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Abstract—Network covert channels are applied for the secret
exfiltration of confidential data, the stealthy operation of malware,
and legitimate purposes, such as censorship circumvention. In
recent decades, some major detection methods for network covert
channels have been developed. In this article, we investigate two
highly cited detection methods for covert timing channels, namely
ε-similarity and compressibility score from Cabuk et al. (jointly
cited by 949 articles and applied by several researchers). We ad-
ditionally analyze two recent ML-based detection methods: GAS
(2022) and SnapCatch (2021). While all these detection methods
must be considered valuable for the analysis of typical covert timing
channels, we show that these methods are not reliable when a
covert channel’s behavior is slightly modified. In particular, we
demonstrate that when confronted with a simple covert channel
that we call ε-κlibur, all detection methods can be circumvented or
their performance can be significantly reduced although the covert
channel still provides a high bitrate. In comparison to existing
timing channels that circumvent these methods, ε-κlibur is much
simpler and eliminates the need of altering previously recorded
traffic. Moreover, we propose an enhanced ε-similarity that can
detect the classical covert timing channel as well as ε-κlibur.

Index Terms—Anomaly detection, covert channel, GAS,
information hiding, network security, SnapCatch, steganography.

I. INTRODUCTION

COVERT channels are undesired and stealthy communi-
cation channels that aid multiple cybercriminal activities.

For instance, botnets can use them to hide their command and
control channels and spyware can employ them to secretly exfil-
trate stolen information like credentials or database content [1],
[2], [3]. Moreover, covert channels can be part of DDoS attacks
[4]. Alternatively, covert channels can also be used for legitimate
purposes. For example, Wustrow et al. show an approach that
uses a covert channel to circumvent state-sponsored censorship
by enabling an “end-to-middle proxy”[5].

One specific type of covert channel is based on the inter-
arrival time (IAT, sometimes also inter-packet delay, IPD). The
IAT is the elapsed time between two succeeding network packets
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and each IAT represents a secret symbol. For instance, an IAT of
100 ms might indicate a ‘0’ bit while an IAT of 200 ms might
indicate a ‘1’ bit. Several improvements of the plain IAT channel
have been proposed, cf. [6], [7], [8], [9].

For such IAT covert channels, multiple heuristics exist.
Among these are two highly cited ones by Cabuk et al. that were
published between 2004 and 2009 [10], [11], [12]. Research
work has improved over these algorithms during the succeeding
decade, leading to mostly ML-based detection methods, such
as the recent GAS [13] (RNN-based) and SnapCatch (based
on image processing and ML) [14] methods that reach almost
perfect detection quality.

Often, publications that present new covert channels are ac-
companied by detection approaches and algorithms. In several
cases, such detection approaches can perform well in test sce-
narios that were evaluated by the authors. However, it is usually
not considered that there might be other possibilities to impair
the effectiveness of these detection algorithms, i.e., without even
decreasing a covert channel’s bandwidth. We address this topic
as follows:

1) We demonstrate that both, the ε-similarity and the com-
pressibility score, provide unreliable results when con-
fronted with a slight modification of the standard covert
timing channel, which we call ε-κlibur. In comparison to
previous attempts such as JitterBug, MB-CTC and TRCC,
ε-κlibur is much simpler and eliminates the requirement
of altering pre-defined (legitimate) network traffic or a
complex traffic generation framework.

2) We show that ε-κlibur can moreover degrade the per-
formance of two novel detection approaches GAS and
SnapCatch.

3) We propose an enhanced ε-similarity to replace the origi-
nal heuristic. Our enhanced ε-similarity has shown that it
can detect the standard covert timing channel as well as
ε-κlibur.

Please note that it is not our major goal to provide a
covert channel that circumvents all known covert timing
channel detection methods but to enhance the understand-
ing and limitations of the ε-similarity and the compressibility
score.

The remainder of our paper is structured as follows. Section II
presents fundamentals and Section III covers related work. Our
ε-κlibur covert channel is presented in Section IV. We evaluate
ε-similarity and compressibility score against ε-κlibur in Sec-
tion V. Afterwards, we suggest an enhanced detection heuristic
and evaluate it against ε-κlibur and TRCC in Section VI, we
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further evaluate ε-κlibur against the ML-based detectors GAS
and SnapCatch in Section VII. Section VIII concludes.

II. FUNDAMENTALS

In this section, we first cover the general concept of the
related covert timing channels (Section II.A), followed by an
explanation of the analyzed detection methods (Section II.B).

A. Timing Covert Channels

The considered timing covert channel of Cabuk et al. [10]
modulates the IATs between consecutive network packets of
a connection by intentionally delaying packets. The channel
is a form of the so-called inter-packet times (or: inter-arrival
times) hiding pattern [15] in network steganography, or – more
generally – the element positioning pattern in steganography
[16], as packets are “positioned” in time.

To transmit data, the covert sender and covert receiver first
agree on two or more IATs corresponding to two or more secret
symbols. The covert sender then encodes the message into a list
of symbols. Each of these symbols is transmitted by waiting
for a corresponding time after a packet has been sent, and then
sending out the next network packet to reach a certain IAT. This
is repeated until all symbols have been transmitted. In the setup
of Cabuk et al. the covert channel sends data every τ and 2τ
units of time, e.g., every 5 ms and 10 ms, to encode two secret
bits. Thus, the average IAT is 3τ/2.

