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Abstract—Mitigating adversarial deep learning attacks remains challenging, partly because of the ease and lowcost in carrying out such

attacks. Therefore, in this article, we focus on the understanding of universal adversarial example attackon image classificationmodels.

Specifically, we seek to understand the difference(s) between adversarial examples in two adversarial datasets (DAmageNet and PGD

dataset) and clean examples in ImageNet learned by the classificationmodel, andwhether we can use such findings to resist adversarial

example attacks. We also seek to determine if we can retrain a discriminator to discriminate whether the input image is an adversarial

example, using adversarial training.We then design a number of experiments (e.g., class activationmap (CAM) analysis, featuremap

analysis, featuremaps/filters changing, adversarial training, and binary classificationmodel) to help us determine whether the universal

adversarial dataset can be successfully used to attack the classificationmodel. This, in turn, contributes to a better understanding of

adversarial defenses over pretrained classificationmodel from an interpretation perspective. To the best of our knowledge, this work is

one of the earliest works to systematically investigate the interpretation of universal adversarial example attackon image classification

models, both visually and quantitatively.

Index Terms—Adversarial defense, adversarial example, deep learning, interpretability

Ç

1 INTRODUCTION

DEEP learning methods have been widely adopted in a
broad range of domains, such as image classification [1],

[2], image security [3], [4], medical aided diagnosis [5], [6]
and facial recognition [7], [8]. In some of these application
domains, the performance of deep learning models has
reportedly exceed those of human. In practice, many classifi-
cation models are carried out in a cloud-based environment,
and thus are potentially subject to different attacks such as

adversarial example attacks on the classification model. The
adversarial example attack is implemented by adding per-
turbations on the original images, which usually cannot be
identified using our naked eyes. Then, these adversarial
examples are used to misguide the classification model to
make an error classification. As shown in Fig. 1, the classifica-
tion model is placed on the server in the cloud-based envi-
ronment, and the user can utilize the classification service
from their client device by calling the application’s interface.
However, the end user can easily input an adversarial exam-
ple to attack the classificationmodel on the cloud server.

A number of researchers have explored how to generate
adversarial examples. Examples include the L-BFGS Attack
[7] (that uses L-BFGS method to solve the general targeted
problem when generating adversarial examples), Fast Gra-
dient Sign Method (FGSM) [8] (that performs one step gra-
dient update along the direction of the sign of gradient at
each pixel), Basic Iterative Method (BIM) and Iterative
Least-Likely Class Method (ILLC) [9] (that extend FGSM by
performing optimization for multiple iterations), Jacobian-
based Saliency Map Attack (JSMA) [10], DeepFool [11] (that
finds the closest distance from the original input to the deci-
sion boundary of adversarial examples), C&W’s Attack [12],
Zeroth Order Optimization (ZOO) [13] (that can be directly
deployed in a black-box attack without model transferring),
Universal Perturbation [14], and One Pixel Attack [15] (that
generates adversarial examples by only modifying one
pixel).

In addition to attacking the classification models, there
have been efforts in designing approaches to defend against
adversarial example attacks. Buckman et al. [16], for exam-
ple, demonstrated that thermometer code discretization and
one-hot code discretization of real-valued inputs to a model
significantly improve its robustness to adversarial attacks.
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Ma et al. [17] proposed a method of adopting local intrinsic
dimensionality to characterize properties of adversarial
examples, and Guo et al. [18] proposed five input transfor-
mations to resist adversarial examples. In a different work,
Dhillon et al. [19] introduced randomness into the evalua-
tion of a neural network to defend against adversarial exam-
ples. Xie et al. [20] proposed to defend against adversarial
examples by adding a randomization layer before the input
to the classifier. Song et al. [21] proposed using a PixelCNN
generative model to project a potential adversarial example
back onto the data manifold before feeding it into a classi-
fier. Madry et al. [22] studied the adversarial robustness of
neural networks through the lens of robust optimization.
However, these approaches generally achieve good perfor-
mance for specific situation(s) only. For example, most
defensive approaches are mainly designed to statically
resist one specific type of adversarial example attack, and
its defensive ability is extremely limited. In other words,
these approaches cannot solve general adversarial example
attacks. This is due to a lack of understanding of why gener-
ated adversarial examples can successfully attack the classi-
fication model. In other words, the deep learning algorithm
is a “black box”, and we lack the interpretability of how
decision is made using the deep learning algorithm.

Several interpretable deep learning algorithms have also
been proposed [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32]. Examples include CNNVis [23], Lucid [24], LIME (Local
InterpretableModel-Agnostic Explanation) [25], CAM (Class
Activation Mapping) [26], Grad-CAM [27], and Explanatory
Graph Representation [28]. Also, DLIME (Deterministic
LIME) [29] and Decision Tree [30] are two other examples,
which employ interpretable models to deconstruct uninter-
pretable models. However, designing interpretable deep
learning algorithms for adversarial example attacks is an
understudied area. This is the gap we seek to address in this
paper.

Specifically, we focus on the explainability of adversarial
example attacks, by interpreting why a classification model
can be successfully attacked by the adversarial examples. As
a case study, the DAmageNet [33] is adopted as the adversar-
ial example to attack the classification model evaluated on
the ImageNet dataset [34], since this is the first universal
adversarial dataset and has defeatedmanymodels trained in
ImageNet. Besides, we introduce a popular model-specific
adversarial attack method, projected gradient descent (PGD)
[50], to generate 50000 adversarial examples based on Image-
Net validation set for conducting ablation experiments with
the DAmageNet dataset. Using the pretrained ResNet50 as

the classification model, we seek to answer the following
two research questions (RQs).

RQ 1: What is/are the difference(s) between the adversarial
example and the clean image learned by the classification model, and
can the findings be used to resist the adversarial example attack?

