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Abstract—Voice authentication has been increasingly adopted for sensitive operations on mobile devices. While voice
biometrics can distinguish individuals by their spectral features (such as voiceprints), they are known to be prone to spoofing
attacks, where malicious attackers can use pre-recorded or synthesized samples from legitimate users or impersonate the
speaking style of the targeted user to deceive the voice authentication system. In this paper, we design and implement a novel
software-only anti-spoofing system on smartphones. Our system leverages the pop noise, which is generated by the user’s oral
airflow when speaking the passphrase close to the microphone. The pop noise is delicate and subject to user diversity, making
it hard to be recorded by replay attacks beyond a certain distance or to be imitated precisely by impersonators. Specifically, we
design a new pop noise detection scheme to pinpoint pop noises at the phonemic level, based on which we establish a
theoretical model to calculate the sound pressure level from the speech signal in order to get the estimated pressure signal,
and then analyze the consistency with the actual pressure signal extracted from the pop noise. Furthermore, we calculate the
similarity score of the unique sequences which describe the individually unique relationship between pop noises and phonemes

to resist spoofing attacks. Our evaluation on a dataset of 30 participants and three smartphones shows that our system
achieves over 94.79% accuracy. Our system requires no additional hardware and is robust to various factors including
authentication angle, authentication distance, the length of passphrase, ambient noise, etc.
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1 INTRODUCTION

OMPARED with password-based authentication, biomet-
Cric authentication [2], [3] is more convenient since it is
hands-free, and users do not need to memorize passwords.
Compared with other biometric authentication, voice
authentication is more low-cost, natural and convenient. In
recent years, the rapid growth of mobile communications
has boosted the use of voice authentication in mobile
devices, including smartphone login, mobile banking, and
e-commerce. For example, WeChat adds voice as a new
interface, and users can log in through “Voiceprint” [4] gen-
erated from their voice passwords. Google allows users to
unlock their phones of Android operating systems by voice
biometrics [5]. Say Tec uses the voice biometric solution to
support mobile financial services such as online payment
and banking [6]. With the booming mobile technology, it is
foreseeable that more voice authentication based mobile
applications will spring up in the future.

However, since the sound transmits through an open and
public channel, the voice authentication system is highly vul-
nerable to spoofing attacks [19], [20], [21]. There are two major
types of spoofing attacks, namely, replay attacks and imper-
sonation attacks [22]. In replay attacks, the adversary pre-
records and playbacks the voice sample of the passphrase of a
legal user to deceive the authentication system [23]. An adver-
sary can also mimic the voice characteristics and style of a
legal user to conduct impersonation attacks [24]. Spoofing
attacks may greatly harm the users as the adversary may gain
access to the victim’s smartphone to steal private information
and perform malicious operations.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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TABLE 1
An Overview of the State-of-the-art Anti-Spoofing Systems
System Source of No Extra No Extra No Position Resist Resist
Distinctiveness Device  Operation Constraint? Replay Attacks Impersonation Attacks
VoiceLive [7] Phoneme location v X v v X
VoiceGesture [8] Mouth motion v v X v v
Lippass [9] Mouth motion v v X N v
LVID [2] Mouth motion v v X v v
Wivo [10] Mouth motion X X v N X
Chen et al. [11] Magnetic field v X X v v
CaField [12] Sound field v v v v X
Sahidullah et al. [13] Throat vibration X v v v X
Shang et al. [14] Throat vibration v v v v X
VAuth [15] Body vibration X X v v X
Wang et al. [16] Oral airflow X v v v v
Shiota et al. [17], [18] Pop noise v v v v x
VoicePop [1] Pop noise v v v v v
VoicePop+ (this work) Pop noise & oral airflow v v v v v

Note that, i: it refers to the constraints on relatively stable movements and fixed authentication angles between the user’s lips and the microphone.

Traditional methods to defend against replay attacks and
impersonation attacks are liveness detection and automatic
speaker verification (ASV) system. Liveness detection exam-
ines whether the voice is produced by a live user or a
speaker, and ASV leverages unique spectral and prosodic
features of the user’s voice for identity authentication. For
example, Zhang et al. [7] proposed to capture time-differ-
ence-of-arrival (TDoA) changes to the two microphones of
the phone in a sequence of phoneme sounds to differentiate
the voice from a live user and a replay device, but the user
has to hold the phone at a specific position. In [8], the smart-
phone served as a Doppler radar to transmit a high-fre-
quency acoustic sound from the built-in speaker and
monitor the reflections of articulators at the microphone for
liveness detection. Unfortunately, the extent of articulatory
movements affects the effectiveness of this countermeasure.
Chen et al. [11] explored the magnetic field emitted from
loudspeakers to detect voice replay attacks. But users need
to move the smartphone with a predefined trajectory
around the mouth while speaking the passphrase. Voice-
Gesture [8], Lippass [9], and LVID [2] are based on lip
motions and leverage the theory of Doppler effect, where
the smartphone is used as a Doppler radar to transmit high-
frequency acoustic signals and monitor the reflection signal
of articulators [8] and lip motions [2], [9]. However, the
reflection signals are sensitive to the relative position
between the smartphone and the user, especially the angles
between the mouth, microphone, and speaker. M Sahidul-
lah et al. [13] developed an ASV system against impersona-
tion attacks using the throat microphone which is not
available in most smartphones. Table 1 summarizes the
characteristics of the state-of-the-art anti-spoofing systems.
As shown, the attack detection mechanism proposed in this
paper has no specific location restrictions except that the
user is required to be close to the microphone as possible .
Besides, our system does not need any additional authenti-
cation equipment, which greatly improves the usability. As
an extension to our conference paper, VoicePop [1],

1. Our evaluation shows that a distance range of 4-12cm is feasible,
and the distance of 4cm is recommended.

VoicePop+ further utilizes the feature of oral airflow pres-
sure and adopts a new speaker verification method, which
achieves higher detection rates in defending the replay
attacks and impersonation attacks and better robustness
against many potentially disrupting factors such as authen-
tication positions, ambient noises, body movement, etc.

In this paper, we propose and implement VoicePop+2, a
novel and practical anti-spoofing system based on pop noise
that is induced by the user breathing while speaking the
passphrase close to the microphone. Our observation is two
fold: 1) The pop noise is subject to user diversity; 2) The
recorded voice samples hardly contain the pop noise since
the sound of the breath is gentle compared to the speech
and will die out beyond a certain distance. Thus it is very
difficult for attackers to imitate the way the legal user
breathes. These ideal properties of the pop noise enable our
proposed VoicePop+ system to resist spoofing attacks in
voice authentication. To begin with, we conduct phoneme
segmentation on the collected voice sample according to the
spectrogram characteristics. We design a novel pop noise
detection algorithm to locate pop noises at the phonemic
level. Since pop noise exhibits air pressure from the oral air-
flow, we can calculate the estimated pressure signal from
the sound pressure level and then analyze the consistency
between it and the pop noise. If they are inconsistent, the
input sample is considered as a replay attack. To defend
against impersonation attacks, we leverage the individually
unique relationship between phonemes and pop noises to
construct a phoneme-pop sequence. A legal user is accepted
if the phoneme-pop sequence of the voice sample is similar
to that stored in the user profile upon registration, and an
impersonation attack is declared otherwise.

VoicePop+ requires no additional hardware but only the
built-in microphones that are available on almost all mobile
devices. VoicePop+ also demands no extra efforts from
users except speaking the passphrase as required by current
voice authentication systems. To our best knowledge, we
are the first to analyze the characteristics of pop noise to

2. To avoid confusion with the conference version [1], we name the
new system presented in this paper VoicePop+.
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Fig. 1. A typical voice authentication system.
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defend both replay attacks and impersonation attacks. We
implement VoicePop+ on 3 types of smartphones and eval-
uate its performance with 30 volunteers under different
experimental settings. The results verify the effectiveness of
VoicePop+, with over 94.79% detection accuracy. The main
contributions of this work are summarized as follows:

e We propose a novel pressure signal estimation
scheme that relies only on built-in microphones.
Based on the pop noise and its estimated airflow pres-
sures, we extract effective and lightweight features
that can well represent the individually unique pho-
neme-pop sequences with only three dimensions.

e We design a new speaker verification method,
including a specific and concise feature extraction
scheme by consistency analysis and similarity com-
parison. By leveraging the lightweight features
extracted from pop noises and the airflow pressure,
VoicePop+ can effectively and efficiently defend
against replay attacks and impersonation attacks.

e We build a fully-functional VoicePop+ prototype
using off-the-shelf smartphones. Extensive evalua-
tion results on a dataset of 30 participants demon-
strate that VoicePop+ can detect both replay and
impersonation spoofing attacks with high accuracies
and is robust to interference factors including authen-
tication angles and distances, passphrase length,
ambient noises, etc. VoicePop+ achieves an overall
accuracy of 94.79%, and still performs well at the dis-
tance of 12cm and the authentication angle of 90°,
with accuracies of 94.76% and 94.68%, respectively.