B. Covert Timing Channel Detection Methods

In the original two papers published at ACM CCS in 2004
[10], ACM TISSEC/TOPS in 2009 [12] and a related dissertation
[11], Cabuk et al. introduced and evaluated the two detection
heuristics for IAT-based covert channels that we selected for our
investigation. These three publications received a widespread
influence in the field, as shown by their derivatives (see Sec-
tions III.A and III.B) and their citations: according to Google
Scholar, the CCS’04 paper received 619 citations, the TISSEC
paper 184 citations, and the dissertation 146 citations, summing
up to 949 citations as of late January 2023.

These detection methods try to find patterns or structure in the
IATs of the network packets. Regular network traffic has mostly
random IATs that are influenced by the network hardware, used
software, protocols, topology, and load. Traffic containing a
covert channel will show a clear structure due to the artificial
delays. Fig. 1 shows a scatter plot of the IATs of two network
recordings. We can see that the IATs for the regular traffic form
a single larger cluster, while the covert channel traffic forms two
distinct clusters.

1) ε-Similarity: The first detection method by Cabuk et al.
that we investigated is the ε-similarity. The goal of this heuristic
is to quantify the “similarity” of the IATs in a network recording.
The idea behind this is that regular traffic will have random
timings, which are not too similar to each other, while covert
channel traffic will have groups of rather similar IATs. By
comparing the plots of Fig. 1, these differences in structure

Fig. 1. Exemplary comparison of IATs.

Fig. 2. Sorted IATs of the two-symbol covert channel and legitimate traffic.

are clearly visible. The ε-similarity is a numerical score that
is calculated as follows:

1) Calculate all IATs for a given flow with 2,000 packets
(called window size).

2) Sort the IATs (illustrated in Fig. 2).
3) Calculate the relative differences of two consecutive IATs:

λi =
|ti+1 − ti|

ti

4) Calculate the percentage of λ values that are below the
threshold ε, which is called the similarity score.

The similarity score is then used as a threshold to differentiate
between legitimate and covert channel traffic.

2) Compressibility: The second detection approach intro-
duced by Cabuk et al. is the compressibility score. The goal is
again to quantify the structure of the IATs. This heuristic uses the
help of a compression algorithm to approximate the Kolmogorov
complexity [11], [17] of an IAT string-representation. The main
functionality of the compression algorithm is to find patterns and
structure in the data that can be exploited to efficiently compress
the data. Highly structured data, like natural language texts or
HTML files, can often be compressed with a high rate, while
pseudo-random data, like encrypted data, can be compressed
only slightly. The idea behind the compressibility heuristic is that
the string representation of legitimate IATs will be more random
and therefore less compressible, while covert channel traffic will
have more structure and therefore be better compressible. By
comparing the compression ratio of the string-representations
of the IATs, we obtain a numerical measure of their “structure”.
Consequently, legitimate traffic should have lower compress-
ibility scores than covert channel traffic.
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Cabuk et al. define the compressibility score as the com-
pression rate that is calculated in the last step of the following
algorithm:

1) Calculate all IATs for a given flow (window size: 2,000
packets).

2) Drop all values over 1.0 sec.
3) For each remaining IAT:

1) Round to two significant digits.
2) Convert the leading zeros after the decimal to a letter

and concatenate it with the rounded value to a string
si.
As an example, 0.00346 sec would be transformed to
B35 and 0.0346 sec to A35.

4) Concatenate all strings si to S = s1||s2|| · · · ||sn, with ||
being the string concatenation.

5) Select a compressor � (e.g., gzip) and calculate the com-
pressed representation of S: C = �(S).

6) Calculate the compressibility score κ(S) as follows:

κ(S) =
|S|
|C|

with |x| representing the length of string x.

III. RELATED WORK

In this section, we discuss related improvements of the stan-
dard version of the covert timing channel and how ε-κlibur
is different from these approaches (Section III.A). Finally, we
cover related detection heuristics (Section III.B).

A. Improvements to the Timing Covert Channel

Cabuk et al. further proposed ideas how to circumvent their
detection methods by modifying the covert channel. But their
approaches reduce the bandwidth of the covert channel by either
mixing in legitimate traffic into covert transmissions en bloc or
by significantly increasing the delays that are used for the encod-
ing schema. Further, they proposed a more sophisticated timing
channel called a time-replay covert channel (TRCC) in [11].
The TRCC functions similar to the basic IAT covert channel, but
draws its delays from two (or more) sets of pre-recorded IATs
of legitimate traffic. Each set corresponds to a secret symbol.
However, Cabuk et al. did not perform an evaluation of the
ε-similarity or the compressibility score with TRCC. Moreover,
TRCC requires pre-recorded traffic, which ε-κlibur does not.

Related Timing Covert Channels: Groza et al. presented Jitter-
Bug [6], an optimized timing channel that takes legitimate Telnet
traffic and adds random delays to the traffic so that it renders
the traffic undetectable by multiple covert channel detection
metrics. The covert channel was evaluated using keyboard input,
which limits the scenario of JitterBug; the detectability using the
ε-similarity and compressibility score were not evaluated.

Gianvecchio et al. introduced a model-based covert timing
channel (MB-CTC) [7], which aims at evading detection by
modeling and mimicking statistical properties of legitimate traf-
fic. Therefore, the authors developed a framework that uses an
appropriate distribution function in conjunction with a traffic
library to build a covert channel. In comparison, we apply a much

more simplified approach to create our channel and show that the
two popular detection methods ε-similarity and compressibility
score can be circumvented much easier than expected.