To help us answer the above question, we systematically
design various experiments to explore the difference(s)
learned by the classification model. By evaluating the CAM
analysis and feature maps analysis, we find that the salient
region and the neuron has a different response to the adver-
sarial example from the first layer are different. This finding
partially explains why the adversarial example can be used
to attack the classification model. Furthermore, based on the
findings in the interpretable adversarial learning, we pro-
pose the following hypothesis: “If the weights and channels
of the neurons in the classification network can be changed
to avoid learning the adversarial feature, then the adversar-
ial example attack can be resisted by improving the classifi-
cation model.” We validate our hypothesis from two
aspects. First, we mask the channels which are sensitive to
the adversarial feature. Second, the weight of these channels
is adjusted to avoid learning adversarial features in a fine-
grained way.

RQ 2: Can we retrain a pretrained model to improve the preci-
sion and robustness by adopting the adversarial training, and can
we train a discriminator to discriminate whether the input image
is an adversarial example?

Based on the pretrained ResNet50, the adversarial exam-
ples from the DAmageNet and PGD dataset are adopted as
the training dataset to implement the adversarial training,
respectively. Moreover, an additional classification network
is trained to classify the clean image and the adversarial
example. Extensive experimental results show that it is hard
to retrain a discriminator to discriminate the adversarial
examplewhen dealingwith large datasets, such as ImageNet.

To the best of our knowledge, this work is one of the ear-
liest works to systematically investigate how one can inter-
pret the universal adversarial example attack on image
classification models, both visually and quantitatively. In
other words, our findings shed some light on why the uni-
versal adversarial dataset can be successfully used to attack
the classification model. In doing so, the findings will also
inform future design of mitigation strategies.

The rest of the paper is organized as follows. In the next
section, we will introduce the related literature, prior to pre-
senting preliminary knowledge in the third section. We
then describe our experiments and analysis in the fourth
section. Finally, section five concludes this article.

2 RELATED WORK

2.1 Adversarial Defenses

One of the current approaches to mitigate adversarial exam-
ple attacks is to discriminate the adversarial example. Meng
et al. [35] proposedMagNet, which is a defending framework
to protect the neural network from adversarial example
attack. It includes one or more separate detector networks
and a reformer network. The detector networks learn to differ-
entiate between clean and adversarial examples by approxi-
mating the manifold of clean examples. Inspired by the
randomness in cryptography, MagNet was further improved

Fig. 1. Adversarial example attack on cloud-based classification model:
An example.
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due to the diversity. The reformer networkmoves adversarial
examples towards the clean examples, which is an effective
way to correctly classify adversarial examples with small per-
turbation. MagNet can reportedly defend against most state-
of-the-art attacks in both black-box and white-box scenarios,
without impacting on false positive rate on clean examples.
Feinman et al. [36] asked whether a DNN can distinguish
adversarial examples from the clean examples. They investi-
gated the confidence of network on adversarial examples by
calculating the Bayesian uncertainty estimates, and realizing
density estimation in the subspace of features. The experi-
mental results demonstrated that it achieve a good perfor-
mance for different architectures and attacks. Their findings
reported that 85-93% ROC-AUC can be achieved on a number
of standard classification tasks. Kimin Lee et al. [37] proposed
a simple yet effective method for detecting any adversarial
examples, which can be used on most pre-trained softmax
neural classifiers. They obtained the Gaussian distributions
for class condition, which result in a confidence score based
on the Mahalanobis distance. Experiments showed that the
proposed method achieves a good performance on detecting
adversarial examples, and the network becomes more robust.
Weilin Xu et al. [38] proposed a new strategy, feature squeez-
ing, which can be used to improve DNNmodels by detecting
adversarial examples. Feature squeezing reduced the search
space available to the adversarial attack by aggregating exam-
ples belonging to many different feature vectors into a single
example. By comparing a DNN model’s prediction on the
original input, feature squeezing detected adversarial exam-
ples with high accuracy and few false positives. These simple
strategies were inexpensive and complementary to other
defenses, and can be combined in a detection framework to
achieve high detection rates against adversarial attacks. Pang
et al. [32] proposed the AdvMind, a new class of estimation
models that infer the adversary intent of black-box adversarial
attacks in a robust and prompt manner. Specifically, to
achieve robust detection, AdvMind accounted for the adver-
sary adaptiveness such that her attempt to conceal the target
will significantly increase the attack cost. And AdvMind pro-
actively synthesized plausible query results to solicit subse-
quent queries from the adversary that maximally expose her
intent to achieve prompt detection.

However, these existing adversarial defenses methods
don’t place their focus on analyzing the difference between
the clean example and the adversarial example, and the
internal feedback of the learning network. They only pro-
vide the solution for detecting the specific type of adversar-
ial example attack under certain situations. When facing
with the large datasets or different task environment, these
adversarial defenses methods usually lost their effective.

2.2 Interpretability in Deep Learning

Fong et al. [39] proposed a general framework for learning
different kinds of explanations for most black-box algo-
rithms. Moreover, the framework tried to find the part of an
image where is most responsible for a classifier decision. Dif-
ferent with previous works, the proposed method was
model-agnostic and testable because it is grounded in explicit
and interpretable image perturbations. Zhang et al. [40] pro-
posed a method to modify a traditional convolutional neural
network (CNN) to an interpretable CNN, to clarify

knowledge representations in high conv-layers of the CNN.
In an interpretable CNN, each filter in a high conv-layer rep-
resented a specific object part. The interpretable CNNs used
the same training data as normal CNNs without requesting
any additional annotations of object parts or textures for
supervision. Experiments have shown that filters in an inter-
pretable CNN are more semantically meaningful than those
in a traditional CNN. Zhou et al. [41] described the Network
Dissection, a method to interpret networks by providing
meaningful labels to their individual units. The proposed
method quantified the interpretability of CNN representa-
tions by evaluating the alignment between individual hidden
units and visual semantic concepts. Their results highlighted
that interpretability is an important property of deep neural
networks, which can provide new insights into what hierar-
chical structures can learn. Chen et al. [42] introduced a deep
network architecture, Prototypical Part Network (Proto-
PNet), to interpret in a similar way: the network learned the
image by finding prototypical parts, and combined evidence
from the prototypes to make a final classification. The experi-
ments showed that ProtoPNet can achieve comparable accu-
racy with its non-interpretable counterpart. Moreover, the
ProtoPNet provided an additional ability of interpretability
where other interpretable deep models were limited. Zhang
et al. [31] proposed i-Algebra, a first-of-its-kind interactive
framework for interpreting the DNNs. At its core is a library
of atomic, composable operators, which explain model
behaviors at varying input granularity, during different infer-
ence stages, and fromdistinct interpretation perspectives.

