. Tasks
like facial recognition are more difficult and requires a deep
neural network, so we apply our hybrid FHE-based PE-NN for
inference. The average time for one facial recognition is 0.18s,
while basic FHE-based PE-NN model takes around 28 hours in
the same server environment.

We also achieve excellent results in speaker verification, text
classification and object classification, which show that our
system can be used in real-world tasks. To the best of our
knowledge, this is the first work to solve real-world problems
by applying FHE-based privacy-enhanced neural networks.

4We use BKZ simulator with core-(Q)sieving model to estimate the security
for our scheme [43]. 80 bits security means that the attacker would have to
perform 280 operations to break it.

TABLE II
INFERENCE ON ENCRYPTED DATA IN MNIST DATASET

A. Experiments on Optimized FHE Scheme

MNIST dataset. There are 60,000 training samples and 10,000
test samples in MNIST dataset for handwritten digit recognition.
Each input is a 28× 28 gray-level image, which is represented
by a vector with length 784. For each point of the image, we
set the value is 1 if the original value is > 0 and set it to be 0
otherwise.

We first train a BP network with one hidden layer and 30
hidden nodes, whose input is 784-dim vector and output has
10 classes. The training phase is in clear and the accuracy is
94.80%.

We present our results in Table II. The first line is the result
that we evaluate our FHE scheme which equips with our LUT
optimization. The second line is the result that we evaluate our
FHE scheme without the LUT optimization. The results show
that LUT optimization in Section IV improves the efficiency
for almost 3 times. Our inference accuracy on encrypted data
is only 0.8% less than the inference accuracy on plain data.
The third line shows the results in FHE-DiNN [11], which
also evaluate their system in BP network with one hidden layer
and 30 hidden nodes on MNIST dataset. Our system achieves
better results in both inference accuracy and time on encrypted
data.

B. Experiments on Hybrid PE-NN Model

We also show that our hybrid FHE-based PE-NN system
can be used to solve practical problems with help of transfer
learning. In this section, we report performance of our system
on facial recognition, speaker ver, text classification and object
classification. Compared to basic PE-NN model (i.e., the input
is encrypted at the beginning and the whole DNN is evaluated at
the server homomorphically), our hybrid PE-NN model achieves
the state-of-the-art inference accuracy efficiently.

1) Facial Recognition: In this experiment, we build a hybrid
network to do facial recognition in a group of people. The
network will identify the identity of the input photo. We first
establish our own training and test dataset, which contains
photos of 30 people. Note that our test dataset is different from
the training dataset.

We use a pre-trained FaceNet (trained by VGGFace2) as the
open network and train a private fully connected network on our
own dataset by freezing all parameters in pre-trained network.
Then we implement this system by our optimized FHE scheme
and test it. The structure of the recognition network is shown in
Fig. 9.
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Fig. 9. Structure of face recognition network.

TABLE III
INFERENCE ON ENCRYPTED DATA IN FACIAL RECOGNITION

We present our evaluation results in Table III. In this table,
we compare 3 neural network models for face recognition:
1. Our hybrid neural network, where the open network runs
in plaintext and the private network runs in ciphertext; 2.
Traditional neural network, which is not privacy-enhanced and
the whole network runs in plaintext; 3. Basic privacy-enhanced
neural network, where the whole network is privacy-enhanced
and runs in ciphertext.

We can observe that traditional neural network is very fast, but
it does not consider the privacy problem. Basic privacy-enhanced
neural network is does it well at privacy protection, but it is too
slow to be applied to real-world. Our hybrid neural network only
needs less than one second per recognition, while basic privacy-
enhanced neural network needs 28 hours in the same server
environment. Therefore, our hybrid neural network achieved
good balance between privacy protection and efficiency, and
can be used in real applications.