Zander et al. developed another sophisticated covert timing
channel [18], which has shown low detectability in comparison
to previous attempts. The detectability was evaluated using
a Kolmogorov-Smirnov (KS) test and the C4.5 decision tree
classifier.

Walls et al. proposed an improved covert timing channel called
Liquid [8], which is based on JitterBug. Their goal was to fur-
ther increase the covert channel’s stealthiness when faced with
entropy-based detection methods. The authors achieve this by
splitting the channel in “transmitting” and “shaping” delays. The
shaping delays carry no information but are used to manipulate
the statistics of the transmission to more closely resemble the
statistics of pre-recorded, legitimate traffic.

In 2015, Archibald and Ghosal presented a covert timing
channel that is tailored to fit the behavior of Skype traffic [9].
To this end, and similarly to our approach, the authors applied
multiple inter-packet delays. In comparison, our approach is
generic (not tailored for a specific application, such as Skype)
and targets different countermeasures, namely the ε-similarity
or compressibility score.

It must be noted, that covert timing channels also appear in
other forms and for other purposes. For instance, Lamshöft et
al. recently utilized the timing of port knocking messages to
influence syslog messages, so that they store secret infor-
mation [19]. Moreover, the timing (as well as other metadata)
of network traffic is actively manipulated for network flow
watermarking [20], [21]. Further, there are timing-based covert
channel patterns in addition to the inter-packet times or element
positioning patterns [15], [16] analyzed in this paper, such as
covert channels exploiting the timing of retransmissions [22],
[23], covert channels influencing the throughput of a connection
over time [24], and covert timing channels that drop selected
network packets [25].

B. Improvements and Derivatives of the Detection Heuristics

Cabuk et al. proposed improvements of the compressibility
score called compressibility-walk and CosR-walk to increase the
detection performance when faced with mixed (covert and legit-
imate) traffic, which function as follows: The compressibility-
walk uses a sliding window approach to evaluate a long flow
of mixed covert channel traffic. For each window position,
the compressibility score (κ) is calculated and then plotted.
Windows which contain (only) covert channel traffic will be
visible as peaks in this plot and could then be inspected more
thoroughly. The CosR-walk goes one step further and investi-
gates the relations between consecutive windows [11]. The CosR
score is again a similarity score, and the CosR-walk combines
this score with a sliding window approach to compare two
consecutive windows. With this it is possible to determine if
two legitimate windows or one legitimate and a covert window
follow each other. [11], [26]. Since our focus was detection
based on a single window, and we only used pure covert channel
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recordings instead of mixed recordings, we did not investigate
these methods further as to minimize false-positives.

Related Detection Methods: In 2014, JitterBug, the MB-CTC
and the TRCC were evaluated by Archibald et al. [27] using KS
test, Welch’s t-test, Entropy evaluation, regularity score and a
shape test in conjunction with the WAND NZIX dataset [28]
from July 2000, which cannot be considered as a valid example
of 2022’s Internet traffic characteristics anymore.

Han et al. recently analyzed the detectability of several covert
timing channel variants using SVM, kNN, Naive Bayes and
Logistic Regression [29], where the highest detection rates
where achieved with SVM and kNN. For the Receiver Operator
Characteristic (ROC), the authors reached AUC (Area Under
Curve) values of 0.9727 (kNN) and 0.9452 (SVM), respectively.

Li et al. proposed another machine learning-based pipeline
called Generic and Sensitive (GAS) anomaly detection in [13],
which employs a recurrent neural network (RNN), in particular
an LSTM. GAS has shown good performance on timing channel
detection. They compared GAS with several other detection
methods, including statistical methods (KS and regularity),
entropy-based methods, and SVM.

Al-Eidi et al. proposed a new detection method called Snap-
Catch [14]. For this approach, network traffic is first transformed
into 16x16 pixel images to afterwards extract several features
rooted in image processing, like mean grey value, center of
mass and standard deviation of grey values. These features are
then used to train several machine learning models. The authors
evaluated their feature set against other approaches such as CCE,
regularity and entropy. In their tests, SnapCatch outperforms the
other evaluated methods, resulting in almost perfect accuracy
when detecting simple covert timing channels.

Finally, Wu et al. tested the detectability of different covert
timing channels using ε-similarity, KS test, Entropy and Cor-
rected Conditional Entropy tests as well as regularity metric in
[30]. This is the only current work that evaluates the ε-similarity,
and the authors reported that two of the tested channels where
detectable with an accuracy of 98% and 100%, while JitterBug
and TRCC were not detectable. In comparison to Wu et al. we
show that a much simpler covert timing channel can already
significantly decrease the performance of the ε-similarity while
our channel can moreover decrease the detectability of the
compressibility score, thus, showing key weaknesses in both
detection methods.

We conclude that none of the previous works analyzed the
compressibility score against sophisticated covert timing chan-
nels and only one work analyzed the ε-similarity for such a
scenario. Given the high number of citations, we decided to
investigate the ε-similarity and the compressibility score in detail
and show that they cannot handle ε-κlibur, which – in contrast to
previous works – does not rely on the modulation of pre-recorded
or complex traffic generation frameworks while providing a high
bitrate.