The remainder of this paper expands as follows. Prelimi-

naries are presented in Section 2. We describe the detailed
design of VoicePop+ in Section 3. Sections 4 and 5 presents
the evaluations of the VoicePop+. We review related works
in Section 6 and finally conclude our work in Section 7.

2 PRELIMINARIES

2.1 Attack Model
VoicePop+ is designed for smartphone voice authentication,
where the unique acoustic features of a user’s voice are used
to verify his/her identity in a convenient and reliable
way. Voice authentication system can be text-dependent
(requires the same password for enrollment and verifica-
tion) or text-independent (accept arbitrary utterances from
speakers). We primarily focus on the text-dependent
authentication system, which is more widely adopted and
commercially viable with a high authentication accuracy
[25]. Fig. 1 displays a typical voice authentication system.
We make the following assumptions about the attacker.
Acoustic Attacks Only. An attacker can only attack the
voice authentication system by sound. We do not consider
scenarios in which an adversary attacks the hardware or
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operating system of a voice authentication system and inter-
feres with the communication process of the authentication.
Before the attack, the attacker can obtain the target user’s
voice sample by eavesdropping or from public resources
but cannot obtain the stereo recording directly from the
authentication system. We also assume that during the
attack, the adversary can attack from any location without
being noticed by the user.

State-of-the-art Software and Hardware. Attackers can use
state-of-the-art equipment, including the microphone and
speaker hardware of any type and quality, and can use the
most advanced speech synthesis or conversion technology.

For the attack model, we consider replay spoofing attacks
and impersonation spoofing attacks.

Replay Attacks. Replay attacks leverage computers and
other peripheral devices (e.g., loudspeaker) to perform
voice playback to the microphone of the smartphone. The
replay samples that involve the information of the victim’s
passphrase can be produced by stealthily recording, voice
synthesis, and voice conversion. In this paper, we mainly
focus on replay attacks by pre-recording since they retain
more user characteristics than those generated by synthesis
or conversion. The replay attack includes two steps, i.e., the
record phase and the replay phase. In the record phase, the
adversary can stealthily record the victim’s passphrase at a
distance larger than 30cm. This assumption is reasonable
because the recording distance cannot be very short (i.e., 2-
6cm to the user’s mouth). Otherwise, users can easily notice
the illegal recording of the attacker. In the replaying phase,
the adversary replays the recorded voice sample in front of
the authentication device to perform the replay attack. In
this step, the adversary can control the replay distance, i.e.,
the adversary can replay the recorded voice samples within
6cm from the authentication device. The record and replay
devices can be high-quality professional voice recorders
and loudspeakers.

Impersonation Attacks. Impersonation attacks can be con-
ducted in two ways. The first is simply to imitate the legiti-
mate user’s voice and speaking habit without the help of
other devices. The second is more advanced, where we
consider that the attacker knows the key rationale of our
anti-spoofing system and observes how the target user pro-
nounces the passphrase. To perform this type of attack, we
assume that the adversary uses a loudspeaker to replay the
pre-recorded voice sample near the microphone while
simultaneously impersonating the victim’s breathing pat-
tern close to the microphone.

2.2 Pop Noise

The human voice is produced through several stages. Air is
first expelled from the lung to form an airflow, which then
enters the throat, passes through the vocal cords into the
vocal tract, and finally bursts out of the mouth to form the
sound wave. When the resulting airflow reaches the micro-
phone, if the user’'s mouth is close enough to the micro-
phone, the captured sound signals will contain not only the
speech information but also the plosive burst as the friction
between the lips and the airflow, known as the pop noise. In
contrast, an attacker who tries to launch a replay attack usu-
ally cannot put the recording device’s microphone very
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Fig. 2. Spectrogram comparison of samples without (left) and with (right)
a pop noise filter using three different smartphones.

close to the user’s mouth, and thus the recorded voice con-
tains no pop noise. Therefore, by detecting the pop noise,
we are able to distinguish the real speech from a live user
and the recorded speech from a loudspeaker.

To detect pop noise, we compare the spectrograms of
speech signals with and without a pop noise filter using
three different smartphones, as in Fig. 2. We can find that
pop noise has high energy in the low frequency (typically
0~100 Hz), which has been discussed in the prior study
[17]. Moreover, the duration of pop noise varies in the range
20~100ms based on the way people speak and breathe. Our
detection algorithm is based on these observations.

2.3 Phoneme and Pop Noise

A phoneme is the smallest distinctive unit sound of a lan-
guage in the human speech production system. There are
two categories of phonemes, the vowel and the consonant.
A vowel is a sound produced by the airflow through the
mouth without hindrance, while a consonant is produced
by obstructing the airflow out of the mouth with the teeth,
tongue, lips, or palate. Each phoneme sound originates
from different physical places in the human vocal tract sys-
tem and is articulated in a certain manner with a specified
degree of stricture in the oral tract and the escape channel.
Since the tongue position is the most important physical fea-
ture that distinguishes one vowel from another [26], the
articulation manners of vowels differentiate mainly accord-
ing to the shape of the mouth. The range of positions of con-
sonants is wider, and the typical 6 types of articulation
manners of consonant are nasal, stop, fricative, affricate,
approximate, and lateral [7]. Since each phoneme features
unique physical origin in the human vocal tract system and
has its own manner of pronunciation, the existence proba-
bility of pop noise when pronouncing different phonemes is
different. We conduct an experiment on all 48 phonemes to
explore the relationship between the phoneme and the pop
noise. As shown in our earlier conference paper [1], we
have collected speech data from 18 volunteers and ranked
the phonemes according to the existence probability of pop
noise. The existence ratio of the pop noise of phoneme X is
calculated as %, where Ny is the occurrence number of
phoneme X, and POPy is the occurrence number of the pop
noise of phoneme X for all people. As shown in Table 2,
some phonemes require more breathing, while some
phonemes hardly require any breathing. The existence
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TABLE 2
Phonemes Rank Corresponding to Pop Noise

consonant|articulator | manner |ratio||consonant|articulator| manner [ratio
p bilabial stop |0.79 h glottal fricative [0.38
t alveolar stop |0.69 \4 labiodental| fricative [0.35
I palatal stop |0.68 w velar  |approximate|0.29
tr alveolar | affricate |0.68 kg velar stop 0.26
b bilabial stop |0.67 dz alveolar | affricate |0.22
ts alveolar | affricate |0.67 d alveolar stop 0.17
1) palatal | affricate |0.65 3 palatal stop 0.11
0 dental | fricative |0.57 n alveolar nasal 0.10
& palatal | affricate |0.50 ] velar nasal 0.08
dr alveolar | affricate |0.50 j palatal |approximate|0.05
0 dental | fricative |0.43 m bilabial nasal 0.04
s,z alveolar | fricative |0.40 T alveolar thrill 0.02
f labiodental| fricative |0.39 1 alveolar lateral  |0.02
vowel |articulator | manner |ratio|| vowel |articulator| manner [ratio
U back  |near-close|0.67 o tongue | centering |0.16
av tongue | closing |0.39 i: front close 0.16
o back open [0.28| o1eu tongue closing |0.15
eo tongue |centering|0.23 u back near-close |0.14
ar tongue | closing |0.23 3: central | open-mid |0.13
A central |open-mid|0.21 a:n back open 0.11
1 front  |near-close|0.20 e front close-mid |0.08
S front  |near-open|0.19 er front closing |0.07
Bl central mid |0.17 19 tongue | centering |0.06

probability of pop noise in consonants is higher than that in
vowels. We find that the phoneme ranking of the existence
probability of pop noise is different among users due to
their unique vocal systems and utterance styles. Therefore,
we can extract and store such information upon registration
for user identification.