2) Speaker Verification: Our scheme can be applied to pro-
cess voice files as well. This can be applied when we do not want
the neural network acquire the details of speech record while
at the same time would require the running of neural network
through the data to identify the identity of speaker. Our hybrid
privacy-enhanced system can verify the owner of a speech record
without knowing the speech content or the raw audio file. The
dataset we used is VoxCeleb1, whose test set consists of 4,874
utterances from totally 40 speakers. The test set contain 37,611
trial pairs, and the task is to verify whether the trial pair of
utterances are from the same speaker. We use MFA-Conformer
model5 to do the feature extraction. After obtaining the embed-
ding feature vector of the input audio, the vector is encrypted
and send to the private network. We homomorphically evaluate
the verification with pre-stored embedding vector in the private
network. We present our results in Table IV. Equal error rate
(EER) is used as the performance measure. We can see that the
when homomorphic encryption is enabled in our hybrid PE-NN,
the accuracy loss is very small, less than 0.1%. The time cost is
satisfactory.

5Github repository: https://github.com/ductuantruong/mfa_conformer_sv.

TABLE IV
INFERENCE ON ENCRYPTED DATA IN SPEAKER VERIFICATION

TABLE V
INFERENCE ON ENCRYPTED DATA IN TEXT CLASSIFICATION

TABLE VI
INFERENCE ON ENCRYPTED DATA IN OBJECT CLASSIFICATION

3) Text Classification: Text files can also be processed by our
hybrid PE-NN scheme. Nowadays, we receive lots of emails
and SMS. Many of them are advertisement or spam mail. It
takes us lots of time to check such messages everyday. Text
classification is a process of providing labels to the set of texts
or words and those labels will tell us about the sentiment of
the set of words. We can build a hybrid privacy-enhanced text
classification system, which can add labels to text files without
knowing the plaintext.

For this application, we tested our scheme on Movie Re-
view dataset, which consists of positive and negative sen-
tences/snippets. We use TextCNN [28] as the open network.

We present our results in Table V. Our scheme takes 0.016s per
classification and does not lose the original accuracy compared
to test in traditional neural network. Basic PE-NN takes around
6 minutes per inference, which is much slower. Notice that 84%
accuracy is acceptable since the classifications are subjective
and even human cannot achieve very high accuracy, e.g., [44].

4) Object Classification: Finally we show our system works
well in object classification. For this application, we tested
our scheme on Cat and Dog dataset(A famous competition on
Kaggle.com). We use InceptionV3 [29] as the open network to
extract the features. Results are in Table VI. Our scheme takes

https://github.com/ductuantruong/mfa_conformer_sv
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0.019s per classification and achieved 99% accuracy. Training
the 1-layer fully-connected network by transfer learning im-
prove the inference accuracy significantly. When we use Incep-
tionV3 directly, the inference accuracy is only 85%. After train-
ing by transfer learning, the inference accuracy becomes 99%.

VII. CONCLUSION AND FUTURE WORKS

This paper presented a practical approach for constructing
privacy-enhanced neural networks by designing an efficient
implementation of fully homomorphic encryption. As part of
the efforts towards building a trusted digital economy, we aim
to promote the adoption of AIaaS, which has emerged as an
important trend for supporting the growth of the digital economy,
by enabling AI models to process encrypted data.

In the global trend of digitalization, digital service providers
make use of their vast amount of customer data to train AI
models (such as image recognitions, financial modelling and
pandemic modelling etc) and offer them as a service on the
cloud. While there are convincing advantages for using such
third-party models, the fact that model users are required to
upload their data to the cloud is bound to raise serious privacy
concerns, especially in the face of increasingly stringent privacy
regulations and legislations [1].

With the proposed approach, an existing neural network can
be converted to process FHE-encrypted data and produce en-
crypted output, which are only accessible by the model users,
and more importantly, within an operationally acceptable time
(e.g., within 1 s for facial recognition in typical border control
systems). In our work, we apply our FHE technique to existing
proven neural networks instead of building proprietary neural
networks. Allowing privacy issues to be addressed separately
from the accuracy of the AI models.