Derived Heuristics for Alternative Covert Channels: More-
over, the two detection approaches have been adapted by other
researchers in order to work with different covert channels.
Zillien et al. modified both detection approaches in [23] to
work with a covert channel that uses the timing of artificial

TCP retransmissions to transmit hidden data, similarly to the
IAT covert channel. To adapt the detection methods to this
new covert channel, the authors involved the distance between
succeeding TCP sequence numbers. This distance measure is
then used as the input for the ε-similarity and the compressibility
score. The authors found that the ε-similarity is a promising
approach to detect the retransmission covert channel, while the
compressibility score alone did not perform well enough but
could be used as a feature for a more sophisticated detection
approach.

Fu et al. created covert channels in IaaS environments and ap-
plied the ε-similarity for their detection and reported statisfying
results [31].

Wendzel et al. modified the compressibility score, the ε-
similarity as well as the so-called regularity metric to detect
covert channels that modulate the sizes of network packets to
transfer a secret message [32].

Accuracy, precision, and recall relied on the covert channel’s
configuration, which implies that these heuristics are suitable
to detect highly specific covert channels but remain fragile to
disturbances. Further, Mileva et al. used a method based on
the compressibility score to detect two covert channels using
the MQTT 5.0 IoT protocol — the results have shown that for
one of the covert channels, the applied coding influenced the
detectability significantly while the other covert channel was
well-detectable with different configurations of their testbed
[33].

As can be seen, ε-similarity and compressibility score are
actively used to detect covert channels of different types but
tests on their functioning on sophisticated timing channels are
lacking, rendering these popular methods not well-understood.

IV. DESIGN OF ε-κLIBUR

The aim for our research is to find ways to manipulate the
IATs of the covert channels in such a way that we minimize
the detectability using ε-similarity and compressibility score.
We further change the statistically observable behavior of the
cover channel without compromising the bandwidth or the re-
liability of the transmission. This means that we try to create a
high-bandwidth covert channel that both methods cannot detect.
As both detection methods try to find some sort of regularity
or pattern in the IATs of network traffic to detect the covert
channels, we tried to break this regularity by changing the
timing behavior of the covert channel. First, to have a numerical
measure on how much our changes would impact the reliability
of the covert channels, we developed an impact score that would
tell us how many symbols would be unintentionally changed by
modifying the delay too much.

For this impact score (Algorithm 1), we compare the original
delays di that the covert channel would normally use, and the
modified delaysd′i. We determine if we would accidentally move
a delay from one side of the decoding threshold t to the other
(i.e., whether the symbol interpretation would be flipped).

With this measure, we can quantify how strongly we influence
the covert channel’s decoding quality. Ideally, the impact score
I should remain at 0 to prevent introducing any decoding errors,
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Algorithm 1: Impact Score.

Algorithm 2: Fuzziness Injection.

but depending on the networking environment and whether an
error-correcting code is being used, smaller values of I might
still be tolerable. In our proof-of-concept implementation, we
did not apply an error-correcting code.

A. Injection of Fuzziness

Our approach to break up the temporal structure of the covert
channels is the systematic injection of fuzziness. The basic idea
of this approach is to make the timings of the covert channel less
precise and therefore obscure the structure.

Normally, the covert sender would choose one of the delays,
corresponding to the hidden symbol that is to be sent next,
and then delay the next network packet by that amount. This
results in the covert sender using the same delays over and over
again. If the covert channel uses only two symbols, this effect
is maximized, as there are only two possible delays. With more
than two symbols, this effect is lessened to some extent, as more
different delays are used while transmitting the hidden data.
But even with several different symbols, a significant degree of
structure will still remain.

With our new approach, the covert sender will no longer just
choose a delay from a fixed list, instead the sender applies a post-
processing function to the delay before using it in the sending
process. The corresponding function is shown in Algorithm 2.

Fig. 3. Sorted IATs of the original covert channel (τ = 5 ms), ε-κlibur and
legitimate traffic.

Fig. 3 shows the sorted IATs of regular, covert and ε-κlibur
traffic. As visible, the curve for ε-κlibur has two distinct parts,
one defined by the normal distribution, the other one by the step-
wise function. We chose the normal distribution as it resembles
the curvature of the legitimate traffic, only scaled down. For
the second half of the graph, we chose a stepwise function. If
we were to use another normal distribution with an offset (to
ensure the separation between two symbols), we would have
significantly lower λ values, as the delays are generally higher
while their differences stay on the same level as before. To
counter the offset, we would have to increase the scale of the
distribution to unfeasibly high levels. Therefore, we chose the
stepwise function. Each of these sharp steps result in a large
spike in the λ values, compared to a smooth curve with the
same upper and lower bounds, which will only produce low λ

values. This choice of functions allowed us to push down the
ε-similarity-score further.

The scale of threshold/7 for the normal distribution and the
upper limit of 2.4τ in the else branch have shown good results
for both detection methods in our empirical evaluation. Our goal
was to optimize both detection values simultaneously. We there-
fore had to find a balance that would reduce the effectiveness of
both algorithms at once without accidentally benefitting one or
the other.

The threshold choice of (3τ)/2 stems from the configuration
of the covert channel. Since the covert channel uses a timing
configuration of τ and 2τ , (3τ)/2 gives us a threshold in the
middle of the two values.1

Algorithm 2 accomplishes multiple things:
1) Different IATs are spread apart from each other.
2) IATs closer to 0 and with more zeros after the decimal

point are introduced.
3) The “slope” of the sorted IATs becomes more similar to

that of legitimate traffic.
4) Delays that were below the decoding threshold will still

be below the threshold, delays above will still be above.
In all our tests, we reached an impact score of I = 0, so
we did not introduce any decoding errors.