2.4 Airflow Pressure and Pop Noise

According to [16], different phonemes will cause different
airflow pressure levels due to different vocalizations. With
regards to the pop noise we discuss in this paper, we
observe that the plosive burst of pop noise will cause a
higher airflow pressure. In other words, the phoneme that
contains pop noise usually has higher airflow pressure than
other phonemes. Based on this observation, we design a
pressure estimation algorithm and use the consistency of
the pop noise and its airflow pressure to distinguish the
replay of recorded voices from real voices.

3 VoicEPOP+: DESIGN DETAILS

3.1 Overview

The key idea of our anti-spoofing system is to identify a
legal user based on the located pop noise, the extracted oral
airflow pressure signal, and phoneme-pop sequence from
the voice sample when the user says the passphrase near
the microphone. Fig. 3 depicts the system architecture of
VoicePop+, which consists of three phases: data collection,
data process, and speaker verification.

In the first phase, when a user performs authentication,
the built-in microphone captures the user’s speech, which
will then be fed into an automatic speech recognition (ASR)
system to obtain the words of the passphrase. If the pass-
phrase is not correct, the user will be rejected directly; other-
wise, the recorded sample and text are transmitted to the
server in real-time for spoofing attack detection. Note that
when the voice is recorded, it will be denoised first, which
is a built-in function of the smartphone and is not the focus
of this paper, and thus we will omit the description of this
step in the following sections.
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Fig. 3. The architecture of VoicePop+.

In the data process phase, the original sample is first seg-
mented into phoneme units and non-speech periods. In par-
ticular, VoicePop+ partitions and labels the voice sample into
phonemes leveraging the forced alignment method, which
recognizes the spoken words according to a given text of pho-
neme sequence using Hidden Markov Models (HMM).
Meanwhile, a pop noise detection algorithm is proposed to
locate explosive sound periods caused by strong breathing
during speaking, which are refined and screened according
to the phoneme segmentation result and the predefined user-
dependent ranking. According to the segmented phonetic
units and the located pop noise obtained in the above steps, a
binary phoneme-pop sequence is generated, which describes
the presence of pop noises at each phoneme. Then we calcu-
late the sound pressure level corresponding to each phoneme
position from the speech signal and convert it into the pres-
sure signal through a theoretical model.

In the speaker verification phase, we first conduct a consis-
tency analysis between the estimated pressure signal and the
phoneme-pop sequence that reflects the real pressure signal,
and calculate two consistency scores. Then, we compare the
authentication phoneme-pop sequence with that stored in
the user profile and compute a similarity scores. We further
combine the above three scores and construct a 3-dimen-
sional feature. Finally, we train a binary logistic regression
model to obtain an optimal decision boundary (i.e., the
weights and thresholds for each score) that can distinguish
the spoofers and the legitimated users. The detection result
can be integrated into general voice authentication systems
for user identification.

Note that compared to the conference version [1], we add
a new step in the data processing phase and design a new
speaker verification scheme. Specifically, besides the pop
noise, we propose a new method to extract the oral airflow
pressure signal for the consistency analysis in the verifica-
tion phase. Instead of using the generic GFCC features and
SVM classifier, we propose a more specific and concise veri-
fication method, which reduces the workload of training
and improves the efficiency of the system. Due to the adop-
tion of new features and speaker verification method, Voice-
Pop+ is more robust to authentication positions, ambient
noises, body movement, etc.

3.2 Phoneme Segmentation

A phoneme is made up of a number of distinctive overtone
pitches, as known as formants. Formants refer to the area of
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Fig. 4. An example of phoneme segmentation.

the sound spectrum where the energy is concentrated. For-
mants not only determine the sound quality but also reflect
the physical characteristics of the vocal tract. Phonemes can
be uniquely identified by formants.

To attain phoneme segmentation, we first generate the
spectrogram of the voice sample using a spectrum analyzer
and then adopt HMM to perform a forced alignment for the
obtained voice spectrogram and the pre-defined spectro-
gram. Given the text of the input speech acquired by an
ASR system, the phoneme segmentation tool MAUS [27]
first transforms the words into canonical pronunciations
according to a standard pronunciation model. Then, a prob-
abilistic graph including all possible results and the corre-
sponding probabilities is produced based on the expected
pronunciation of the input words and millions of potential
accents. By searching the space of phonemic units, the path
of the unit with the highest probability is selected. Finally,
the input speech is segmented and labeled at the phonemic
level. Fig. 4 illustrates an example of phoneme segmentation
for the voice sample of a user saying the passphrase. It is
shown that each word and phoneme can be accurately
separated.

3.3 Pop Noise Detection

As we have discussed in Sections 2.2 and 2.3, pop noise has
high energy in low frequencies of the voice sample (compar-
ing the spectrograms in Fig. 2 before and after a pop noise
filter), and different phonemes feature different existence
probability of the pop noise while subjecting to user diver-
sity. Based on these observations and prior work [17], we
design a novel detection scheme, and the details (illustrated
in Fig. 5) are described as follows. The suggested parame-
ters below are mostly empirically determined according to
our dataset.

3.3.1  Non-Speech Components Removal

The phoneme segmentation not only partitions phonemes
but also separates the speech (phases containing phonemes)
and the non-speech components (the silent phases), as
shown in Fig. 4. We first remove the non-speech compo-
nents to improve the accuracy of locating the pop noise
since the non-speech components are usually noises or pre-
defined events in the speech that may be wrongly detected
as pop noise, for the reason that they often have similar
characteristic of high energy at low frequencies.

3.3.2 Short-Time Fourier Transform

We use the Short-Time Fourier Transform (STFT) to acquire
the time domain information such as the frequency
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Fig. 5. Pop noise detection.

distribution changes over time. STFT is a time-frequency
analysis technique especially for non-stationary signals that
can determine the sinusoidal frequency and phase content
of local sections of a signal. The STFT divides a long time-
domain signal into frames using a fixed window size and
then computes the Fourier transformation separately on
each frame. The results of each frame along the time dimen-
sion are stacked up to reveal the Fourier spectrum for each
segment over time. The two-dimensional signal obtained by
the STFT expansion is called a sound spectrum diagram.
For STFT analysis, we use a Hamming window with a size
of 4096 points and an overlapping of 2048 points.

3.3.3 Potential Pop Noise Location

After STFT, we get the frequency distribution of each frame.
We first compute the energy within the frequency range
0~170 Hz (the pop noise energy concentrates on low fre-
quencies) for each frame, denoted as E(i), where i is the
index of each frame. This range is selected according to
extensive analysis of spectrograms of genuine speech data
samples. Then we calculate the standard deviation of the
energy for all frames (donated as E,;). We determine that
potential pop noise exists in the ith frame (donated as
Loc(j), where j is the index of selected frames) if
E(i) > 3+ Eya.

3.3.4 Derivation Calculation

The previous step pinpoints the peaks of potential pop
noises, and then we need to locate the boundaries to obtain
the whole pop noises. To achieve this goal, we take the
derivative of the window energy function obtained by poly-
nomial fitting. Specifically, we perform polynomial fitting
on discrete energy values E(i) for every eight-point chunk,
then we take the derivative of the fitting function to obtain
the absolute value of the differential coefficient of every
point 4, denoted as D(3).
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3.3.5 Boundary Determination

We find the boundaries of pop noises by searching the
vicinity of Loc(j) up to 3 points. If the nearby point k, where
Loc(j) —3 < k < Loc(j) + 3, satisfies the conditions that
E(k) <0.45- E(Loc(j)) and D(k) > 0.45- D(Loc(j)), we
deem that there is a drop near the peak and include point &
as part of the pop noise.