Although many researches focus on the interpretable for
deep learning models and implement lots of applications
based on interpretability, only a few researches attempt to
discuss the interpretability of adversarial example attack.

2.3 Interpretable Adversarial Defenses

Ross et al. [43] evaluated the effectiveness of defenses by dif-
ferentiably penalizing the degree to which small changes in
inputs can change model predictions. They found that neural
networks, which are trained with gradient regularization,
show robustness to transferred adversarial examples. More-
over, the experiments demonstrated that regularizing input
gradients make them more naturally interpretable as ration-
ales for model predictions. And they concluded this work by
discussing this relationship between interpretability and
robustness in deep neural networks. Tao et al. [44] proposed
a novel adversarial example detection technique for face rec-
ognition models from interpretability perspective. This work
identified a novel bi-directional correspondence inference
between attributes and internal neurons to locate neurons
which are sensitive for individual attributes. Results showed
that proposed method can achieve state-of-the-art perfor-
mance, 94% detection accuracy for 7 different kinds of attacks
with 9.91% false positives on original inputs. Ma et al. [45]
analyzed the internal structure of DNN models under vari-
ous attacks and proposed two common exploitation chan-
nels: the provenance channel and the activation value
distribution channel. Then They further proposed a novel
technique to extract DNN invariant and to adopt them to per-
form adversarial example detection in run-time environment.
Their experimental results showed that the proposedmethod
can effectively detect all common attacks with limited false
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positives. They also compared the proposed method with
three state-of-the-art methods, which includes the Local
Intrinsic Dimensionality based method, denoiser based
methods, and the prediction inconsistency-based approach.
Their experiments showed the promising results. Based on
the interpretability of adversarial example generation, Sha-
fahi et al. [46] presented an algorithm that eliminated the
overhead cost of generating adversarial examples. This
methodwas implemented by recycling the gradient informa-
tion computed when updating model parameters. Their
“free” adversarial training algorithm achieved comparable
robustness to PGD adversarial training on the CIFAR-10 and
CIFAR-100 datasetswith negligible additional cost compared
to natural training, and can be up to 7-30 times faster than
other famous adversarial trainingmethods.

3 PRELIMINARY

3.1 Adversarial Training

Adversarial training is an effective way to enhance the
robustness of neural networks. In the process of adversarial
training, the clean examples and the adversarial examples
(the change in the adversarial example is small, but it can
cause misclassification for the classification model) will be
combined as the training dataset, and then the neural net-
work is retrained to adapted to this change. The new trained
network holds the potential to become more robust to the
adversarial example. The adversarial training can be formu-
lated as solving a robust optimization problem

min
u

Eðx;yÞ�D max
d2S

Lðfðxþ d; uÞ; yÞ
� �

(1)

where fðx; uÞ represents the parameterized neural network
with weights u; the input-output pair ðx; yÞ indicates the
example from the training set D; d denotes the adversarial
perturbation and L is the chosen loss function, e.g., cross-
entropy loss. S denotes a norm constraints.

The symbol max represents to find the perturbations
which maximize the loss function. It means to confuse the
neural network as much as possible by adopting the pertur-
bation. The symbol min indicates to minimize the optimiza-
tion of the neural network. It means, when the perturbations
are fixed, the neural network model is trained to minimize
the loss function. In other words, the neural network is
trained to becomemore robust to these perturbations.

3.2 Class Activation Map

The class activation map (CAM) is a powerful technique
used in computer vision for classification tasks. It allows us
to inspect the image to be categorized and understand
which parts/pixels of that image have contributed more to
the final output of the model. The CAM algorithm imple-
ments the global average pooling before the final output
layer on the CNN architecture. It can enhance the visual
explanation of the deep learning model. The CAM high-
lights the class-specific discriminative regions, and indicates
the significance part in the image used for the classification.
Through supplementary analyzing the region where the
CNN model is concentrated, it provides the interpretability
of how the black-model make a decision. The final

classification score Sc for class c can be expressed as a linear
combination of its global average pooled feature maps Ak:

Sc ¼
X
k

vc
k �

X
i

X
j

Ak
ij (2)

The class-specific salient mapMc can be generated by:

Mc
ij ¼

X
k

vc
k �Ak

ij (3)

where Mc
ij directly correlates with the importance of a par-

ticular spatial location (i, j) for class c. When up-sampling
the activation map to the size of input image, it can show
the interested region of the input image focused by the
learning network to predict a label.

4 EXPERIMENT

4.1 Dataset Description

The ImageNet validation set is a universal dataset, which
contains 50000 images with 1000 classes. It is usually used
for image classification tasks. In this paper, the ImageNet
validation set is mainly adopted as the clean examples while
the DAmageNet is employed as the adversarial examples.
The DAmageNet contains 96020 adversarial examples with
1000 classes, which attacks the ImageNet to create general-
ized adversarial examples by zero-query adversarial attack.
These adversarial examples are with an average difference
of 4.2 gray values per pixel by comparing with the corre-
sponding clean example. For rigor, we keep all the images
as they are without scaling them, though they look different
ratios. However, facing with these adversarial examples,
most neural network trained on the ImageNet can be easily
attacked. The Top-1 recognition error rate of famous classifi-
cation network, such as VGG, ResNet, Inception, Xception,
DenseNet, and etc., can reach more than 90%. It means that
these classification network can’t resist the adversarial
example attack.