1In our evaluation (Section V), we experiment with this threshold using
different τ values.
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This algorithm can also be easily adapted to covert channels
with more than two symbols by adding more stages to the if-
else block.

Covert Channel Bitrate: Depending on the τ values, ε-κlibur
provides a different bitrate. Our fastest configuration (τ =5 ms)
achieved ≈185 symbols per second. With our encoding schema,
this results in ≈185 Bits/s. The original covert channel with the
same configuration achieved ≈127 Bits/s, so we even increased
the bandwidth by introducing delays that are smaller on average.

V. EVALUATION

Implementation of Covert Channels for Evaluation: In our
implementation of the covert channels, we used two timings,
τ and 2τ , a short and a long delay, resulting in a morse like
encoding. The covert receiver monitors the delays of consecutive
packets from the covert sender to then measure and decode the
IATs. It is also possible to use more delays, resulting in a more
complex encoding. We decided against this, as a two-symbol
covert channel is the most difficult scenario for circumventing
the detection heuristics as it is the easiest to detect, since the
introduced structure will be the clearest (as we discussed before).

To create the recordings for the original covert channel, we
used the tool CCEAP [34]. The tool offers a simple interface
to create different covert channels, including IAT-based covert
channels. For our tests, we used various different timing intervals
to get a broader overview of the performance.

Used Traffic Recordings: The original paper as well as several
later works, such as [27] (2014) and [32] (2019), used reference
recordings from the NZIX II dataset [28], which was recorded
in the year 2000. Since this dataset is now more than 20 years
old and networking hardware has changed a lot since then, we
decided to create new reference recordings. We chose four dif-
ferent activities that are most prevalent in the recent years: video
streaming, video conferences, online gaming and file downloads.
All recordings were performed on the WAN interface of a home
internet gateway. In total, we recorded 4.8 GByte of reference
recordings from which we extracted roughly 1,790,000 packets.
We believe that this traffic mix represents the average Internet
usage today more closely than the original NZIX recordings.

A. ε-Similarity Evaluation

The first detection method that we evaluated is the ε-similarity.
We used the settings and thresholds from the original paper
when evaluating our approach, all scores were calculated with a
window size of 2,000 packets as this was also used in the original
paper.

Our datasets include several different configurations for the
covert channel. We used τ values of 5, 10, 20, 30, 40, 50 and
100 ms for our tests.

We evaluated three different splits of covert and legitimate
traffic in order to simulate realistic, best- and worst-case sit-
uations for the detection (50/50, 1/99 and 99/1 mixture of
legitimate/covert channel traffic).

To quantify the performance of the detection methods, we
chose AUC. The AUC generally show us how well the two

datasets (legitimate and covert channel) can be separated regard-
ing the ε-similarity or the compressibility score, respectively. A
steeper curve and a higher AUC signal a good separation, while
a flatter curve with a lower AUC signals a worse separation. We
do not want to minimize the AUC too far, as values below 0.5
can be flipped above 0.5 by inverting the detection labels [35].
Therefore, the goal for ε-κlibur was to bring the AUC as closely
to 0.5 as possible.

In Fig. 4, we compare the box plots of the ε-similarity for
legitimate, original covert channel and ε-κlibur traffic. We can
see that scores for the legitimate traffic are spread and their
median rises with the ε-threshold. The ε-similarity scores for the
original covert channel are above 0.95 for all ε-thresholds. Thus,
it is easy to see that the original covert channel can be detected
with this method, while ε-κlibur produces significantly lower
values than the original covert channel. While the ε-similarity
values for the ε-κlibur dataset are still closer to each other
compared to the values of legitimate traffic, we can observe
that the values blend in better with the legitimate traffic. This
shows us that the basic principle of our approach works for the
ε-similarity.

Table I provides the results for the different splits in
the datasets. ε-similarity can easily detect all the original
covert channels in various dataset splits, as all AUC val-
ues are 1.00 (rounded to 2 decimals). We can also see
that the different ε-thresholds are all equally efficient in this
situation.

Table II gives an overview of the AUC values in relation to
different τ values. For the original covert channel, all values
are again 1.00. With this and the results from Table I, we can
observe that the delay configuration of the covert channel and
the split of the dataset do not have an influence on the results of
the ε-similarity.

The AUC values for ε-κlibur show a clear change in the
detection performance. In Table I, we can see that our approach
generally reduces the AUC across all ε-thresholds. We can
also observe that the split of the dataset does not influence the
effectiveness of our approach. Table II shows the effectiveness
of the fuzziness in relation to the covert channel configuration
and ε-threshold. We can again determine that the effectiveness
of ε-κlibur is reduced with larger ε-thresholds, but even the
best detection result is still only at AUC = 0.87. This would
limit the usefulness of the detection heuristic in a real life
scenario given that several GBit/s of flow data would need to be
processed where even a small false-positive rate would render
the approach impractical. Moreover does the best value (AUC
= 0.87) only apply to one type of covert channel, while real-
istic setups have to deal with different potential covert channel
configurations, which do not perform well, as already shown in
Table I.