Experimental results show that in many practical tasks such
as facial recognition, text classification and so on, we obtained
the state-of-the-art inference accuracy in less than one second
on a 16 cores CPU. In conclusion, our experiments show that in
various practical tasks, our scheme achieved the state-of-the-art
inference accuracy efficiently. It shows the feasibility of apply-
ing FHE-based PE-NN in real-world AI services to protect users’
data.

As a future work, we will further improve our proposed tech-
niques, and apply them in the area of privacy-enhancing machine
learning to train AI models using encrypted data efficiently.
Some improvements in implementation aspects can help to fur-
ther reduce the time cost, such as an efficient implementation of
homomorphic linear evaluation in multi-thread model. Packing
techniques in homomorphic encryption are widely discussed
recently. We will consider packing several data in one ciphertext
to further increase the efficiency in inference and especially in
training.

ACKNOWLEDGMENT

Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore
and Infocomm Media Development Authority.

REFERENCES

[1] K.-L. Tan, C.-H. Chi, and K.-Y. Lam, “Analysis of digital sovereignty and
identity: From digitization to digitalization,” 2022, arXiv:2202.10069.

[2] K.-Y. Lam, S. Mitra, F. Gondesen, and X. Yi, “Ant-centric IoT security ref-
erence architecture–security-by-design for satellite-enabled smart cities,”
IEEE Internet Things J., vol. 9, no. 8, pp. 5895–5908, Apr. 2022.

[3] J. Fan et al., “Understanding security in smart city domains from
the ant-centric perspective,” IEEE Internet Things J., vol. 10, no. 13,
pp. 11199–11223, Jul. 2023.

[4] C. Dwork, “Differential privacy: A survey of results,” in Proc. Int. Conf.
Theory Appl. Models Comput., Springer, 2008, pp. 1–19.

[5] M. Yang, I. Tjuawinata, and K.-Y. Lam, “K-means clustering with local
-privacy for privacy-preserving data analysis,” IEEE Trans. Inf. Forensics
Secur., vol. 17, pp. 2524–2537, 2022.

[6] Z. Liu, J. Guo, W. Yang, J. Fan, K.-Y. Lam, and J. Zhao, “Privacy-
preserving aggregation in federated learning: A survey,” IEEE Trans. Big
Data, to be published, doi: 10.1109/TBDATA.2022.3190835.

[7] H. Yang et al., “Lead federated neuromorphic learning for wireless edge
artificial intelligence,” Nature Commun., vol. 13, no. 1, 2022, Art. no. 4269.

[8] Z. Liu, J. Guo, K.-Y. Lam, and J. Zhao, “Efficient dropout-resilient
aggregation for privacy-preserving machine learning,” IEEE Trans. Inf.
Forensics Secur., vol. 18, pp. 1839–1854, 2022.

[9] H. Yang, J. Zhao, Z. Xiong, K.-Y. Lam, S. Sun, and L. Xiao, “Privacy-
preserving federated learning for UAV-enabled networks: Learning-based
joint scheduling and resource management,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 10, pp. 3144–3159, Oct. 2021.

[10] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput., 2009, pp. 169–178.

[11] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic
evaluation of deep discretized neural networks,” in Proc. Annu. Int. Cryp-
tol. Conf., Springer, 2018, pp. 483–512.

[12] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
cryptonets: Leveraging sparsity for real-world encrypted inference,”
2018, arXiv:1811.09953.

[13] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J.
Wernsing, “CryptoNets: Applying neural networks to encrypted data with
high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn., PMLR,
2016, pp. 201–210.

[14] Q. Lou and L. Jiang, “SHE: A fast and accurate deep neural network for
encrypted data,” in Proc. Adv. Neural Inf. Process. Syst., 2019, Art. no. 900.

[15] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency privacy
preserving inference,” in Proc. Int. Conf. Mach. Learn., PMLR, 2019,
pp. 812–821.