Algorithm 1.
Algorithm

Phoneme-Pop Sequence Generation

Input: The number of located pop noises n, number of seg-
mented phonemes m, the set of start and end boundaries of
pop noises {ST_pop;};, and {ET pop;};_,, the set of start
and end boundaries of phonemes {ST pho;}}", and
(ET phoy}™,.

Output: Binary phoneme-pop sequence {5;}

1: Initial S; =0, =1,2,...,m;
2:j=1;
3: fori=1—ndo

4:  /*Find corresponding phoneme index of ST _pop;*/

5: while (j < m) A (ST_pop; > ST pho;) do

6.

7

8

m
=1

j++
end while
Jj——
9:  /*If the pop noise only exists in current phoneme*/
10: if (j < m) A (ET pop; < ST _pho;,,) then

11: S;i=1;

12:  else

13: /*Find all remaining phonemes*/
14:  while (j < m) A (ET pop; > ST _pho;,,) do
15: S;=1;

16: Sj+1 = 1,'

17: i+ +

18: end while

19: j— =

20: endif

21: end for

22: return S

3.3.6 Phoneme-Based Correction & Duration Check

We conduct phoneme-based correction and duration check for
all potential pop noises. Pop noise happens for certain pho-
nemes with a high probability, and everyone’s particular pho-
nemes are not the same. Therefore, we only select potential
pop noises in the presence of these high-probability phonemes
as real pop noises according to personal phoneme probability
rank. We also observe that the pop noise typically has a dura-
tion within the range 20~100ms. Hence, we check the duration
of potential pop noises and abandon those out of this range.

3.4 Phoneme-Pop Sequence Generation

Through the extensive experiments shown in Section 2.3, we
find that the positions of pop noises are different for differ-
ent people. This is because every person has his/her own
speaking style and special vocal system. Therefore, we build
a binary phoneme-pop sequence for each user’s passphrase
upon registration and store them (one authentication trail
produces one sequence) in the user profile. This sequence
describes which phonemes of the passphrase pop noises
appear along with.
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Fig. 6. Phoneme-pop sequence similarity between different pairs of
users.

We design a phoneme-pop sequence generation algo-
rithm (shown in Algorithm 1) to identify the unique rela-
tionship between phonemes and pop noises for each user.
Here we briefly generalize the algorithm. For the first pop
noise period, the algorithm begins to scan the phonemes to
find the first phoneme the pop noise appeared in and then
determines whether the appearance of the pop noise
involves more than one phoneme. If there is pop noise in
one phoneme, we set the element of the sequence to 1 corre-
sponding to this phoneme’s position. For the second and
later pop noise periods, we repeat the above steps until all
the sequences are generated.

To prove the user uniqueness of the phoneme-pop
sequence, we use the Pearson correlation coefficient, which
is used to measure the degree of linear correlation between
two sequences, to calculate the similarity between different
users. The coefficient value is within the range [-1, 1], where
an absolute value near 1 indicates a strong linear correla-
tion, while a value near 0 indicates a lack of linear correla-
tion. Fig. 6 shows the similarity (i.e., Pearson correlation
coefficients) of the computed phoneme-pop sequences for
the same passphrase spoken by four different users. Each
user speaks the passphrase for 10 times. We observe that
the correlation coefficients for the same user under different
trials are very high (around 0.8), while the correlation coeffi-
cients are below 0.5 between different users. This confirms
the individual diversity in phoneme-pop sequences.

3.5 Pressure Signal Estimation

Besides generating the phoneme-pop sequence, we intend
to extract the estimated pressure signal of the oral airflow
from the speech signal and then conduct the consistency
analysis with it. The pressure signal is calculated from the
sound pressure level according to the theoretical model,
and the calculation of the sound pressure level depends on
the energy of the signal. The whole pressure signal genera-
tion process is divided into four parts: acoustic power
acquisition, sound power level obtaining, sonority scale cal-
culation, and pressure scale conversion.

3.5.1 Energy Power Acquisition

We calculate the energy power of each phoneme from the
frequency domain. Recall that we use STFT to analyze the
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voice signals in the time domain in Section 3.3.2. Here in
this step, we use STFT to calculate the spectrum energy
within the time range of each segemented phoneme. After
STFT, we will obtain the starting time of each window,
denoted as {Tk};’{:l, where [ means the number of STFT time
windows, and the energy distribution with frequency in
each window, denoted as {Py.},="", where B means the
number of STFI frequency windows. Therefore, the
obtained energy is a two-dimensional vector. The x-coordi-
nate represents the frequency distribution, and the y-coordi-
nate represents the time distribution. According to each
phoneme’s time period, we first determine which windows
are corresponding to it, and calculate the average window
energy value in these windows as the final energy of the
phoneme. For the i-th phoneme, its energy power EnergyP;
can be calculated as

FEnergyP; =

gé\j ' ZbB:1 ‘Pbc| (1)
M 5
where j and M are the first time window and the number of
the time windows in the time period of the i-th phoneme,
respectively. It is worth noting that this step calculates the
energy power directly from the voice signal recorded by the
built-in microphones and does not require any specialized
device to record the airflow and obtain the energy power,
which is more applicable than [16].

3.5.2 Sound Power Level Obtaining

For the i—th phoneme, its sound power level SPL; can be
obtained from the waveform by using the corresponding
timestamp. For an input speech signal, the sound power
level (SPL;) in decibels (dB) is derived as follows:

2

EnergyP;
SPL; =10 1 _— |,
i * 10g10 ( Energy me

Then we can use SPL; to standardize the audio energy
sequence obtained above by reference energy value, which
we denote as AcousticP;. The formula is as follows:

SPL,
AcousticP; = EnergyPr.s + 10710, 3

where EnergyP,.s is the reference acoustic power, which is
typically 1072 watts (i.e., 0 dB).

3.5.3 Sonority Scale Calculation

After calculating the acoustic power sequence of the seg-
mented phonemes, we then construct the sonority hierarchy
of the phoneme sequence. Sonority is the scalar of pho-
nemes, which refers to the loudness of other phonemes. In
general, vowels are louder than consonants because of the
different pronunciation manner and physical origin. The
sonority of each phoneme can be expressed as the ratio of
the power of the current phoneme in the speech signal to
the weakest power in all phonemes. Sonority is calculated
by comparing each phoneme’s energy with the weakest
energy in speech. The expression is as follows:

AcousticP;

— =12, ..
AcousticPy, e

Sonority; = .m, @
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where Sonority; represents the sonority of the i-th pho-
neme, and AcousticP,,;, is the minimum power among all
phonemes.

3.5.4 Pressure Scale Conversion

The last step is to convert the sonority scale into the airflow
pressure sequence. There have been several studies about
the relationship between sonority and oral airflow pressure.
Wang et al. [16] build a relationship model to estimate the
oral airflow pressure according to the phoneme sonority
scale, depending on the conclusion in [28] that the sonority
is inversely correlated with oral airflow pressure and the
observation in [29] that the correlation coefficient between
sonority and the oral airflow pressure is approximate —0.84.
Here we use this theoretical model to estimate the pressure
signal. The formula is given as

Pre; = p x Sonority; +v,i =1,2,...,m, (5)

where Pre; represents the estimated pressure of the i-th
phoneme, p is the correlation coefficient between sonority
and pressure, and v is a constant term used to adjust the
pressure coordinates to g)ositive values, which is set to
169.85 in our experiments”. We construct the sonority hier-
archy and the estimated pressure for the speech signal “set
an alarm for six am”, as illustrated in Fig. 7.

3.6 Speaker Verification

In this part, we will make a double check according to the
obtained characteristics above to ensure that VoicePop+ can
resist both replay attacks and impersonation attacks. Specif-
ically, we conduct the consistency analysis based on the
phoneme-pop sequence and the estimated pressure signal
and the similarity comparison based on the phoneme-pop
sequence. We then construct a 3-dimensional feature from
the consistency and similarity scores, and finally use logistic
regression to verify the speakers.

3.6.1 Consistency Analysis

In this step, we use the phoneme-pop sequence and the
estimated pressure signal for consistency analysis. We
find that the phoneme that contains pop noise usually
has higher airflow pressure than other phonemes,
because pop noises are formed by plosive bursts. Based
on this observation, we design two consistency scores,
i.e., prol and pro2, for the phonemes with low and high
airflow pressure, respectively.