Table II shows that the detectability of ε-κlibur changes
depending on the τ values. Specifically for higher τ values, it
is harder to produce higher relative differences, as the decoding
threshold forces higher IATs. This explains the worse perfor-
mance for higher ε-thresholds with higher τ values.

Fig. 5(a) shows that we obtain a perfect detection of the
unmodified covert channels, while in Fig. 5(b), we can observe
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Fig. 4. ε-similarity score comparison (mixed traffic with all τ configurations).

TABLE I
ε-SIMILARITY: AUC VALUES OF MIXED TRAFFIC WITH ALL τ CONFIGURATIONS (THRESHOLDS AS GIVEN BY CABUK ET AL.)

TABLE II
ε-SIMILARITY: AUC VALUES FOR ISOLATED COVERT CHANNEL CONFIGURATIONS (THRESHOLDS AS GIVEN BY CABUK ET AL.)

that our modifications resulted not only in a reduction of the AUC
to 0.48, but also did we manage to push the curve closer to the
diagonal line. This means that the detection algorithm provided
unfavorable scaling between true- and false-positives over large
portions of the entire range, i.e., only after 60% false-positives,
we could significantly gain additional true-positives without
also suffering more false-positives. For our approach, this is
an almost optimal result.

In Fig. 5(c) and (d), we compare the ROC curves for two
different covert channel configurations. In Fig. 5(c), we can see
the curves for τ = 5 ms and in Fig. 5(d) for τ = 30 ms. Both
plots show the results for ε-κlibur.

In Fig. 5(c), the AUC is larger than in Fig. 5(d), but both have
the same distance from 0.5. Both figures show a rather steep ROC

curve, so if we only look at a single covert channel configuration,
we have a certain threshold from which on we only gain true-
positives without suffering many more false-positives.

While this technically denotes worse performance from our
approach, we still believe that the performance of the detection
algorithm is still not useable in this state.

In a real-world scenario, a detector would have to base its
detection thresholds around all possible covert channels, so
only comparing a single covert channel configuration does not
give a real-world image. We therefore mostly focussed our
evaluations on datasets that include multiple covert channel
configurations. However, the more detection thresholds are
applied simultaneously, the higher the number of cumulative
false-positives.
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Fig. 5. ROC curve comparison for ε-similarity.

TABLE III
AUC - COMPRESSIBILITY, DEPENDING ON SPLIT

B. Compressibility Score Evaluation

The second detection heuristic that we evaluated is the com-
pressibility score. We also used the same settings from the
original paper and used a windows size of 2,000 packets. Similar
to the ε-similarity, we applied different configurations for the
covert channel delays in order to reach a broader view of the
performance of our approach. We used the same configuration
of τ and 2τ for short and long delays as well as the same list of
τ values of 5, 10, 20, 30, 40, 50 and 100 ms.

Similar to the ε-similarity, our evaluation was based on the
AUC of a ROC curve as a measure of how well the detection
algorithm works on the original covert channel and ε-κlibur.
Our goal was again an AUC of 0.5 with a slope as close to 1 as
possible.

Fig. 6 compares the histograms of the compressibility scores
of legitimate, covert and ε-κlibur recordings. Similar to the
ε-similarity, we observe a clear difference between the covert
channel and ε-κlibur. We can easily notice that compressibility
values are significantly lower for ε-κlibur and blend in well with
the legitimate values.

This shows that the basic idea of the fuzziness injection also
works for the compressibility score. In Fig. 6, we can moreover
determine a different distribution of the compressibility scores
for legitimate, covert and ε-κlibur traffic. ε-κlibur’s distribution
of κ values overlaps significantly with legitimate traffic.

TABLE IV
AUC - COMPRESSIBILITY, DEPENDING ON τ

Table III lists the AUC values for the compressibility score for
different splits of the dataset. We can see that the compressibility
score can also detect all original covert channels for each tested
split. All AUC values are again 1.00 (rounded to 2 decimals), so
the algorithm can perfectly distinguish between covert channel
and legitimate traffic.

Table IV presents the detection performance in relation to
the different delay configurations. We can again observe that
the compressibility score can detect all original covert channels,
no matter their configuration. Thus, similar to the ε-similarity,
delay configurations and dataset splits have no impact on the
raw performance of the compressibility score.

If we look at the AUC values for ε-κlibur, we can again notice a
clear difference. In Table III, it is visible that the AUC values are
lower and around 0.40. We can thus conclude that our approach
also works for the compressibility score.

Table IV demonstrates that our approach works for all τ
configurations of the covert channel. The effect of the fuzziness
depends on the delay configuration. Some values are below 0.5
while others are above 0.5 and – if we combine all recordings
in a dataset – we obtain AUC values around 0.4.

This scaling behavior can be explained by the second part
of the fuzziness injection algorithm. Since the upper bound for
the random delays scales with the value of τ , we get a larger
spread in possible values, which in turn result in more different
elements in the string (see Section II.B.2) which leads to a lower
compressibility. Even if we take the worst performance (from
our viewpoint), which is an AUC of 0.16, and flip the labels, we
would end up with an AUC of 0.84. But this result is limited to
channels with τ =100 ms and is not well-useable in a real-world
scenario, as the detector could not optimize its thresholds only
for a single covert channel configuration but would rather have
to apply the detection to all possible covert channels (scenario
of Table III). Even if we focus on only this single worst-case
configuration, we still would suffer from a high false-positive
rate (>13%) if we want to achieve a true-positive rate of over
82%.