[16] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi:
A cryptographic inference service for neural networks,” in Proc. 29th
USENIX Secur. Symp., 2020, pp. 2505–2522.

[17] Y. LeCun, “The MNIST database of handwritten digits,” 1998. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[18] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[19] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” ACM Trans. Comput. Theory,
vol. 6, no. 3, pp. 1–36, 2014.

[20] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur., Springer, 2017, pp. 409–437.

[21] S. Halevi, Y. Polyakov, and V. Shoup, “An improved RNS variant of the
BFV homomorphic encryption scheme,” in Proc. Cryptographers’ Track
RSA Conf., San Francisco, CA, USA, Springer, 2019, pp. 83–105.

[22] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast
fully homomorphic encryption over the torus,” J. Cryptol., vol. 33, no. 1,
pp. 34–91, 2020.

[23] L. Ducas and D. Micciancio, “FHEW: Bootstrapping homomorphic en-
cryption in less than a second,” in Proc. Annu. Int. Conf. Theory Appl.
Cryptographic Techn., Springer, 2015, pp. 617–640.

[24] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “nGraph-HE: A
graph compiler for deep learning on homomorphically encrypted data,” in
Proc. 16th ACM Int. Conf. Comput. Front., 2019, pp. 3–13.

[25] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embed-
ding for face recognition and clustering,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2015, pp. 815–823.

[26] D. Micciancio and Y. Polyakov, “Bootstrapping in fhew-like cryptosys-
tems,” in Proc. 9th Workshop Encrypted Comput. Appl. Homomorphic
Cryptogr., 2021, pp. 17–28.

https://dx.doi.org/10.1109/TBDATA.2022.3190835
http://yann.lecun.com/exdb/mnist/


4468 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

[27] W.-J. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu, “PEGASUS: Bridging
polynomial and non-polynomial evaluations in homomorphic encryption,”
in Proc. IEEE Symp. Secur. Privacy, 2021, pp. 1057–1073.

[28] B. Guo, C. Zhang, J. Liu, and X. Ma, “Improving text classification
with weighted word embeddings via a multi-channel TextCNN model,”
Neurocomputing, vol. 363, pp. 366–374, 2019.

[29] X. Xia, C. Xu, and B. Nan, “Inception-V3 for flower classification,” in
Proc. 2nd Int. Conf. Image Vis. Comput., 2017, pp. 783–787.

[30] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, pp. 1–40, 2009.

[31] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning
with errors over rings,” in Proc. Annu. Int. Conf. Theory Appl. Crypto-
graphic Techn., Springer, 2010, pp. 1–23.

[32] A. Costache and N. P. Smart, “Which ring based somewhat homomorphic
encryption scheme is best?,” in Proc. Cryptographers’ Track RSA Conf.,
Springer, 2016, pp. 325–340.

[33] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryp-
tion from (standard) LWE,” SIAM J. Comput., vol. 43, no. 2, pp. 831–871,
2014.

[34] T. ElGamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4, pp. 469–472,
Jul. 1985.

[35] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptographic Techn.,
Springer, 1999, pp. 223–238.

[36] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Math. Comput., vol. 19, no. 90, pp. 297–301,
1965.

[37] R. Agarwal and C. Burrus, “Fast convolution using fermat number trans-
forms with applications to digital filtering,” IEEE Trans. Acoust. Speech
Signal Process., vol. 22, no. 2, pp. 87–97, Apr. 1974.

[38] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[39] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.

[40] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé, “Classical
hardness of learning with errors,” in Proc. 45th Annu. ACM Symp. Theory
Comput., 2013, pp. 575–584.

[41] D. Micciancio, “On the hardness of learning with errors with binary
secrets,” Theory Comput., vol. 14, no. 1, pp. 1–17, 2018.