Recall that the phoneme-pop sequence describes the pho-
neme positions where pop noises occur, so we think that the
pressure values should be very different for the element
with value 0 and the element with value 1 in the sequence.
Therefore, we use the following formula to calculate the
consistency score to represent the consistency of those pho-
nemes whose pressure is low:

rol = 2 1(S; =0 A Pre; <=mean(Pre)) ’ ©)
mo

3. Since we only compares the relative pressures of the phonemes,
the choices of i and v will not affect the experimental results.
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Fig. 7. Scale constructions for sonority and pressure.

where m, is the total number of those phonemes with low
probabilities of pop noises, and I(z) is an indicator function.
If the condition in parentheses is true, I(z) adds 1 to its
counting value. The formula indicates that when the pho-
neme period does not contain pop noise, the pressure
caused by the oral airflow at this phoneme position should
be lower than the average of the overall sequence pressure.

For the phonemes whose pressure is relatively high in a
phoneme sequence, we use the following formula to calcu-
late another score pro2 for a double check:

pro2 — IS =1A F;rnei > mean(Pre)) 7 ™
1

where m, is total number of those phonemes with low prob-
abilities of pop noises. pro2 indicates that when pop noise
occurs in some phonemes, the pressure of these phonemes
should be higher than the average value.

Since the adversaries cannot record valid pop noises in
the replay attacks, the replayed samples contain few pop
noises. Even if there are pop noises detected in the replayed
samples, the pop noises are not caused by natural airflows
from human. Therefore, the consistency scores prol and
pro2 of the recorded samples will be very different from
real samples, and we use prol and prol as part of the fea-
tures to distinguish the fake samples and real samples.

Taking impersonation attacks into consideration, we
design a similarity comparison method based on the indi-
vidually unique phoneme-pop sequence. When the user
enrolls in the system, he or she is required to perform the
authentication trail for 5 times. Thus, we collect 5 phoneme-
pop sequences for each user and store them in his/her user
profile. Using these sequences, we can get a probability
rank through the following formula:

_3LISi=1) ®)

PI’Oi
)

Then we use the following formula to calculate the simi-
larity score pro3:

pro3 = " I(Pro; >=0.6AS; ==0)

m
I ST I(Pro; <=02A8;==1)
- .

9)

It is worth mentioning that from the perspective of
reliability, we choose those phonemes whose probability
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of containing pop noise is larger than 0.6 and calculate
their amount of inconsistency. Namely, if the phoneme’s
probability satisfies the above condition while the corre-
sponding element in the phoneme-pop sequence is 0, the
statistic value will be increased by 1. Similarly, if the
phonemes’ probability is less than 0.2, we count the
number of elements with a value of 1 at these phoneme
positions. If the sequence is similar, the value of pro3
will be low, indicating that there will be fewer sequence
errors.

3.7 Verification Method

Finally, we construct the feature from prol, pro2, and pro3
and leverage a binary logistic regression model to find the
best classification boundary. The feature can be represented
as follows,

f = (prol,pro2,pro3). (10)

Theoretically, according to the definitions of the scores, a
single prol, pro2, or pro3 can roughly divide the true sam-
ples and false ones by setting a threshold and comparing
the score with it. Therefore, the linear combination of the
scores is linearly separable, which is suitable to adopt a
binary logistic regression model here.

Specifically, we consider a standard logistic function,

1

holf) = e =

Pr(Y = 1|f;0), 11)

where hy(f) denotes the probability of predicting Y as 1 for
an input f, and 6 is the function parameter. Note that 6 f is
the decision boundary we need. To obtain an optimal deci-
sion boundary, we use the following loss function,

if y=1,

gy

Loss(hy(f),Y) = { jgg Eflleﬁf;z);(f)),

Then we can use the gradient descent algorithm to find the
optimal 6 that minimizes the loss. Finally, we calculate hy(f)
and compare it with 0.5. If hy(f) > 0.5, we regard the input
passphrase as a true sample. Otherwise, we consider this
authentication as a spoofing one.

4 IMPLEMENTATION

We implement a prototype of the typical client-server archi-
tecture, as shown in Fig. 8, and build it on several smart-
phone testbeds to evaluate and validate the performance
and effectiveness of our system. Our prototype is consisting
of two parts: 1) a mobile application running on Android
and 2) a processing backend running on one ThinkPad
server with Intel(R) Core(TM) i7-7500U 2.70 GHz CPU and
8 GB of RAM.

4.1 Mobile Application

The mobile application is designed for users to record
acoustic data at a sampling rate of 44.1kHz, which then
recognize the words of the speech and upload the raw
acoustic data and its corresponding text to the server in
real-time.
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Fig. 8. The implementation overview of VoicePop+.

4.2 Server Backend

The implemented server liveness detection program, which
is primarily coded by JAVA, has two main functionalities:
data receiving and result feedback and data processing and
verification.

Data Receiving and Result Feedback. The server communi-
cates with the mobile phone via secure socket protocol and
is capable of receiving the users’ acoustic data. After the
data processing pipeline, it will return the verification result
directly to the user’s phone. We implement this communi-
cation model by JAVA language.

Data Processing and Verification. At the server side, the
received data is fed into a processing pipeline just as we
described in Section 3, including phoneme segmentation,
pop noise location, phoneme-pop sequence generation, con-
sistency analysis, and similarity comparison. We implement
this part by matlab and package the processing function as
a JRE package, which is available for our server written in
JAVA to invoke.

5 EVALUATION

In this section, we evaluate the proposed anti-spoofing sys-
tem under both replay attacks and impersonation attacks.
We also evaluate the robustness of our system under differ-
ent angles and distances between the microphone and the
user’s mouth, different lengths of passphrases, different
speaking speed, different types of smartphones, different
body movements and different environments.

5.1 Experimental Setting
5.1.1 Data Collection

We recruit 30 volunteers (18 males and 12 females) to partic-
ipate in the experiments. We use three different smartphone
models running Android 6.0 KitKat for authentication, as
shown in Table 3. The participants are undergraduate and
graduate students who are instructed to perform voice
authentication with VoicePop+. Since VoicePop+ detects
pop noises caused by user breathing while speaking, we
require the users to speak close (i.e., within 12cm) to the
microphone, but do not request them to hold the phone at a
specific place or distance. Fig. 9 shows a typical use case,
and we will discuss the effective distance and the impact of
authentication angles later.

To build the user profile, including phoneme-pop
sequences and pop noise existence probability sequences,
we ask each participant to speak a passphrase five times
upon registration. The passphrase of each participant is ran-
domly selected from a pre-defined command set, and the
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TABLE 3
Devices Used in the Experiments

Maker Model Authentication  Record  Replay
XiaoMi Mi6 v
Samsung C9 pro v v
Samsung S7 edge v
XiaoMi Mi10S v v
Huawei Matel0 v v
Samsung Note4 v
Phillips VTR8060 v v
Amazon Echo dot v
Hivi M200mKIII v
Earise Al-101 v

lengths of the passphrases range from 3 to 10 words. Then,
each participant chooses three passphrases and performs 10
trails for each passphrase.

5.1.2 Attack Methods

We evaluate our system under replay attacks and imperson-
ation attacks.

Replay Attack. In the replay attack, the adversary holds a
microphone (e.g., a smartphone or a professional voice
recorder) in front of the legitimate user at a distance of 30cm
and records the passphrase when the legitimate user is per-
forming voice authentication. Then, the adversary replays
the pre-recorded passphrase in front of the authentication
smartphone’s microphone at a distance of 4cm by a speaker
(e.g., a smartphone or a loudspeaker). For each passphrase of
each participant, we conduct 10 replay attack trials.