In Fig. 7, we compare the ROC curves for the original covert
channel and ε-κlibur. The figures underpin the perfect detection
for the original covert channel in contrast to the results for
ε-κlibur. Not only did we reduce the AUC to around 0.4, we
also managed to achieve an almost diagonal line. That means
the detector has bad scaling between true- and false-positives
throughout the entire range.
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Fig. 6. Compressibility score comparison.

Fig. 7. ROC curve comparison for the compressibility score.

VI. ENHANCED DETECTION APPROACH BASED ON

ε-SIMILARITY

In this section, we discuss an adaption of the ε-similarity that
can be used to counter ε-κlibur. Our adaption follows the original
approach closely but has one significant modification. Instead of
looking at an entire window at once, we first sort the IATs and
then divide the window into three equal subwindows. Thus, with
an original window size of 2,000, the first and second subwindow
will contain 667 IATs and the third subwindow will contain 666
IATs.

As both symbols of the covert channel occur with an equal
probability of p ≈ 0.5, we will have only low IATs in the first
subwindow, a mix of low and high in the second and only high
values in the last subwindow. With legitimate traffic, we see a
steep incline in the last subwindow (see Fig. 3). The original
covert channel is flat, and our ε-κlibur has several steps in this
subwindow. ε-κlibur has two constraints in the last subwindow.
First, there is a hard lower bound, as no IATs below the decoding
threshold can reside in this window. Theoretically, we could use
arbitrarily large IATs, but this would not be feasible in a real
life scenario. Therefore, the IATs in this third subwindow are
constrained between two bounds, which in turn leads to lower
relative differences in this subwindow. Therefore, we can use
this third subwindow for the new detection measure by applying
the original ε-similarity to it. We evaluated our new detection
approach against the original covert channel and ε-κlibur.

Fig. 8 shows the detection results for the two different covert
channels, the original one and our ε-κlibur. The results show that

Fig. 8. ROC curve comparison for the original ε-similarity and the enhanced
ε-similarity (plot shows ε = 0.01).

TABLE V
AUC – TRRC, ε-SIMILARITY VERSUS ENHANCED ε-SIMILARITY

we were able to increase the detection performance for our ε-
κlibur without hurting the detection performance for the original
covert channel significantly.

TRCC Evaluation: We decided to perform an additional eval-
uation of our enhanced ε-similarity heuristic to analyze whether
it is also able to detect the TRCC (see Section III.A) better
than the original approach. TRCC depends on legitimate traffic.
For this reason, we tested TRCC with two different reference
recordings and found drastically different detection results for
the two recordings.

Table V(a) shows the results for our first reference recording
(which is a recording of an online gaming session). With this
recording, the TRCC was (except for the last ε-threshold) hard
to detect for the original ε-similarity but our enhanced detection
approach delivered significantly improved results with AUC
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values between 0.80 and 0.88, despite being not optimally suited
for real-world scenarios.

With the second reference recording (which is a recording of
a Microsoft Teams meeting), shown in Table V(b), the TRRC
was well detectable by the original ε-similarity with the first
three ε-thresholds (AUC > 90%). ε = 0.02 delivered unusable
detection performance, while the last two delivered a good
performance again, although with flipped labels (AUC < 10%).
Our enhanced ε-similarity delivered, in some cases, worse and
in other cases better performance compared to the original
ε-similarity. Generally, the enhanced ε-similarity delivered a
more consistent detection performance.

The strong fluctuations in detection performance regarding
the different ε-thresholds and the reference recordings lead
to inconclusive results. Therefore, we believe that the detec-
tion performance is more dependent on the reference record-
ing than anything else, and thus one would need to conduct
further research focusing solely on the parameters and statis-
tics of the reference recordings to sufficiently evaluate the
TRCC.

VII. EVALUATION OF ε-κLIBUR WITH SOPHISTICATED

DETECTION METHODS

So far we have shown that ε-κlibur can circumvent both, the
compressibility score and the ε-similarity, and that the enhanced
ε-similarity method outperforms both classical heuristics. While
the main focus of our work was to demonstrate weaknesses
and exploitability of these classical heuristics, we additionally
evaluate ε-κlibur against two recent machine learning-based
detection methods: GAS [13] and SnapCatch [14] as introduced
in Section III.B. Since ε-κlibur was solely tailored to circum-
vent the compressibility score and the ε-similarity, we slightly
adjusted our method by adding an additional outlier timing to
the high inter-arrival signal of ε-κlibur (the else-branch of
Algorithm 2 is slightly altered for this purpose), which we call
ε-κlibur-O. The idea here is to stretch the overall distribution of
the timings further apart. Regular traffic showed a steep increase
in delays (see Fig. 3) which we wanted to imitate with these
outliers. We used an outlier timing of 10τ .

A. Performance of ε-κlibur-O Against Compressibility
and ε-Similarity

Our evaluation has shown that ε-κlibur-O yields similar
results as ε-κlibur when the compressibility score or the ε-
similarity are used. For this evaluation, we again used the AUC
value as a performance metric. As a high AUC value shows a
good detection performance and a low AUC value (�0.5) also
leads to a good detection by flipping the labels, we focused on the
distance of the AUC score to 0.5. Fig. 9 shows the AUC scores
for the compressibility of ε-κlibur and ε-κlibur-O based on a)
dataset split (as explained in Section V.A) and b) covert channel
configuration. We can see that for most configurations there is
no significant deviation for ε-κlibur-O compared to ε-κlibur.
For the configuration with τ = 5 ms and 10 ms, we can even
observe a better performance for ε-κlibur-O, as the AUC value

Fig. 9. AUC comparison for Compressibility Score, ε-κlibur versus
ε-κlibur-O.