Moreover, except for the adversarial examples from
DAmageNet, we introduce a popular adversarial attack
method, PGD, to generate 50000 adversarial examples based
on ImageNet validation set for conducting ablation experi-
ments with the DAmageNet dataset.

4.2 Experimental Setup

In this paper, one of the most widely used classification
model ResNet50 is adopted to realize these sophisticated
designed experiments. The detailed structure of ResNet50 is
shown in Table 1. It is mainly composed of four residual
blocks, which deepens the network, and meanwhile intro-
duces the shortcut connection for avoiding the phenomenon
of gradient disappearance.

Furthermore, both the DAmageNet and PGD dataset for
adversarial examples, and ImageNet validation dataset for
clean example are employed to evaluate the designed experi-
ments. ImageNet validation set contains 50000 clean images,
and DAmageNet includes 50000 adversarial examples corre-
sponding to clean images, while the PGD also includes
another 50000 adversarial examples corresponding to the
same clean images. When implementing the experiments,
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the resolution of the input image is 224� 224. All experi-
ments run onNvidia GTX 2080Ti.

In Section 4.6, the ResNet50 pretrained on ImageNet is
implemented as the initial model of retraining. The batch
size is set to 32. The Adam optimizer is adopted to optimize
the loss function. The initial value of the learning rate is
0.001. The exponential decay rate of the first-order moment
estimation is 0.9, and the second-order moment estimation
is 0.999.

In Section 4.7, the ResNet50 is adopt as the binary classifi-
cation network which is trained from scratch. All the weight
parameters of the network are randomly initialized, and the
batch size is set to 32. The Adam optimizer is adopted to
optimize the loss function. The initial value of the learning
rate is 0.001. The exponential decay rate of the first-order
moment estimation is 0.9, and the second-order moment
estimation is 0.999.

4.3 CAM Analysis

In order to evaluate the difference learned by the classifica-
tion network between the clean example and adversarial
example, the CAM is adopted to visually present the differ-
ence. The CAM can obtain the attention map by projecting
back the weights of the output layer in the classification net-
work onto the convolutional feature maps. Therefore, when
adopting the classification network to classify the image,
the CAM holds the great potential to visually shows the
interested regions of the input image where the learning
network focuses on. In this experiment, before adopting the
CAM to analyze the difference between the clean and
adversarial example, Fig. 2 first presents the histogram of
the clean examples and corresponding adversarial images.
It can be found the distribution of pixel value is with a tiny
difference between clean and adversarial example. And this
tiny difference can be regarded as the reason for classifica-
tion network to make an error prediction.

Furthermore, the CAM is adopted to visually demon-
strate the attention maps both for the clean example and

adversarial example, to explicitly interpret why the classifi-
cation network can be attacked by the adversarial example.
Fig. 3 presents the experimental results and the red color
represents the interested area focused by the network to
support the decision-making process. It can be obviously
found that in most situation, the attention map of the adver-
sarial example is overlaid with attentions in different ways
by comparing with the attention map of the clean example.
To be more specific, because of the perturbations in the
adversarial example, the classification network is misled
with a wrong direction and focuses on the different regions
of the adversarial example so as to make an error classifica-
tion for the interested object. It also interprets the reason
why the classification network can be attacked with the
adversarial example. Moreover, this experiment is mainly
used to analyze the interpretation of adversarial example
attack in a visual way and to locate the interested region
focused by the classification network.

More important, in order to further prove the finding of
“the adversarial example obtains a different interested
region from the classification network”, another experiment
is designed and implemented. This experiment is originated
from one phenomenon: “because the deep learning network
is very sensitive to the change of input image, if some pixels
in the interested region of input image is changed, the clas-
sification accuracy is disturbed with these changes.” By bor-
rowing the idea from this, we can change some pixels in the
interested region of clean example and the same position in
the corresponding adversarial example. After processing
these remodified images with the classification network, the

TABLE 1
The Detailed Structure of the ResNet50

Block Output Size Number Layer Size

Conv1 112�112 1 7�7

Max Pool 56�56 1 3�3

1�1
Residual Block1 56�56 3 3�3

1�1

1�1
Residual Block2 28�28 4 3�3

1�1

1�1
Residual Block3 14�14 6 3�3

1�1

1�1
Residual Block4 7�7 3 3�3

1�1

Average Pool 1�1 1 7�7

Fully Connection 1000 1 1�1

Fig. 2. Histogram Analysis. The first column is the clean images from
ImageNet validation set. The second column is the histograms of images
in the first column. The third column is the adversarial images corre-
sponding to the first column from DAmageNet. The fourth column is the
histograms of images in the third column.
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classification accuracy of the clean example should be dis-
turbed while the accuracy of the adversarial example
should almost declines slightly. The reason behind this is
that only the change in the interested region can generate a
great influence for the final classification accuracy. How-
ever, the changing area don’t belong to the interested region
of the adversarial example focused by the classification net-
work, where the classification network adopts different
interested region as the basis to classify the image. There-
fore, if the experimental result can follow the assumption, it
also can prove that the classification network focuses on dif-
ferent interested region when classifying the adversarial
example and this is also the why the adversarial example
attack can be successfully implemented.

The wrong regions of interest in the image results due to
misclassification is not a new finding. Li et al. [47], for exam-
ple, noted that from the saliency maps for predicted labels,
the surrounding background of the target object played an
important role in misclassifying the image. Dong et al. [48]
also used attention maps of trained models and defense
models to indicate the discriminative regions by adopting
CAM. In addition, Xiao et al. [49] proposed a new type of
perturbation based on spatial transformation, and then uti-
lized CAM to locate the discriminative regions implicitly
identified by the DNN. However, these approaches merely
adopted CAM to visual the saliency maps between the clean
example and adversarial example to identify the differences
in the region of interest. In addition to using CAM to locate
the different regions of interest (similar to the existing
approaches in the literature, such as those of [47], [48], [49],
we also utilize attention maps visualized by CAM to con-
duct the following experiment.