Impersonation Attack. We consider three types of imper-
sonation attacks: playback with random breath and play-
back with breath impersonation. Specifically, the adversary
replays the target user’s voice sample by using a loud-
speaker and imitates the user’s breath (or just randomly
breathe) in front of the smartphone at the same time for
voice authentication. We also conduct a training process for
each adversary [30]. Before the training, the adversaries can
only listen to the recorded voice samples once, and the imi-
tated breathing can be regarded as “random breathing”. In
the training phase, the volunteers are asked to observe the
target user’s breathing (especially the speed of talking and
the breath style) in the authentication phase ten times and
then imitate the breathing of the target user. To guarantee
the quality of training, we then ask the target user to listen
to the imitated voice samples produced by the volunteer
and give specific feedback to him/her for better imitation
(e.g., breathe more lightly, breathe more quickly, etc.). The
volunteer will adaptively imitate the target user’s breathing
with the help of the feedbacks. For each volunteer, the data
collection of the training process is considered done if and
only if all the imitations are sufficiently satisfied by the cor-
responding target user. Then, we allow the adversary to
imitate the legitimate users within a limited number of
times, e.g., five attempts. This setting is practical and rea-
sonable because the voice authentication system may be
locked if the user fails multiple authentications. In our
experiments, we recruit 10 volunteers as adversaries, and
each impersonates 3 participants for 10 trails.
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5.1.3 Devices

Table 3 lists the devices used in our experiments. For user
authentication, we use three off-the-shelf smartphones,
including a XiaoMi Mi6, a Samsung C9 pro, and a Samsung
S7 edge, to record the user’s passphrases upon registration
and verify the users in the authentication phase. In the
replay attack, we employ 5 microphone models, including
the professional recorder and the built-in microphones of
mobile devices, to pre-record the passphrase when a legiti-
mate user is performing voice authentication. The profes-
sional recorder we use is a Phillips VTR8060 voice digital
recorder with high-quality microphones. We also use five
speaker models, including the standalone loudspeakers
and built-in speakers of mobile devices, to playback the
recorded voice samples. Specifically, we use a popular com-
mercial voice assistant, Amazon Echo dot, a small and light-
weight loudspeaker, Earise Al-101, and a professional
loudspeaker, Hivi Swans M200mkIII. The Hivi speaker can
produce high definition and room-filling sound at 120W
RMS.

5.1.4 Metrics

We adopt three metrics to evaluate the performance of our
system: True Positive Rate (TPR), True Negative Rate
(TNR), and accuracy. TPR is the probability that the system
correctly identifies a legitimate user. TNR is the probability
that the system correctly detects spoofers. TPR and TNR
measure the accuracy of the system for user identification
and spoofer detection, respectively. Accuracy measures the
likelihood that the system accepts legitimate users and
rejects attacks.

5.2 Overall Performance

We confirm the effectiveness of our system against replay
attacks and impersonation attacks by comparing it with the
baseline (VLD) [18] and the conference version of VoicePop
[1]. In [18], Sayaka Shiota et al. proposed the pop noise
detector combined with the phoneme information to detect
the existence of pop noises, but the replayed samples were
easily recognized as legitimate samples under their pro-
posed algorithm. However, VLD does not consider using
the characteristics of the pop noise for further classification,
nor does it consider the impersonation attack when the
adversary replays the audio and mimics breathing at the
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same time. Figs. 10 and 11 demonstrate the overall ROC
curves and accuracies of VoicePop+, VoicePop, and VLD
under the spoofing attacks. It is shown that our system
achieves an overall accuracy of 94.79% and EER of 7.1%
under replay and impersonation attacks, far outperforming
the baseline VLD that has an accuracy of 63.97%. Besides,
the overall accuracy of VoicePop is 91.29%, indicating that
the new speaker verification scheme in VoicePop+ is more
effective than the direct use of GFCC and SVM in VoicePop.
This also shows that the combination of pop noise and its
airflow pressure can improve the detection rate of the pop
noise-only feature.

Replay Attacks. Here we take a closer look at the perfor-
mance of VoicePop+ under different record and replay
devices listed in Table 3. As shown in Fig. 12, the TNR of
VoicePop+ is relatively stable under different replay devi-
ces, and it is always more effective than VLD in replay
detection. Since VLD only detects the existence of the pop
noise, and in the replay samples, it is very easy to detect the
“pop noise” wrongly under their algorithm. Therefore, VLD
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tends to classify a false sample as a true one, and the TNR
of VLD is very low. These results demonstrate the robust-
ness of VoicePop against replay spoofing attacks. We also
find that all the three schemes have a decline in TNR when
facing the Hivi speakers. This indicates that a high-quality
replay of the recorded voice can improve the attack success
rate, but the cost of the device will be high.

Fig. 14 shows the performance of VoicePop+ under differ-
ent record devices. Both VoicePop+ and VoicePop achieve
high TNRs in all devices. Interestingly, the TNR under the
professional recorder, i.e., Phillips VTR8060 is slightly lower.
This indicates that a professional recorder can help improve
the attack success rate, but the probability of being detected
is still high. Another interesting finding is that VLD performs
much better when facing Mi10S than other devices. This may
be because the false samples in the training dataset for the
three schemes are constructed from false passphrases
recorded by Mil0S. Thus, VLD can perform better under
Mi10S, but it fails to distinguish the recorded phassphrases
from other devices, indicating that VLD is not robust when
facing different record devices. However, in the meantime,
both VoicePop+ and VoicePop can perform well even if the
training dataset does not include the recorded passphrases
from the attacking devices.

Impersonation Attacks. We also dig deeper into impersona-
tion attacks. Since pure impersonation attacks can be
directly recognized by the voice authentication system (e.g.,
the voiceprint verification), we do not consider such attacks
here. We consider two ways of attacks: playback with the
random breath and playback with breath impersonation. As
shown in Fig. 13, VoicePop+ has a superior performance
over the baseline under two ways of attacks, while the base-
line is quite vulnerable to impersonation spoofing attacks.
This is because VLD only detects the existence of pop noise
without extracting individually unique features. VoicePop+
leverages the unique relationship between phonemes and
pop noises of each individual to extract location sequence



JIANG ETAL.: SECURING LIVENESS DETECTION FOR VOICE AUTHENTICATION VIA POP NOISES

1

90

el [

Accuracy (%)

70

60

]| == voicepop

| == voicepop+
I iy
EQ

- |
N N
0

0 60
Angle (degree)

Fig. 15. Impact of authentication angles.

features. This feature is user-dependent, and the attacker
can hardly impersonate the breathing in precise synchroni-
zation at the phonemic level. Compared with VoicePop, the
accuracies of VoicePop+ are 93.76% and 95.04% under the
random attack and the imitating attack, respectively, which
improves the performance of VoicePop (i.e., 91.51% and
92.78%). The results also show that the training phase for
the adversaries can slightly improve the attack success rate,
but it is still hard for the adversaries to imitate the victim’s
breathing style even if they have observed the victim’s
speech for quite a long time.

5.3 Impact of Authentication Angle

In practice, it is hard to strictly constrain the authentication
angles between the microphone and the user’s mouth.
When performing the authentication, the angle may be dif-
ferent from that in the register phase, which may lead to an
inconsistency of the register profile and the recorded feature
in the authentication phase. Hence, we evaluate the perfor-
mance of VoicePop+ under different authentication angles.
Fig. 15 shows the accuracy of VLD, VoicePop, and VoicePop
+ under different authentication angles. Results show that
VoicePop+ is robust to the authentication angle, and the
accuracy remains 94.55% when the angle is 90°. The accu-
racy decreases of VoicePop+ and VoicePop are both about
4%, which is much smaller than that of VLD, i.e., a 20%
decline, showing that the pop noise detection and extraction
schemes in VoicePop+ and VoicePop are more robust to dif-
ferent positions between the microphone and user’s mouth.