[42] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[43] X. Lu et al., “LAC: Practical ring-LWE based public-key encryption with
byte-level modulus,” Cryptol. ePrint Arch., 2018.

[44] A. K. Sharma, S. Chaurasia, and D. K. Srivastava, “Sentimental short
sentences classification by using CNN deep learning model with fine tuned
Word2Vec,” Procedia Comput. Sci., vol. 167, pp. 1139–1147, 2020.

Kwok-Yan Lam (Senior Member, IEEE) received
the BSc degree (1st Class Hons.) from the University
of London, in 1987, and the PhD degree from the
University of Cambridge, in 1990. He is the asso-
ciate vice president (Strategy and Partnerships) in the
President’s Office, and professor with the School of
Computer Science and Engineering, Nanyang Tech-
nological University, Singapore. He is currently also
the executive director of the National Centre for Re-
search in Digital Trust, and director of the Strategic
Centre for Research in Privacy-Preserving Technolo-

gies and Systems (SCRiPTS). From 2020, he is on part-time secondment to the
INTERPOL as a consultant with Cyber and New Technology Innovation. Prior
to joining NTU, he has been a professor of the Tsinghua University, PR China
(2002–2010) and a faculty member of the National University of Singapore
and the University of London since 1990. He was a visiting scientist with the
Isaac Newton Institute, Cambridge University, and a visiting professor with the
European Institute for Systems Security. In 1998, he received the Singapore
Foundation Award from the Japanese Chamber of Commerce and Industry in
recognition of his research and development achievement in information security
in Singapore. He is the recipient of the Singapore Cybersecurity Hall of Fame
Award, in 2022. His research interests include distributed systems, intelligent
systems, IoT security, distributed protocols for blockchain, homeland security
and cybersecurity.

Xianhui Lu received the PhD degree in information
security from Southwest Jiaotong University, in 2009.
He is a professor with the Institute of Information En-
gineering, Chinese Academy of Sciences. His current
research focuses on homomorphic encryption, post-
quantum cryptography and physical layer cryptogra-
phy. He is one of the editors of the post-quantum study
project of ISO/IEC SC27 WG2. He is the Principal
author of the algorithm LAC, which is currently one of
the 26 s round candidates of the NIST Post-Quantum
Cryptography Competition.

Linru Zhang received the BSc degree from Sun
Yat-Sen University, in 2016, and the PhD degree
in computer science from the University of Hong
Kong, in 2021. She is currently a research fellow with
Nanyang Technological University, Singapore. Her
research interest includes cryptography and privacy-
preserving machine learning.

Xiangning Wang received the BSc degree from
Peking University, in 2016, and the PhD degree
in computer science from the University of Hong
Kong, in 2021. He is currently a research fellow
with Nanyang Technological University, Singapore.
His research interest includes privacy-preserving ma-
chine learning and differential privacy.

Huaxiong Wang received the PhD degree in mathe-
matics from the University of Haifa, Israel, in 1996,
and the PhD degree in computer science from the
University of Wollongong, Australia, in 2001. He
has been with Nanyang Technological University in
Singapore since 2006, where he is a professor with
the Division of Mathematical Sciences. Currently he
is also the co-director of National Centre for Research
in Digital Trust and the deputy director of Strategic
Centre for Research in Privacy-Preserving Technolo-
gies and Systems with NTU. Prior to NTU, he held

faculty positions with Macquarie University and University of Wollongong in
Australia, and visiting positions with ENS de Lyon in France, City University
of Hong Kong, National University of Singapore and Kobe University in Japan.
His research interest is in cryptography and cybersecurity. He was the program
co-chair of Asiacrypt 2020 and 2021.

Si Qi Goh received the BE degree in computer science
from Monash University, Malaysia with first class
honors, in 2020. She is currently working toward the
PhD degree with the School of Computer Science
and Engineering, Nanyang Technological University,
Singapore. Her research interest includes privacy-
preserving machine learning, explainable artificial
intelligence, and digital trust.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