In this experiment, based on the attention map presented
by CAM, we randomly select 100 pixels from the red area in
the clean example, and 100 pixels with the same position in
the corresponding adversarial example, which are from
the DAmageNet and PGD dataset. Then, the value of these

pixels is changed to 0, 127, 200 or 255, respectively. After
changing the value of pixels in the interested region, the
remodified clean and adversarial examples are input into
the classification network to evaluate the classification accu-
racy. Tables 2 and 3 respectively present the classification
accuracy (confidence value) before and after changing the
pixel value on the area of interested both on the clean and
adversarial examples. Eight categories are used to evaluate
this experiment on DAmageNet, PGD and the correspond-
ing clean images. Moreover, the bottom row in the Table
presents the statistical results of the classification accuracy
changes for different pixel values, which are calculated
from the average differences between the confidence values
of label-unchanged categories before and after the change,
and the larger average difference represents a greater
change. It can be found that after changing the pixel value
on the regions of interest, the classification accuracy of clean
examples becomes more unstable compared to the accuracy
on the adversarial examples. Especially on the PGD dataset,
the difference is even more pronounced. It can be said that
the classification accuracy of most clean examples has a
larger jitter while the accuracy on adversarial examples are
more stable. The reason behind this is that the area of inter-
est with the changed pixel is mainly focused by the classifi-
cation network when classifying the clean example, while it
is not the attention map to classify the adversarial example.
This experimental result proves the earlier discussed
assumption and it strengthens the findings from the CAM
analysis.

Furthermore, there is an interesting finding in this exper-
iment. In Table 2, it can be noticed that the adversarial
example of granny smith obtains a great change after chang-
ing the pixel to 0, where the predicted label changes from
pot to tennis ball. This bad case maybe caused by the great
change on the input image, which the pixel value of inter-
ested region is changed to 0. While the classification net-
work is just very sensitive to this change and makes totally
wrong prediction on this specific case.

4.4 Feature Maps Analysis

In order to investigate the difference learned by the classifi-
cation model when classifying the clean example and adver-
sarial example respectively, this experiment is first designed
to figure out the difference for each feature map in the learn-
ing network, where the feature map represents the neuron
unit to make a respond to the classification task. It also
means that we want to find out whether the classification
model can obviously make a different respond when han-
dling the adversarial example by comparing with the clean
example. To be more specific, the clean example and its cor-
responding adversarial example are first input into the pre-
trained ResNet50 to realize the classification process,
respectively. After processing with the classification net-
work, feature maps of the clean and adversarial example,
which represent what have been learned by the network,
can be obtained from each network layer. Then, each pair of
feature maps for the clean and adversarial example respec-
tively are compared with each other by calculating the pixel
value of feature maps. This pixel values of the clean and
adversarial example are further computed to obtain the dif-
ference value on the pair of feature maps with the same

Fig. 3. CAM Analysis. The first row is the clean images from ImageNet
validation set. The second row is the attention maps of images in the first
row which highlighted by CAM. The third row is the adversarial images
corresponding to the first row from DAmageNet. The fourth row is the
attention maps of images in the third row which highlighted by CAM.
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TABLE 2
The Top-1 Labels and Their Confidence Values Before and After Changing the Pixels to 0, 127, 200 and 255 of Referred

Regions on Clean Examples and Corresponding Adversarial Examples From DAmageNet Respectively
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TABLE 3
The Top-1 Labels and Their Confidence Values Before and After Changing the Pixels to 0, 127, 200 and 255 of Referred

Regions on Clean Examples and Corresponding Adversarial Examples From PGD Dataset Respectively
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spatial using the metric of RMSE (Root Mean Squard Error)
as to discover why the adversarial example can mislead the
classification model to make an error prediction. The calcu-
lation formula of RMSE is list as follows:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

H �W � C

XM
i¼1

XN
j¼1

XC
k¼1

ðaði; j; kÞ � bði; j; kÞÞ2
vuut ; (4)

where H �W � C is the size of the feature map, a is the fea-
ture map of clean example and b is the feature map of adver-
sarial example. The larger value of the RMSE represents the
low similarity between two feature maps.

After calculating the difference value of each pair of fea-
ture maps obtained from the classification network on
DAmageNet and PGD dataset, respectively. The result can
be found in the Tables 4, 5, 6 and 7. Tables 4 and 6 list ten
difference value with the biggest different; Tables 5 and 7
show the result with the smallest difference value. The
“pool_1_pad_35” represents the 35th feature map produced
by the first pooling layer with the patch padding operation.
While the “activation_1_35” indicates the 35th feature map
produced by the first activation layer. According to the
experimental result both on the DAmageNet and PGD data-
set, it can be found that classification model usually makes
an error prediction (with large difference value) at the first
pooling layer and the first activation layer when facing with
the adversarial example. And the smallest difference value
between clean and adversarial example usually can be
obtained from the higher-level activation layers. It means
the lower-level layer in the classification network is more
sensitive to the adversarial example attack, which has a less

influence on the high-level layer in the network. This find-
ing also follows the principle of generating the adversarial
example, where the generating process usually adds some
perturbations on the clean image to produce the adversarial
example. Therefore, the low-level layer in the network,
which is mainly used to handle the low-level features, is
more vulnerable to adversarial example attack. This experi-
ment also can explain the first question proposed in this
paper: “What’s the difference between the adversarial
example and clean image learned by the classification
model implemented on the ImageNet?”

In Fig. 4, we visually show the four feature map pairs with
the largest differences between the real and adversarial exam-
ple referring Table 4. It can be seen that even if the feature
map pairs are with the largest difference calculated by quanti-
tative analysis, humans cannot visually distinguish the clean
and adversarial example based on their featuremaps.

Based on the experimental results, it can be found that
the feature maps between the clean example and the adver-
sarial example in the classification model are quite different.
Next, we explore the changes in the prediction results of the
classification model when masking the feature maps with
large differences.