5.4 Impact of Authentication Distance

Since the pop noise caused by breathing while speaking is
mild and directional compared with speech, we study the
impact of the distance between the microphone and the
user’s mouth to find the effective distance range. Fig. 16
presents the accuracy of VoicePop+, VoicePop, and VLD
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under different authentication distances. In particular, the
accuracy of VoicePop+ is satisfactory when the distance
ranges from 2cm to 12cm, with a minimal accuracy of
87.54% under 2cm. The accuracy is degraded when the dis-
tance is too short, since a strong breath will affect the
accuracy of pressure estimation and the stability of the pho-
neme-pop sequence. For VoicePop, the accuracy decreases
as the distance increase when the distance is larger than
4cm. Since the breath while speaking is gentle, and its
power decreases as the distance increases, the microphone
may miss a few pop noises. VoicePop+ performs much bet-
ter than VoicePop when the distance is larger than 10cm,
and the accuracy remains over 94% at a distance of 12cm.
This shows that the airflow pressure used in the feature can
really help distinguish the samples when the pop noise
detection is unstable in larger distances. We also notice that
the results are a little different from those given in the con-
ference version. In the conference version, when the dis-
tance is larger than 10cm, the accuracy suddenly drops to
below 20%. This is because this experiment was conducted
on a small dataset of three volunteers, where individual
deviations may have occurred and caused this inconsis-
tency. In this paper, the dataset includes much more speech
samples from 30 volunteers, which statistically eliminates
more individual biases. Besides, all the three schemes per-
form the best at the distance of 4cm, which shows that this
is the best distance to capture the pop noise. Hence, we rec-
ommend setting 4cm as the default authentication distance.

5.5 Impact of Passphrase Length

Generally, a longer passphrase provides stronger security
but increases the authentication time. We categorize all
passphrases into three types according to the length of
words (2~4, 5~7, and 8~10). Fig. 17 illustrates the accuracy
of different lengths of passphrases. It is shown that Voice-
Pop+ can achieve a very high anti-spoofing effectiveness
even when the length of the passphrase is less than 5. We
also observe that medium-length passphrases perform
slightly better. This is an interesting finding because the
accuracy should improve with the increase in passphrase
length theoretically. Indeed, a longer passphrase contains
more pop noises and more distinctions in the phoneme-pop
sequence. Nonetheless, a longer passphrase may contain
more changes (e.g., speaking speed), thereby increasing the
possibility of inconsistency with the profile. But we empha-
size that the accuracy of VoicePop+ is still high in long
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passphrases, and the users can choose a long passphrase
according to their preferences.

5.6 Impact of Speaking Speed

Different people usually speak at different speeds, and in
different situations, one person may also speak at different
speeds. Therefore, we further verified the performance of
the system at different speaking speeds. Fig. 18 shows the
accuracy for different lengths of the passphrases at three
kinds of speeds. We divide the speaking speed into three
types: fast, which corresponds to speaking one word for 0.4
seconds on average, normal, which corresponds to 0.65 sec-
onds for a word, and slow, 1 second for a word. We
observed that the accuracy was the highest for each length
of passwords when at normal speaking speed. When the
users register in, they use normal speaking speed, so the
sequences of the two are more matching. We can also
observe that the accuracies when speaking at slow and nor-
mal speed are not much different. However, when the user
speaks quickly, the accuracy drops a lot. On the one hand,
fast speaking may lead to poor pronunciation, which will
affect the phoneme segmentation result. On the other hand,
there will be linking between the words when speaking too
fast, which will eat up a phoneme, resulting in the instabil-
ity of the phoneme-pop sequence. However, the accuracy
remained at 94.76% when using the longest passwords.

5.7 Impact of Authentication Phone

As we know, the microphones of different smartphones
have diverse frequency selectivity [31]. Thus we study the
performance of our system on different smartphones. As
shown in Fig. 19, we observe that VoicePop+ can resist
spoofing attacks with accuracies of 95.61%, 90.71%, and
97.33% when using Mi6, S7, and C9 as the phone for authen-
tication, respectively. Although the accuracy when using
the S7 phone for authentication was low, it remained above
90%. The results demonstrate that VoicePop+ is robust and
compatible with different phone models.

5.8 Impact of Body Movement

Body movement will affect the breathing pattern and also
the relative position between the user and the smartphone.
To evaluate whether VoicePop+ is robust to body move-
ment, we let the volunteers walk slowly or quickly during
the authentication phase, and the results are given in
Fig. 20. The accuracies of VoicePop+ remains as high as 94%

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

100
71 - 7 ] —
8o i : g BN N— BN N
S 5 o
< K -
z 60 - g
2 @ |
[ "
5 :
P 40
o
[
20 A B B 0 X % 20N =3 VLD
% A =1 VoicePop
§ A BINEEY| % el . K Vociepop+
0 o A N [ VAl . N Al L= 10y -1
TPR TNR Acc TPR TNR Acc TPR TNR Acc
Mi6 Samsung S7 Samsung C9

Fig. 19. Impact of authentication phones. “Acc” is short for accuracy.

when the user walks quickly, showing the robustness of
VoicePop+ to body movements. We also notice that Voice-
Pop has a high TNR and low TPR (i.e., 94% and 90%), while
VLD has a high TPR and low TNR (.e., 99% and 30%). It
indicates that when the movement is unstable, VLD tends
to accept a sample, while VoicePop tends to reject a sample.

5.9 Impact of Ambient Noise

The ambient noise usually has high energy at low frequencies
[32], [33], which may interfere with the pop noise detection,
and thus we evaluate the impact of ambient noise on the per-
formance of VoicePop+. We use three types of smartphones
in four different environments (anechoic chamber, office,
road, and canteen) with various degrees of ambient noise. As
shown in Fig. 21, we can see that the overall accuracies of Voi-
cePop+ of three phones in four different environments are all
above 94%, and the accuracy is as high as 97.6% in the
anechoic chamber. We can see that the environment does
have a little impact on the performance of the system, but not
too much. This is because we have enabled two features in
the consistency analysis that increases the double threshold
to mitigate the random impact of the environment. As for
VLD, the accuracy drops a lot in noisy environments. The
results demonstrate that VoicePop is robust to ambient noise.

5.10 Efficiency

Compared with VoicePop, a big advantage of VoicePop+ is
its high efficiency. In VoicePop+, we extract low-dimen-
sional features from the pop-phoneme sequence and airflow
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Fig. 20. Impact of body movements.
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pressures and adopt the lightweight classification model,
i.e., a binary logistic regression model. However, VoicePop
directly adopts the generic GFCC feature and a SVM classi-
fier, whose training process is complicated and time-con-
suming. Therefore, VoicePop+ reduces much workload of
training and improves the efficiency. We test the running
time of the computational cost of VoicePop+ and VoicePop
in the training and test phases. The training dataset and the
test dataset contain 290 and 595 passphrase samples, respec-
tively. We run VoicePop+ and VoicePop for ten times and
record the running time in the data processing, training,
and testing phases. Table 4 shows the time cost of the two
schemes. Overall, VoicePop+ runs over 10 times faster than
VoicePop. We can see that the data processing overhead of
VoicePop+ is slightly higher than VoicePop. This is because
VoicePop+ additionally involves preesure estimation in the
data processing module. As for the speaker verification
part, VoicePop+ not only reduces the workload of the server
in the training phase, but also performs the liveness detec-
tion faster in the authentication phase, and thus can bring a
better user experience.

5.11 Suitability Evaluation for Deployment on
Device

Our evaluation so far focuses on the authentication scenar-
ios that involve a client and a remote authentication server.
For some special cases that do not require a remote authen-
tication server (e.g., smartphone login), we have further
investigated the possibility of implementing VoicePop+ on
device, i.e., whether the trained machine learning model
can perform the authentication directly on the mobile
device. The feasibility test of deploying the authentication
module on Android yields promising results. Specifically,
running the speaker verification module on the trained
machine learning model locally takes about 51s for 100 tri-
als, which suggests that the lightweight of the machine
learning models in our VoicePop+ design is indeed suitable
to run on the mobile device. The remaining bottleneck, as
indicated by our test, is running the data processing mod-
ule, which can be quite heavy for the mobile devices, i.e.,
about 382s for 100 trials. We plan to develop the full-fledged
offline version of VoicePop+ on mobile devices as our future
work.
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TABLE 4
Evaluation on Efficiency of VoicePop and VoicePop+
Size VoicePop+ VoicePop
Data processing 885 70.6s 67.6s
Training 290 27.3s 383.8s
Testing 595 61.7s 551.2s