Fig. 10. AUC comparison for ε-similarity ε = 0.001, ε-κlibur versus
ε-κlibur-0.

Fig. 11. AUC comparison for ε-similarity ε = 0.003, ε-κlibur versus
ε-κlibur-0.

is closer to 0.5, for τ = 20 to 50 we see a slight performance
decrease.

Figs. 10 (ε = 0.001) and Fig. 11 (ε = 0.003) show the results
for the AUC values of the ε-similarity. Similarly to the com-
pressibility score, some configurations suffered slightly in per-
formance while others slightly gained. For most configurations
of the compressibility and ε-similarity, the changes in AUC are
below 0.1. So there is no clear trend across all configurations that
points towards ε-κlibur-O being significantly easier or harder to
detect compared to ε-κlibur, when faced with compressibility or
ε-similarity.
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Fig. 12. AUC comparison for GAS, orig. CC versus ε-κlibur versus
ε-κlibur-O.

B. Performance of ε-κlibur-O Against the Enhanced
ε-Similarity

We also evaluated ε-κlibur-O against our enhanced version of
the ε-similarity. We ran the same evaluations as before and used
the AUC as performance metric. In our experiment, we found
that the AUC remained nearly unchanged for most configura-
tions and only showed a noticeable degradation at ε = 0.1 (0.1
AUC decrease). Therefore, we can conclude that our enhanced
detection performs equally well on ε-κlibur-O as on ε-κlibur.

C. GAS

To evaluate the GAS detection approach, we used the code
and models provided by the original authors [13] and conducted
three tests. We first tested the original covert channel, then
ε-κlibur and ε-κlibur-O. Fig. 12 shows the results of our tests.
We could reproduce the results of the original paper, as GAS
also achieved good detection results with AUC values of 0.97
and above for the original covert channel. When faced with
ε-κlibur and ε-κlibur-O on the other hand, we could observe
a significant performance degradation. In parallel to the original
paper, we evaluated the performance with the ”Labnet” and
”Bignet” setups and also with varying window sizes. In the
”Labnet” setup, ε-κlibur and ε-κlibur-O degraded the detection
performance significantly and pushed the AUC for all window
sizes down to values between 0.55 and 0.6. The performance in
the ”Bignet” setup was better but ε-κlibur and ε-κlibur-O still

Fig. 13. AUC comparison for SnapCatch, orig. CC versus ε-κlibur versus
ε-κlibur-O.

showed a sizeable impact with AUC values ranging from 0.68
to 0.92. We thus conclude that both, ε-κlibur and ε-κlibur-O,
significantly impact the performance of GAS, especially for
smaller sample lengths.

D. SnapCatch

Similar to GAS, we evaluated SnapCatch [14] with three
datasets. The original covert channel, ε-κlibur and ε-κlibur-O.
We re-implemented the feature extraction of SnapCatch and used
the resulting features to train a SVM model. In each case, we
trained the model with the original covert channel and tested
the resulting model against the other dataset. Thus, we assume a
defender with knowledge about the classical covert channel but
without knowledge of ε-κlibur and ε-κlibur-O. Fig. 13 shows
the results of these experiments. We can observe that SnapCatch
achieved an outstanding detection of the original covert channel
with an AUC of 1.0. Even ε-κlibur showed no significant degra-
dation in detection performance, also resulting in an AUC of
1.0. ε-κlibur-O on the other hand was successful in decreasing
the performance of SnapCatch and resulted in an AUC of 0.59.
The data processing pipeline of SnapCatch includes a step in
which the timings of each window are normalized and mapped
to the range between 0 and 255. The timing spread of regular
traffic resulted in images that are generally dark with only a
few bright pixels. While the original ε-κlibur resulted in images
with around 50% bright and 50% dark pixels. The outlier of
ε-κlibur-O influenced the normalization step and therefore the
images had again a few bright pixels in a generally darker image,
which helped to bring the pixel values closer to those of regular
traffic.

VIII. CONCLUSION

First, we have shown that the two highly cited covert channel
detection metrics ε-similarity and compressibility score can be
defeated with a simple covert channel that we call ε-κlibur. In
comparison to previous attempts, ε-κlibur is easier to construct
and requires no pre-recorded traffic while providing an non-
degraded bitrate. We second introduced an enhanced ε-similarity
that is able to detect both, the original timing covert channel as
well as ε-κlibur. Third, we evaluated ε-κlibur against two more
recent approaches: ε-κlibur can defeat GAS and a slight variation
of ε-κlibur called ε-κlibur-O can also significantly lower the
performance of SnapCatch. We conclude that the enhanced
ε-similarity heuristic can compete and partially outperform the
most recent ML-based methods. However, in comparison to
the other methods, the enhanced ε-similarity was not evaluated
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against other sophisticated timing channels, such as MB-CTC
or JitterBug.

In future work, we plan to extend our work to additional
detection algorithms as well as covert storage channels. We also
plan to evaluate the enhanced ε-similarity against other timing
channels.

Notes on Replicability. We made our implementation of ε-
κlibur available: https://github.com/NIoSaT/epskalibur.
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