4.5 Changing Feature Maps / Filters to Resist
Adversarial Example Attack

In Section 4.4, we discuss the difference of the feature map
when the classification network processes the clean example
and adversarial example. Based on the findings in last
experiment, some sophisticated designed experiments are
implemented to verify whether these differences can then be

TABLE 4
Ten Most Different Feature Maps Obtained From DAmageNet

Feature Map Differences

pool_1_pad_35 1148.25
pool_1_pad_23 1147.14
pool_1_pad_54 1141.76
pool_1_pad_29 1138.84
pool_1_pad_26 1127.24
activation_1_35 1108.30
pool_1_pad_3 1108.21
activation_1_23 1107.19
activation_1_37 1104.14
activation_1_54 1101.80

TABLE 5
Ten Least Different Feature Maps Obtained From DAmageNet

Feature Map Differences

activation_43_1098 0.0883
activation_42_226 0.0883
activation_42_144 0.0883
activation_41_451 0.0883
activation_35_52 0.0883
activation_35_244 0.0883
activation_35_183 0.0883
activation_35_161 0.0883
activation_32_94 0.0883
activation_32_219 0.0883

TABLE 6
Ten Most Different Feature Maps Obtained From PGD Dataset

Feature Map Differences

pool_1_pad_31 1128.23
activation_1_54 1060.35
pool_1_pad_1 1056.91
activation_1_1 1016.91
pool_1_pad_41 1011.25
pool_1_pad_56 955.07
activation_1_56 955.07
pool_1_pad_8 952.31
pool_1_pad_6 935.65
pool_1_pad_48 927.72

TABLE 7
Ten Least Different Feature Maps Obtained From PGD Dataset

Feature Map Differences

activation_42_168 0.0883
activation_41_507 0.0883
activation_41_27 0.0883
activation_41_247 0.0883
activation_41_196 0.0883
activation_41_165 0.0883
activation_33_154 0.0883
activation_32_79 0.0883
activation_32_177 0.0883
activation_1_23 0.0883
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used to resist the adversarial example attack. First, as shown
in Tables 4 and 6, it can be observed that when the adversarial
example is processed with the classification network, the net-
work produces some totally different feature maps by com-
paring with the clean example. These feature maps can be
regarded as the “sensitive” feature maps for the adversarial
examples. It naturally raises a hypothesis, if these feature
maps are masked during the network processing, the classifi-
cation networkmay not to be misled by the adversarial exam-
ple attack. In this experiment, total eight categories of images
and corresponding adversarial examples are employed to
evaluate the propose and sensitive feature maps are masked
when processing these images.

As shown in Tables 8 and 9, based on the value of change
statics, the confidence values of clean and adversarial exam-
ples become better in most categories after masking the sen-
sitive feature maps. The reason behind this maybe that
these sensitive feature maps are in the low-level and the
low-level information usually include too much useless
information. Masking these feature maps just reduces the
interference of information and making the classification
network to make a more accurate decision. Moreover, it can
be proven that masking the sensitive feature map is no use-
ful for defending the adversarial example attack. Further-
more, these sensitive feature maps can be used to interpret
the adversarial example attack in a way but they are not the
only reason for interpretable adversarial learning. Finally,
this experiment also overturns the hypothesis of defending
the adversarial example attack.

In this section, another hypothesis is that “if we can
increase the influence of these sensitive feature maps (to fur-
ther increase the difference of pair images), then the adver-
sarial example can be detected.” In this experiment, the
weights of filters in the first network layer, which are rela-
tive to sensitive feature maps, are enlarged by 1.8 times.
Actually, it is implemented as an attention mechanism to
increase the effects of filters so as to produce more influen-
ces when classifying the images. The experimental results
are shown in Table 10 for the DAmageNet and Table 12 for
the PGD dataset. Seen from the value of change statics, it
can be found the confidence values of the most adversarial
examples are decreased after enlarging the weights of fil-
ters. It can be said that enlarging the influence of sensitive
filters can be an effective way to defend the adversarial
example attack on one side. However, the confidence values
of clean examples are also decreased. It means that enlarg-
ing the weights of sensitive filters actually changed the
effectiveness of the classification network. Therefore, it can’t
be a choice to defend the adversarial example attack.

Besides, there is an interesting finding that the predicted
labels of adversarial examples in the category of kite, carton,
crane and granny smith are changed after enlarging the
weight of filters in the first layer in Table 10. The reason
behind this is that adversarial examples are the clean image
added with perturbations, and now enlarging the weight of
filters in the first layer and the inherent perturbations make
the prediction results of the model unpredictable.

Moreover, except for enlarging the weights of sensitive
filters in the classification network, another direction is to
enlarge the weights of filters, which are relative to the fea-
ture maps with smallest difference value. These filters can
be regarded as the insensitive filters in the classification net-
work for adversarial example attack. As shown in Tables 5
and 7, these insensitive filters are in the fifth residual block
of classification network. In the experiment, the weights of
insensitive filters are also enlarged by 1.8 times. The experi-
mental results are shown in Tables 11 and 13, and they pres-
ent the same trend shown in Tables 10 and 12. After
enlarging the weights of insensitive filters, the confidence
values of the most clean and adversarial examples are both
decreased, even in a more largely way. In detailed, the value
of change statics on the clean image and adversarial exam-
ples in DAmageNet is 25.79 and 4.656 for enlarging the
weights of insensitive filters while this value is just 0.601

Fig. 4. Visualize the feature maps from clean (Top of each pair) and
adversarial (Bottom of each pair) example.
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TABLE 9
The Top-1 Labels and Their Confidence Values Before and After Masking the Feature Maps With Large Differences

on Clean Examples and Corresponding Adversarial Examples From PGD Dataset Respectively

TABLE 10
The Top-1 Labels and Their Confidence Values Before and After Enlarged the Weight of Filters in the First Layer

on Clean Examples and Corresponding Adversarial Examples From DAmageNet Respectively