6 RELATED WORK

Voice Spoofing Attacks. The voice biometrics systems have
been adopted by a large number of mobile devices for user
authentication. However, numerous studies have shown
that voice authentication is vulnerable to spoofing attacks
[19], [20], [21]. There are mainly two types of attacks: replay
attacks and impersonation attacks. Replay samples can be
produced by stealthily recording, voice synthesis, and voice
conversion. Kinnunen et al. [23] discovered that the Equal
Error Rate (EER) of voice authentication systems increased
from 1.76% to 30.71% under replay attacks. Voice synthesis
techniques concatenate voice segments from multiple sam-
ples to reconstruct the passphrase of the legitimate user
[34]. Recently, Adobe developed a system VoCo [35] to
enable users to edit texts and synthesize corresponding
speeches of a given speaker with only 20 minutes of voice
samples, which may pose severe potential threats to voice
authentication systems. Mukhopadhyay et al. [36] synthe-
sized the victim’s voice by using the user’s speech frag-
ments and the existing speech synthesis tools and achieved
an attack rate of more than 80%. Similarly, Sizov et al. [37]
showed that the attackers could threaten the voice authenti-
cation system through synthetic attacks, resulting in a high
misjudgment rate of the system. Zhou et al. [38] synthesized
hidden voice commands to stealthily control the voice con-
trollable system (VCS) of autonomous driving cars. Voice
conversion attacks convert the attacker’s voice sample into
the victim’s based on the known acoustic model of the vic-
tim using voice morphing techniques [39]. Bonastre et al.
[40] used the voice conversion technology to assess Gussian
Mixture Model-Universal Background Model (GMM-UBM)
and Joint Factor Analysis (JFA) based speaker recognition
systems, the results show that the EER under both models
increased from 8.5% and 4.8% to 32.6%, and 24.8% respec-
tively. Impersonation attacks are launched by attackers who
mimic the voice characteristics and speaking behavior of
the victim [21]. Wu et al. [22] showed that pure impersona-
tion might produce similar speaking pattern and rate of the
victim, but it is nearly impossible for the impersonators to
fake the spectral characteristics like formants.

Our VoicePop+ can resist the replay attacks based on
stealthily recording, voice synthesis, and voice conversion.
VoicePop+ is mainly based on pop noise that is induced by
the user breathing while speaking the passphrase close to
the microphone. In practice, stealthily recording cannot be
too close to the legitimated user, otherwise the user will eas-
ily notice the recording. At a relatively long distance (i.e.,
30cm), stealthily recording cannot capture effective pop
noise, and thus can be detected by VoicePop+. Besides, it is
also hard for voice synthesis and voice conversion techni-
ques to forge natural pop noises. Since pop noises are
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induced by physical breathing, software-only synthesis can-
not forge such subtle user physical characteristics. As for
the impersonation attacks, we first find the individually
uniqueness of pop noises. Different people have different
phonation style and breathing style, and such unique char-
acteristics are hard to observe and imitate. It is also unlikely
for the adversary to obtain the characteristics of the pop
noises of the target users and forge the pop noises. Thus,
the adversary cannot use the computer to program the tar-
get user’s pop noises, either. Our evaluation shows that it is
highly unlikely to imitate the victim’s breathing patterns.

Voice Anti-Spoofing.The traditional method of defending
against replay attacks is liveness detection [7], [8], [9], [11],
[15], [19], which examines whether the voice is produced by
a live user or a speaker. The current methods can be
summed up in two ways. The first builds the security mech-
anism based on the characteristics of the human voice pro-
duction system. The second is mainly to obtain support
from extra hardware, such as using additional sensors to
collect other signals while acquiring voice signals and
analyzing the consistency of the two signals for attack
detection.

VoiceLive [7] measured the time-difference-of-arrival
(TDoA) changes to the two microphones of the smartphone
to pinpoint the sound origins within a live user’s vocal tract
for liveness detection, but the user has to hold the phone at
a specific position. In [8], the smartphone was used as a
Doppler radar to transmit a high-frequency acoustic sound
and monitor the reflections of articulators at the micro-
phone, but the extent of articulatory movements affects the
effectiveness of this countermeasure. Furthermore, since it
relies on the reflection of the acoustic signals, the relative
positions between the user’'s mouth and the microphone
and different positions of the microphones and speakers in
the phone will also affect the performance. In [12], a text-
independent speaker verification method was proposed to
detect spoofing attacks based on loudspeakers, and the key
point of this method is to use the acoustic biometrics
embedded in the sound field to build a “fieldprint”, which
can be used to distinguish loudspeakers from real people.
Chen et al. [11] checked the magnetic field emitted from
loudspeakers to detect machine-based spoofing attacks,
whereas users need to move the smartphone with a prede-
fined trajectory around the mouth while speaking the
passphrase.

In the research of the second kind of liveness detection
method, Feng et al. [15] proposed to use the accelerometer
to record the vibration signal of the body surface and ana-
lyzed the consistency of it and the voice signal to determine
the identity of users. Lei ef al. [41] designed a physical pres-
ence based access control for home digital voice assistants
(HDVAs), which uses wireless fidelity (WiFi) sensing tech-
nology to detect human activities in the room. Only when
user activities are detected, hdva equipment can execute
voice commands. Similarly, Yan et al. [10] used the WiFi sig-
nal to detect the oral movement of users when they are
speaking and extracted features from voice and WiFi sig-
nals. By measuring the correlation between the two signals,
it determines whether the command is issued by the real
user. However, this method is vulnerable to the impact of
the environment. Wang et al. [16] proposed to detect the
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pressure of the oral air flow through the external sensor,
and then judge the pressure in the voice signal to detect the
attack. The common problem of the above sensor-based
detection methods is that they need to use additional devi-
ces, and the calculation cost is high, and the scheme is not
easy to popularize.

Compared with the anti-spoofing systems that need an
extra device [10], [13], [15], [16], VoicePop+ relies only on
off-the-shelf smartphones that are equipped with a micro-
phone, which can be readily integrated into existing voice
authentication systems on smartphones with no additional
hardware modification. Compared with the systems based
on mouth motion [2], [8], [9], VoicePop+ is more robust to
the position between the user’s mouth and the microphone.
The systems [2], [8], [9] rely on the refection signals, which
are sensitive to the positions of the speaker, microphone,
and the mouth. VoicePop+ relies on the pop noises and the
airflow pressure, which can be detected in different speak-
ing positions within 12cm. Other systems based on sound
field [12] and throat vibration [14] do not explicitly resist
impersonation attack. Thus, whether the distinctiveness
have individual uniqueness remains to explore, which is an
interesting and promising future research direction. We
conclude that pop noise is a robust voice biometrics that
does not rely on extra device, and it can be used for individ-
ually classification to resist impersonation attacks.

As far as we are concerned, we are the first to use the fea-
tures of pop noise to defend both replay attacks and imper-
sonation attacks. Sayaka Shiota et al. [17] proposed the pop
noise detector, which combines the single- and the double-
channel to detect pop noise. They further incorporated the
phoneme information for pop noise detection in [18]. How-
ever, their studies rely on the specific microphone model
and cannot perform well when applied to mobile devices.
In contrast, our pop noise detection scheme is designed for
voice authentication in mobile devices. We specifically
address the problem that pop noise may be wrongly
detected in the replay audio. The experiment results also
confirm that our pop noise based authentication system is
effective against various ways of attacks and is robust to dif-
ferent phone models and ambient noises. Compared to our
previous work [1], we further leverage the pressure signal
of the oral airflow to perform consistency analysis to
improve the efficiency and robustness of VoicePop.

7 CONCLUSION

We presented VoicePop+, a practical and effective software-
only anti-spoofing system for voice authentication on smart-
phones. VoicePop+ identifies a live user by detecting pop
noise naturally incurred by user breathing while speaking
close to the microphone. We also leveraged the sound pres-
sure level to get the estimated pressure signal and compare
it with the actual pressure signal extracted from the pop
noise to resist replay attacks. We also used the individually
unique relationship between phonemes and pop noises to
detect impersonation spoofing attacks. Extensive experi-
ments confirmed that VoicePop+ is robust in resisting
various types of voice spoofing attacks with different smart-
phones under diversified environments with an average
detection accuracy of 94.79%. VoicePop+ can be readily
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integrated into existing voice authentication systems on
smartphones with no additional hardware modification.
We believe VoicePop+ has a promising future application.
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