TABLE 8
The Top-1 Labels and Their Confidence Values Before and After Masking the Feature Maps With Large Differences

on Clean Examples and Corresponding Adversarial Examples From DAmageNet Respectively
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TABLE 11
The Top-1 Labels and Their Confidence Values Before and After Enlarged the Weight of Filters at the Fifth Residual Block on Clean

Examples and Corresponding Adversarial Examples From DAmageNet Respectively

TABLE 12
The Top-1 Labels and Their Confidence Values Before and After Enlarged the Weight of Filters in the First Layer

on Clean Examples and Corresponding Adversarial Examples From PGD Dataset Respectively

TABLE 13
The Top-1 Labels and Their Confidence Values Before and After Enlarged the Weight of Filters at the Fifth Residual

Block on Clean Examples and Corresponding Adversarial Examples From PGD Dataset Respectively
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and 4.650 for enlarging the weights of sensitive filters. For
the clean image and adversarial examples in PGD dataset,
the value of change statics is 18.58 and 18.27 for enlarging
the weights of insensitive filters while the corresponding
value is just 15.55 and 8.221 for enlarging the weights of sen-
sitive filters.

Overall, for the first question proposed at the beginning
of this paper, the difference discovered when adopting the
classification network to classify the clean example and
adversarial example respectively, can’t be further used to
resist the adversarial example attack.

4.6 Adversarial Training to Resist the Adversarial
Example Attack

For defending the adversarial example attack, one of the
most common used method is the adversarial training. It
means to retrain the classification network with the clean
and adversarial example together to make the network
more robust. Therefore, in this paper, the adversarial train-
ing is also adopted to verify whether the retrained classifica-
tion network can defend the adversarial example attack. In
this experiment, because the ResNet50 adopted in this
paper is a pretrained classification network trained on the
ImageNet dataset, we only need retrain the ResNet50 with
the additional adversarial examples from DAmageNet to
realize the adversarial training. To be more specific, in order
to evaluate the performance of retrained ResNet50, we
select 10000, 20000, 30000 and 40000 adversarial examples
from the DAmageNet as the additional training dataset,
respectively. And another 10000 adversarial examples and
10000 clean examples from ImageNet validation set are
remained as the two validation dataset. It can be noted here
that the label of adversarial examples in training dataset is
set as the real one instead of the fake one (e.g., the adversar-
ial example which looks like a cat is set with a real “cat”
label instead of the “dog” label obtained from the classifica-
tion network with the wrong prediction) so as to improve
the robustness of the classification network to make a cor-
rect prediction, which is easily generalized in practical
application. Moreover, the pretrained ResNet50 can achieve
the 41.77% classification accuracy on the ImageNet valida-
tion set and 4.430% accuracy on the adversarial example
from DAmageNet validation set, which is used to measure
how many clean and adversarial examples can be correctly
classified after the adversarial retraining, showed in paren-
theses in the Table 14.

After implementing the adversarial training with the
10000, 20000, 3000 and 40000 adversarial examples respec-
tively, the experimental results can be found in Table 14. It

can be found that when the size of additional training set is
less than 40000 adversarial examples, the classification accu-
racy on the ImageNet validation set achieves a worse perfor-
mance by comparing with the pretrained ResNet50. It can be
said that the classification network is messed up with the
adversarial training datasets of these sizes on classifying
clean examples from ImageNet validation set after the pro-
cess of retraining. However, with the size of training dataset
increase, the performance both on the ImageNet validation
set and DAmageNet validation set becomes better and bet-
ter. And when the training dataset is increased to 40000, the
classification accuracy of retrained ResNet50 achieve the
best one 54.60% on ImageNet validation set, even better than
the original accuracy. Meanwhile, when the size of addi-
tional training set is larger than 10000 adversarial examples,
the classification accuracy on the DAmageNet validation set
are beyond 4.430%which obtained on the original pretrained
ResNet50. Moreover, the classification accuracy on adversar-
ial examples is up to 19.73%, with almost five times increase
by comparingwith the original one.

Furthermore, the adversarial training on the another
attacking method PGD is also evaluated to resist the adver-
sarial example attack. Specifically, for the adversarial exam-
ples generated by the PGD, 10000, 20000, 30000, and 40000
adversarial examples are adopted as the additional training
dataset, respectively. And the left 10000 adversarial exam-
ples are remained as the validation dataset, which also
includes another 10000 clean images selected from the
ImageNet validation set. The experimental results can be
found in Table 15. Before implementing the adversarial
training, the pretrained ResNet50 can achieve the 41.77%
classification accuracy on the ImageNet validation set and
only 0.13% on the PGD validation set. As shown in Table 15,
comparing with Table 14, it can be found that the classifica-
tion accuracy after retraining on the PGD validation set is
higher than the adversarial training on the DAmageNet
under the same training size when evaluated both on the
ImageNet validation set and PGD validation set. To be
more specific, when the training dataset is increased to
30000, the classification accuracy of retrained ResNet50
achieves a better performance (44.98%) compared to the
original one (41.77%), and the best accuracy is the 67.42%
when the training dataset is increased to 40000. Moreover,
on the PGD validation set, the classification accuracy of
retrained ResNet50 also achieves a much better perfor-
mance compared to the original one, from 11.77% to 24.08%.
Furthermore, by comparing the adversarial training on the
DAmageNet and PGD dataset, it can be found that the
adversarial training achieves a better performance on the
PGD dataset to resist the adversarial example attack. In

TABLE 14
The Classification Accuracy of the Retrained ResNet50 and the

Pretrained ResNet50 on ImageNet Validation Set and
DAmageNet Validation Set Respectively Under

Different Training Set Sizes

Training Set Sizes Acc.ImageNet Acc.DAmageNet

10000 15.07 (41.77) 3.891 (4.430)
20000 19.21 (41.77) 5.684 (4.430)
30000 29.98 (41.77) 6.987 (4.430)
40000 54.60 (41.77) 19.739 (4.430)

TABLE 15
The Classification Accuracy of the Retrained ResNet50 and the
Pretrained ResNet50 on ImageNet Validation Set and PGD

Validation Set Respectively Under Different Training Set Sizes

Training Set Sizes Acc.ImageNet Acc.PGD set

10000 25.71 (41.77) 11.77 (0.130)
20000 31.53 (41.77) 12.21 (0.130)
30000 44.98 (41.77) 15.68 (0.130)
40000 67.42 (41.77) 24.08 (0.130)
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other words, it is more difficult for the classification net-
work to resist the adversarial example attack when facing
with the DAmageNet dataset.

It can be said the adversarial training can be used to
improve the robust of the classification network to support
the adversarial defense. Moreover, according to this experi-
ment, another useful usage of adversarial training is discov-
ered, which can be used to improve the classification
accuracy of the original classification network. It can inter-
pret that the adversarial training increases the diversity of
the training dataset in practice so as to improve the preci-
sion and robustness of the classification network.

4.7 Training Binary Classification Network to Detect
the Adversarial Example

In order to explore how to defend the adversarial example
attack in an interpretable way, we design a two-class classi-
fier which adopts the ResNet50 and is trained from scratch
to directly classify the clean image and adversarial image
and visually presents the attention map. The loss function
of the binary classifier is as follows:

Lossðy; y^Þ ¼ � 1

N

XN
n¼1

½yn � log ðy
^
nÞ þ ð1� ynÞ � log ð1� y

^
nÞ�; (5)

where N is the number of examples, y is the true distribu-
tion, and y^ is the softmax multinomial prediction distribu-
tion. Minimizing this softmax loss leads to maximizing the
predicted probability of the ground truth class, which
would be a good property for model optimization.

All the weight parameters of the network are randomly
initialized, and the batch size is set to 32. The Adam opti-
mizer is adopted to optimize the loss function. The initial
value of the learning rate is 0.001. The exponential decay
rate of the first-order moment estimation is 0.9, and the sec-
ond-order moment estimation is 0.999. The training epoch
is set to 47000 to achieve a better performance. The training
dataset is composed of 25000 images from the ImageNet
validation set and 25000 images from the DAmageNet. In
order to evaluate the performance of this classification net-
work, the validation dataset contains the rest of 25000
adversarial example from the DAmageNet and 25000 clean
examples from ImageNet validation set.

To assess the predictive performance of the binary classi-
fication model, we calculated its performance in terms of
accuracy and area under roc curve (AUC). AUC is used in
the classification analysis to evaluate the quality of a classi-
fier. In general, an AUC score of 0.5 means that there is no
discrimination, a score between 0.6 and 0.8 is considered
acceptable, a score between 0.8 and 0.9 is considered excel-
lent, and more than 0.9 is considered outstanding [51].

After training the binary classification model with the
training dataset, the validation dataset is evaluated on this
model. It achieves the 98.42% classification accuracy on the
clean examples and 99.07% accuracy on the adversarial
examples. Besides,the binary classification model is with
an AUC of 0.9875. According to the experimental result, it
can be said that this binary classification model can be
used to detect the adversarial example. Moreover, the
Fig. 5 presents the CAM analysis by adopting the binary
classification model to classify the clean and adversarial

examples. Moreover, the attention map both on the clean
and adversarial example obtained by adopting the pre-
trained ResNet50 is also visually presented in Fig. 5 as the
comparison. It can be found that if we want to accurately
identify the difference between the clean image and adver-
sarial image, and further to detect the adversarial example,
the classification network should be trained to focus on the
different region on the adversarial example. To be more
specific, instead of focusing on the object itself by adopting
the pretrained ResNet50, the detection network should not
place their interest on the more semantic human-per-
ceivable features or attributes and merely focus on some
local small region. This findings can provide a new
research direction to design more robust classification net-
work to resist the adversarial example attack.

5 CONCLUSION

In this paper, we seek to understand universal adversarial
example attacks on image classification models and inter-
pret why the classification model can be successfully
attacked by adversarial examples, in order to better design
mitigation strategies to resist such adversarial example
attacks. To do so, we designed and carried out a number
of experiments (e.g., CAM analysis, feature map analysis,
feature maps/filters changing, adversarial training, and

Fig. 5. CAM Analysis. The first row is the clean images from ImageNet
validation set. The second and third row are the attention maps of
images in the first row which obtained from 1000-class pretrained
ResNet and 2-class ResNet by CAM respectively. The fourth row is the
adversarial images corresponding to the first row from DAmageNet. The
fifth and sixth row are the attention maps of images in the fourth row
which obtained from 1000-class pretrained ResNet and 2-class ResNet
by CAM respectively.
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binary classification model). The findings from our evalua-
tions showed that the distribution of pixel value has a tiny
difference between clean and adversarial examples, but the
main difference is the salient region. Moreover, changing
the pixel value on the salient region, the confidence values
of clean examples have larger jitter. We also noted that the
neuron results in a large different response to the adversar-
ial example from the shallow layer. Furthermore, we found
that masking the specific feature maps or changing the
weights of filters cannot be used to resist adversarial exam-
ple attacks. Based on our findings, we also conclude that
adversarial training can be used to improve the classifica-
tion accuracy and robustness of the original classification
network. While we found training a discriminator to dis-
criminate the adversarial example is potentially useful in
resisting adversarial example attack, this is challenging
especially dealing with large datasets (e.g., ImageNet,
social media or CCTV datasets).

The interpretation in our work is mainly analyzed from
the input layer or from a certain layer in the network. In
other words, we have yet to consider the combination of dif-
ferent layers from the learning network at the global level.
Hence, this is a possible future extension. In addition, we
also plan to focus on interpretation of the learning network
on different application domains, such as medical image
classification, as well as designing more effective adversar-
ial defense methods to resist adversarial example attacks
(by understanding why an adversarial example can success-
fully attack the classification network).
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